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Mechanical interplay between cell shape and actin
cytoskeleton organization†

Koen Schakenraad,ab Jeremy Ernst,a Wim Pomp, cd Erik H. J. Danen,e

Roeland M. H. Merks,bf Thomas Schmidtc and Luca Giomi *a

We investigate the mechanical interplay between the spatial organization of the actin cytoskeleton and

the shape of animal cells adhering on micropillar arrays. Using a combination of analytical work,

computer simulations and in vitro experiments, we demonstrate that the orientation of the stress fibers

strongly influences the geometry of the cell edge. In the presence of a uniformly aligned cytoskeleton,

the cell edge can be well approximated by elliptical arcs, whose eccentricity reflects the degree of

anisotropy of the cell’s internal stresses. Upon modeling the actin cytoskeleton as a nematic liquid

crystal, we further show that the geometry of the cell edge feeds back on the organization of the stress

fibers by altering the length scale at which these are confined. This feedback mechanism is controlled

by a dimensionless number, the anchoring number, representing the relative weight of surface-

anchoring and bulk-aligning torques. Our model allows to predict both cellular shape and the internal

structure of the actin cytoskeleton and is in good quantitative agreement with experiments on

fibroblastoid (GDb1, GDb3) and epithelioid (GEb1, GEb3) cells.

I. Introduction

Mechanical cues play a vital role in many cellular processes,
such as durotaxis,1,2 cell–cell communication,3 stress-regulated
protein expression4 or rigidity-dependent stem cell differen-
tiation.5,6 Whereas mechanical forces can directly activate
biochemical signaling pathways, via the mechanotransduction
machinery,7 their effect is often mediated by the cortical
cytoskeleton, which, in turn, affects and can be affected by
the geometry of the cell envelope.

By adjusting their shape, cells can sense the mechanical
properties of their microenvironment and regulate traction
forces,8–10 with prominent consequences on bio-mechanical
processes such as cell division, differentiation, growth, death,
nuclear deformation and gene expression.11–16 On the other

hand, the cellular shape itself depends on the mechanical
properties of the environment. Experiments on adherent cells
have shown that the stiffness of the substrate strongly affects
cell morphology17,18 and triggers the formation of stress
fibers.19,20 The cell spreading area increases with the substrate
stiffness for several cell types, including cardiac myocytes,17

myoblasts,18 endothelial cells and fibroblasts,19 and mesenchymal
stem cells.21

In our previous work22 we have investigated the shape and
traction forces of concave cells, adhering to a limited number
of discrete adhesion sites and characterized by highly aniso-
tropic actin cytoskeletons. Using a contour model of cellular
adhesion,8,23–26 we demonstrated that the edge of these cells
can be accurately approximated by a collection of elliptical arcs
obtained from a unique ellipse, whose eccentricity depends on
the degree of anisotropy of the contractile stresses arising from
the actin cytoskeleton. Furthermore, our model quantitatively
predicts how the anisotropy of the actin cytoskeleton determines
the magnitudes and directions of traction forces. Both predictions
were tested in experiments on highly anisotropic fibroblastoid and
epithelioid cells27 supported by microfabricated elastomeric pillar
arrays,28–30 finding good quantitative agreement.

Whereas these findings shed light on how cytoskeletal
anisotropy controls the geometry and forces of adherent cells,
they raise questions on how anisotropy emerges from the three-
fold interplay between isotropic and directed stresses arising
within the cytoskeleton, the shape of the cell envelope and the
geometrical constraints introduced by focal adhesions. It is well
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known that the orientation of the stress fibers in elongated cells
strongly correlates with the polarization direction of the
cell.31–34 Consistently, our results indicate that, in highly
anisotropic cells, stress fibers align with each other and with
the cell’s longitudinal direction (see, e.g., Fig. 1A).22 However,
the physical origin of these alignment mechanisms is less clear
and inevitably leads to a chicken-and-egg causality dilemma:
do the stress fibers align along the cell’s axis or does the cell
elongate in the direction of the stress fibers?

The biophysical literature is not scarce of cellular processes
that might possibly contribute to alignment of stress fibers
with each other and with the cell edge. Mechanical feedback
between the cell and the extracellular matrix or substrate, for
instance, has been shown to play an important role in the
orientation and alignment of stress fibers.21,35–38 Molecular
motors have also been demonstrated to produce an aligning
effect on cytoskeletal filaments, both in mesenchymal stem
cells39 and in purified cytoskeletal extracts,40 where the obser-
vation is further corroborated by agent-based simulations.41

A similar mechanism has been theoretically proposed for
microtubules–kinesin mixtures.42 Studies in microchambers
demonstrated that steric interactions can also drive alignment
of actin filaments with each other and with the microchamber
walls.43–45 Theoretical studies have highlighted the importance
of the stress fibers’ assembly and dissociation dynamics,35,46

the dynamics of focal adhesion complexes,47,48 or both.49,50

Also the geometry of actin nucleation sites has been shown to
affect the growth direction of actin filaments, thus promoting
alignment.51,52 Finally, mechanical coupling between the actin
cytoskeleton and the plasma membrane has been theoretically
shown to lead to fiber alignment, as bending moments arising
in the membrane result into torques that reduce the amount of
splay within the filaments.53 Despite such a wealth of possible
mechanisms, it is presently unclear which one or which combi-
nation is ultimately responsible for the observed alignment of

stress fibers between each other and with the cell’s longitudinal
direction. Analogously, it is unclear to what extent these
mechanisms are sensitive to the specific mechanical and
topographic properties of the environment, although some
mechanisms rely on specific environmental conditions that are
evidently absent in certain circumstances (e.g., the mechanical
feedback between the cell and the substrate discussed in ref. 35,
37, 48 and 54 relies on deformations of the substrate and is
unlikely to play an important role in experiments performed on
micro-pillar arrays).

In this paper we investigate the interplay between the aniso-
tropy of the actin cytoskeleton and the shape of cells adhering
to microfabricated elastomeric pillar arrays.28–30 Rather than
pinpointing a specific alignment mechanism, among those
reviewed above, we focus on the interplay between cell shape
and the spatial organization of the actin cytoskeleton. This is
achieved by means of a phenomenological treatment of the
stress fiber orientation based on the continuum description of
nematic liquid crystals, coupled with a contour model of the
cell edge.22 The paper is organized as follows: in Section II we
introduce our contour model for cells with anisotropic cyto-
skeleton. We first review the key theoretical results, already
reported in ref. 22, followed by an in-depth and previously
unreported analysis of the model. In Section III we further
generalize this approach by studying the mechanical interplay
between the shape of the cell, described by our contour model,
and the orientation of the actin cytoskeleton, modeled as a
nematic liquid crystal confined by the cell edge, and we
compare our results to experimental data on highly anisotropic
cells. In both sections we assume that the coordinates of the
adhesion sites along the cell contour are constant in time and
known. A theoretical description of the dynamics of these
adhesion sites, as a result of focal adhesion dynamics, is
beyond the scope of this study and can be found, for example,
in ref. 47 and 48.

II. Equilibrium configuration of the
cell contour

Many animal cells spread out after coming into contact with a
stiff adhesive surface. They develop transmembrane adhesion
receptors at a limited number of adhesion sites that lie mainly
along the cell contour (i.e., focal adhesions55). These cells are
then essentially flat and assume a typical concave shape
characterized by arcs which span between the sites of adhesion,
while forces are mainly contractile.25 This makes it possible to
describe adherent cells as two-dimensional contractile films,
whose shape is unambiguously identified by the position
r = (x,y) of the cell contour.8,22–24,26,56,57 Fig. 1B illustrates a
schematic representation of the cell (fibroblastoid) in Fig. 1A,
where the cell contour consists of a collection of curves,
referred to as ‘‘cellular arcs’’, that connect two consecutive
adhesion sites. These arcs are parameterized by the arclength
s as curves spanned counterclockwise around the cell, oriented
along the tangent unit vector T = qsr = (cos y,sin y), with y = y(s)

Fig. 1 (A) A fibroblastoid cell with an anisotropic actin cytoskeleton
cultured on a microfabricated elastomeric pillar array.22 The color scale
indicates the measured orientation of the actin stress fibers. (B) Schematic
representation of a contour model for the cell in (A). The cell contour
consists of a collection of concave cellular arcs (red lines) that connect
pairs of adhesion sites (blue dots). These arcs are parameterized as curves
spanned counterclockwise around the cell by the arclength s, and are
entirely described via the tangent unit vector T = (cos y,sin y) and the
normal vector N = (�sin y,cos y), with y the turning angle. The unit vector
n = (cos ySF,sin ySF) describes the local orientation ySF of the stress fibers.
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the turning angle of the arc with respect to the horizontal axis
of the frame of reference. The normal vector N = qsr

> =
(�sin y,cos y), with r> = (�y,x), is directed toward the interior
of the cell. The equation describing the shape of a cellular arc is
obtained upon balancing all the conservative and dissipative
forces experienced by the cell contour. These are:

xtqtr = qsFcortex + (R̂out � R̂in)�N, (1)

where t is time and xt is a (translational) drag coefficient
measuring the resistance, arising from cell–substrate inter-
actions, against motion of the cell contour. R̂out and R̂in are
the stress tensors on the two sides of the cell boundary and
Fcortex is the stress resultant along the cell contour.8,22,24–26,56

We assume the substrate to be rigid and the adhesion sites,
lying along the cell contour, to be stationary. For theoretical
models of cell adhesion on compliant substrates, see, e.g.,
ref. 8, 26 and 56. The temporal evolution of the cell contour
is then dictated by a competition between internal and external
bulk stresses acting on the cell boundary and the tension
arising within the cell cortex. The former give rise to a con-
tractile (i.e., inward-directed) force on the cell contour, thereby
tend to decrease the cell area. By contrast, cortical tension
decreases the cell perimeter, thus resulting in an extensile
(i.e., outward-directed) force, as a consequence of the cell
concavity. As the planar contour represents the two-dimensional
projection of the full three-dimensional body of the cell, changes
in the area affect neither the density of the cytoplasm nor the
internal pressure. Finally, we assume the dynamics of the cell
contour to be overdamped.

The stress tensor can be modeled upon taking into account
isotropic and directed stresses. The latter are constructed by
treating the stress fibers as contractile force dipoles, whose aver-
age orientation ySF is parallel to the unit vector n = (cosySF,sinySF)
(see Fig. 1B). This gives rise to an overall contractile bulk stress of
the form:58,59

Ŝout � Ŝin = sÎ + ann, (2)

where Î is the identity matrix, s4 0 embodies the magnitude of
all isotropic stresses (passive and active) experienced by the cell
edge and a 4 0 is the magnitude of the directed contractile
stresses and is proportional to the local degree of alignment
between the stress fibers, in such a way that a is maximal for
perfectly aligned fibers, and vanishes if these are randomly
oriented. In Section III we will explicitly account for the local
orientational order of the stress fibers using the language of
nematic liquid crystals. Furthermore, since Î = nn + n>n>, the
nematic director n and its normal n> = (�sin ySF,cos ySF)
correspond to the principal stress directions, whereas smax =
s + a and smin = s are, respectively, the maximal and minimal
principal stresses. The degree of anisotropy of the bulk stress is
thus determined by the ratio between the isotropic contractility
s and the directed contractility a. Finally, the tension within the
cell cortex is modeled as Fcortex = lT, where the line tension l
embodies the contractile forces arising from myosin activity
in the cell cortex. This quantity varies, in general, along an arc
and can be expressed as a function of the arclength s. In the

presence of anisotropic bulk stresses, in particular, l(s) cannot
be constant, as we will see in Section II.A. The force balance
condition, eqn (1), becomes then

xtqtr = qs(lT) + sN + a(n�N)n. (3)

In this section we describe the position of the cell boundary
under the assumption that the timescale required for the
equilibration of the forces in eqn (3) is much shorter than
the typical timescale of cell migration on the substrate
(i.e., minutes). Under this assumption, qtr = 0 and eqn (3) can
be cast in the form:

0 = (qsl)T + (lk + s)N + a(n�N)n, (4)

where we have used qsT = kN, with k = qsy the curvature of the
cell edge. In the following, we review (Section II.A) and extend
(Sections II.B–II.D) the results previously reported in ref. 22
about the geometry and mechanics of anisotropic cells adhering
to micropillar arrays.

Finally, all the material parameters appearing in eqn (4)
depend, in principle, on the density of actin. Here we focus on
the orientational structure of the cytoskeleton and, for sake of
simplicity, we assume the density of actin to be uniform
throughout the cell. Therefore our model does not account
for local density variations that have been found experimentally
on several cell types, where stress fibers occur most prominently
along concave cell edges.60–63 A complementary approach, where
the density rather than the orientation of the actin fibers is
explicitly modeled, can be found in ref. 64.

A. Equilibrium cell shape and line tension

In this section we review the results previously reported in
ref. 22. A derivation of the main equations can be found in
ref. 26 and, for the sake of completeness, in the ESI.†

For a = 0, eqn (4) describes the special case of a cell endowed
with a purely isotropic cytoskeleton.8,23,24 Force balance requires l
to be constant along a single cellular arc (i.e. qsl = 0), whereas the
bulk and cortical tension compromise along an arc of constant
curvature, i.e. k = �s/l, with the negative sign of k indicating that
the arcs are curved inwards. The cell edge is then described by a
sequence of circular arcs, whose radius R = 1/|k| = l/s depends on
the local cortical tension l of the arc. This model successfully
describes the shape of adherent cells in the presence of strictly
isotropic forces. However, as we showed in ref. 22, isotropic
models are not suited for describing cells whose anisotropic
cytoskeleton develops strong directed forces originating from
actin stress fibers.65,66

In the presence of an anisotropic cytoskeleton, a 4 0 and
the cell contour is no longer subject to purely normal forces.
As a consequence, the cortical tension l varies along a given
cellular arc to balance the tangential component of the con-
tractile forces arising from the actin cytoskeleton. In order to
highlight the physical mechanisms described, in this case, by
eqn (4), we introduce a number of simplifications that make
the problem analytically tractable. These will be lifted in
Section III, where we will consider the most general scenario.
First, because the orientation of the stress fibers typically varies
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only slightly along a single arc, we assume the orientation of
the stress fibers, ySF, to be constant along a single cellular arc,
but different from arc to arc. Furthermore, without loss of
generality, we orient the reference frame such that the stress
fibers are parallel to the y-axis. Thus, ySF = p/2 and n = ŷ. Then,
solving eqn (4) with respect to l yields:

lðyÞ ¼ lmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 y
1þ g tan2 y

s
; (5)

where the constant g = s/(s + a) quantifies the anisotropy of the
bulk contractile stress. The quantity lmin represent the minimal
cortical tension attained along each cellular arc, where the stress
fibers are perpendicular to the cell contour (i.e., y = 0). By contrast,
the actin cortex exerts maximal tension when the stress fibers are
parallel to the cell contour, i.e., lmax ¼ lðp=2Þ ¼ lmin

� ffiffiffi
g
p

. We note
that these variations in line tension along a single arc do not
necessarily have to be regulated by the cell. Instead, they could
simply be a result of passive mechanical forces in a way very
similar to the space-dependent tension in a simple cable hanging
under gravity. Although the minimal line tension lmin could, in
principle, be arc-dependent, for example if the cell cortex displays
substantial variations in the myosin densities,24 here we approxi-
mate lmin as a constant. This approximation is motivated by the
fact that our previous in vitro observations of anisotropic epithe-
lioid and fibroblastoid cells did not identify a correlation between
the arc length and curvature,22 which, on the other hand, is
expected if lmin was to vary significantly from arc to arc.24 Hence,
a, s and lmin represent the independent material parameters of
our model.

The shape of a cellular arc is given by a segment of an
ellipse, which is given by:22

s2

lmin
2

x� xcð Þ cos ySF þ y� ycð Þ sin ySF½ �2

þ s2

glmin
2
� x� xcð Þ sin ySF þ y� ycð Þ cos ySF½ �2¼ 1:

(6)

The longitudinal direction of the ellipse is always parallel to the
stress fibers, hence tilted by an angle ySF with respect to the
x-axis, as illustrated in Fig. 2 for n = ŷ. The direct relation
between the contractile forces arising from the cytoskeleton
and the shape of the cell is highlighted by the dimensionless
parameter g = s/(s + a): on the one hand, g defines the
anisotropy of the contractile bulk stress, on the other hand it
dictates the anisotropy of the cell shape. This, in turn, does not
depend on the positions of the adhesion sites, which instead
affect the traction forces experienced by the substrate (see
Section II.C). Both these properties arise from the fact that, in
our model, cellular arcs have no preferred length, and are
consistent with experimental observations on fibroblastoids
and epithelioids.22 The coordinates of the center of the ellipse
(xc,yc) and the angular coordinates of the adhesion sites along
the ellipse, c0 and c1 in Fig. 2, can be calculated using standard
algebraic manipulation and are given in the ESI.†

Fig. 3A shows an example of a fibroblastoid cell with ellipses
fitted to its arcs. Because ellipse fitting is very sensitive to noise

on the cell shape, only the longer arcs are considered here (see
Materials and methods). We stress that, as long as the con-
tractile stresses arising from the actin cytoskeleton are roughly
uniform across the cell (i.e., a, s and lmin are constant), all
cellular arcs of sufficient length are approximated by a unique
ellipse (see Fig. 3A). The parameters that describe this ellipse
are, in general, different for each individual cell. A survey of
these parameters over a sample of 285 fibroblastoid and
epithelioid cells yields the distributions displayed in Fig. 3B–D
for the parameters lmin, a and s. The corresponding population
averages are: lmin = 7.6 � 5.6 nN, a = 1.7 � 1.7 nN mm�1,
s = 0.87 � 0.70 nN mm�1 and g = 0.33 � 0.20. Evidently, the
variance in the parameter values is in part due to the natural
variations across the cell population, and in part to possible
statistical fluctuations in the experiments. Further insight about
the distribution of material parameters can be addressed in the
future by combining our model with experiments of cells adhering
to micropatterned substrates, which impose reproducible cell
shapes.67 Finally, we note that some of the smaller cellular arcs,
such as those in the bottom left corner of Fig. 3, cannot be
approximated by the same ellipse as the longer arcs. This may be
due to local fluctuations in the density and orientation of stress
fibers at the small scale or to other effects that are not captured by
our model. For a description of the selection of the fitted arcs and
of the endpoints of the arcs, see Materials and methods. For more
experimental data on the elliptical fits, see ref. 22.

B. Curvature

One of the most striking consequences of the elliptical shape
of the cellular arcs is that the local curvature is no longer
constant, consistent with experimental observations on epithelioid

Fig. 2 Schematic representation of a cellular arc, described by eqn (6), for
n = (cos ySF,sin ySF) = ŷ, hence ySF = p/2. A force balance between isotropic
stress, directed stress and line tension results in the description of each cell
edge segment (red curve) as part of an ellipse of aspect ratio a=b ¼ ffiffiffi

g
p

. The
cell exerts forces F0 and F1 on the adhesion sites (blue). The vector
d = d(cosf,sinf) describes the relative position of the two adhesion sites,
d> = d(�sinf,cosf) is a vector perpendicular to d, and y is the turning
angle of the cellular arc. The coordinates of the ellipse center (xc,yc) and
the angular coordinates of the adhesion sites along the ellipse c0 and
c1 are given in the ESI.†
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and fibroblastoid cells in ref. 22. This can be calculated from
eqn (6) in the form:

k ¼ � 1

gb
1þ g tan2 y
1þ tan2 y

� �3
2

; (7)

with the negative sign indicating that the arcs are curved inwards.
A cellular arc thus attains its maximal (minimal) absolute
curvature, where y = 0 (y = p/2) and the stress fibers are parallel
(perpendicular) to the arc tangent vector, namely

kmin ¼ k y ¼ p
2

� �
¼ �

ffiffiffi
g
p

b
; (8a)

kmax ¼ kðy ¼ 0Þ ¼ � 1

gb
: (8b)

Consistent with experimental evidence, the radius of curvature
of arcs perpendicular to stress fibers is smaller than the radius
of curvature of arcs parallel to the stress fiber direction. Thus,
regions of the cell edge having higher and lower local curvature
correspond to different portions of the same ellipse, depending
on the relative orientation of the local tangent vector and the

stress fibers. For a more detailed comparison between theory
and experiment, see ref. 22.

C. Traction forces

With the expressions for shape of the cellular arcs [eqn (6)] and
cortical tension [eqn (5)] in hand, we now calculate the traction
forces exerted by the cell via the focal adhesions positioned at
the end-points of a given cellular arc (Fig. 2). Calling these F0

and F1 and recalling the cell edge is oriented counter-clockwise,
we have F0 = �l(y0)T(y0) and F1 = l(y1)T(y1), where y0 and y1 are
the turning angles at the end-points of the arc. For practical
applications, it is often convenient to express the position of the
adhesion sites in terms of their relative distance d = d(cosf,sinf)
(Fig. 2). This yields

F0 ¼ lmin �
d

2b
sinfþ r

b
cosf

� �
n? þ �1

g
d

2b
cosfþ r

b
sinf

� �
n

� 	
;

(9a)

F1 ¼ lmin �
d

2b
sinf� r

b
cosf

� �
n? þ �1

g
d

2b
cosf� r

b
sinf

� �
n

� 	
;

(9b)

where the length scale r is defined as

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1þ tan2 f
1þ g tan2 f

� �
� 1

g
d

2

� �2
s

: (10)

The total traction force exerted by the cell can be calculated by
summing the two forces associated with the arcs joining at a given
adhesion site, while taking into account that the orientation n of
the stress fibers is generally different from arc to arc.

Another interesting quantity is obtained by adding the
forces F0 and F1 from the same arc. Although these two forces
act on two different adhesion sites, their sum represents the
total net force that a single cellular arc exerts on the substrate.
This is given by

F0 þ F1 ¼ ds sinfn? � dðsþ aÞ cosfn;

¼ � ðsÎ þ annÞ � d?;
(11)

where d> = d(�sinf,cosf) (Fig. 2). eqn (11) presents the force
resulting from the integrated contractile bulk stress [see
eqn (1)], which is independent of the line tension lmin but
scales linearly with the distance between adhesions. This
implies that the total traction increases with the cell size,
consistent with earlier contour models8,56 and various experi-
mental observations.63,68,69 Because the cell size is expected to
be larger on stiffer substrates, as these stretch only slightly in
response to the cell contraction, the total amount of traction
also increases with substrate stiffness.

D. Mechanical invariants

We conclude this section by highlighting two mechanical
invariants, local quantities that are constant along a cellular
arc, thus showing the intimate relation between the geometry

Fig. 3 (A) A fibroblastoid cell with an anisotropic actin cytoskeleton on a
microfabricated elastomeric pillar array22 (same cell as in Fig. 1A), with a
unique ellipse (white) fitted to its arcs of sufficient length (see Materials and
methods). The actin, cell edge, and micropillar tops are in the red, green,
and blue channels respectively. The endpoints of the arcs (cyan) are
identified based on the forces that the cell exerts on the pillars (Materials
and methods). Scale bar is 10 mm. (B–D) Histograms of the parameters
lmin, a and s estimated from a survey of these parameters over a sample of
285 fibroblastoid and epithelioid cells.
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of the cell and the mechanical forces it exerts on the environ-
ment. From eqn (9) we find

F>
2 + gF8

2 = const., (12)

where F8 and F> are the components of the force, parallel and
perpendicular to n, at any point along a same cellular arc.
Furthermore, by inspection of eqn (7) and (5) we observe that

l3k = �lmin
2(a + s) = const. (13)

From this, we find that the normal component of the cortical
force, lk [see eqn (4)], is then given by

lk ¼ � lmin

l

� �2

ðaþ sÞ: (14)

This relation is an analog of the Young–Laplace law for our
anisotropic system. In the isotropic limit, a = 0 and lmin = l,
thus we recover the standard force-balance expression lk = �s.
Eqn (14) shows that the normal force lk decreases with
increasing line tension l, because an increase in line tension
is accompanied by an even stronger decrease in the curvature k.

III. Interplay between orientation of
the cytoskeleton and cellular shape

In this section we generalize our approach by allowing the
orientation of the stress fibers to vary along individual cellular
arcs. This is achieved by combining the contour model for the
cell shape, reviewed in Section II, with a continuous pheno-
menological model of the actin cytoskeleton, rooted into the
hydrodynamics of nematic liquid crystals.70 This setting can
account for the mechanical feedback between the orientation of
the stress fibers and the concave cellular shape and allows us to
predict both these features starting from the positions of the
adhesions sites along the cell edge alone. Although experi-
mental studies have shown the biophysical importance of
substrate adhesions in the cell interior,28,71,72 here we only
describe a limited number of discrete adhesion sites at the cell
periphery, where the largest traction stresses are found.73–75

A treatment of the dynamics of focal adhesions is beyond
the scope of this paper and can be found elsewhere, e.g., in
ref. 47 and 48.

As mentioned in the Introduction, experimental observations,
by us22 and others,31–34 have indicated that stress fibers tend to
align with each other and with the cell’s longitudinal direction.
As we discussed, several cellular processes might contribute to
these alignment mechanisms, such as mechanical cell–matrix
feedback,21,35–38 motor-mediated alignment,39–42 steric inter-
actions,43–45 stress fiber formation and dissociation,35,46,49,50 focal
adhesion dynamics,47–50 the geometry of actin nucleation
sites,51,52 or membrane-mediated alignment,53 but it is presently
unclear which combination of mechanisms is ultimately respon-
sible for the orientational correlation observed in experiments.
Our phenomenological description of the actin cytoskeleton
allows us to focus on the interplay between cellular shape and
the orientation of the stress fibers, without the loss of generality

that would inevitably result from selecting a specific alignment
mechanism among those listed above.

This phenomenological description necessitates a number
of simplifying assumptions that can be addressed in future
work. First, we again assume the typical timescale associated
with the equilibration of the forces (hence the reorientation of
the actin filaments) to be much shorter than that associated
with cell motility (see also Section II.A). Consequently, experi-
ments on migrating cells76 or cells subject to cyclic mechanical
loading77,78 are outside of the scope of the present paper.
Moreover, our model does not take into account dynamical
effects, such as actin filament turnover and the viscoelasticity
of stress fibers.79,80 Second, as we did with in Section II, we
restrict our model to effectively two-dimensional cells. This is
not unreasonable, as cells adhering to a stiff surface have a
largely flat shape,25 but it does imply that our model cannot
capture three-dimensional stress fiber structures around the
nucleus, such as the actin cap,81 or distinguish between the
orientations of apical and basal stress fibers.82 Third, we do not
model signalling pathways, thus our approach cannot account
for variations of myosin activity (thus contractile stress) in
response to the substrate stiffness and other mechanical cues,
but, as already discussed in Section II, it can describe the
modulation in spread-area and traction force originating from
the mechanical coupling between the cell and the
substrate63,68,69,71 (see Section II.C). Fourth, our model describes
the overall cell-scale structure of the actin cytoskeleton and does
not include local effects such as the interactions of individual
stress fibers with focal adhesions in the cell interior.28,71,72

A. Model of the actin cytoskeleton

The actin cytoskeleton is modeled as a nematic liquid crystal
confined within the cellular contour. This is conveniently
represented in terms of the two-dimensional nematic tensor
(see, e.g., ref. 70):

Qij ¼ S ninj �
1

2
dij

� �
; (15)

where dij is the Kronecker delta and S ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2trQ̂2

q
is the so called

nematic order parameter, measuring the amount of local
nematic order. Here, 0 r S r 1, where S = 1 represents perfect
nematic order and S = 0 represents randomly oriented stress
fibers. In the standard {x̂,ŷ} Cartesian basis, eqn (15) yields

Q̂ ¼
Qxx Qxy

Qxy �Qxx

" #
¼ S

2

cos 2ySF sin 2ySF

sin 2ySF � cos 2ySF

" #
: (16)

The preferred orientation of stress fibers within the cell is
captured by the Landau–de Gennes free-energy Fcyto:70

Fcyto ¼
1

2
K

ð
dA jrQ̂j2 þ 1

d2
trQ̂2 trQ̂2 � 1

� �� 	

þ 1

2
W

þ
dstr Q̂� Q̂0

� �2� 	
:

(17)
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The first integral in eqn (17) corresponds to a standard mean-
field free-energy, favoring perfect nematic order (i.e., S = 1),
while penalizing gradients in the orientation of the stress fibers
and their local alignment. For simplicity, we neglect the depen-
dence on the nematic order parameter on the density of actin
(here assumed to be uniform) and we assume the system to be
away from the isotropic/nematic phase transition.70 The quan-
tity K is known as Frank’s elastic constant and, in this context,
expresses the stiffness of the actin cytoskeleton with respect to
both splay and bending deformations, on a scale larger than
that of the individual actin filaments. The length scale d sets
the size of the boundary layer in regions where the order
parameter drops to zero to compensate a strong distortion of
the nematic director n, such as in proximity of topological
defects. Hence, d measures the typical size of regions where
stress fibers are randomly oriented.

The second integral, which is extended over the cell contour,
is the Nobili–Durand anchoring energy83 and determines the
orientation of the stress fibers along the edge of the cell, with
the tensor Q̂0 representing their preferential orientation.
Experimental evidence form our (Fig. 3 and ref. 22) and other’s
work (e.g., ref. 31–34), suggests that, in highly anisotropic cells,
peripheral stress fibers are preferentially parallel to the cell
edge. The same trend is recovered in experiments with purified
actin bundles confined in microchambers.43,44 In the language
of Landau–de Gennes theory, this effect can be straightfor-
wardly reproduced by setting

Q0;ij ¼ S0 TiTj �
1

2
dij

� �
; (18)

with T the tangent unit vector of the cell edge. Along concave
edges the local orientation of stress fibers tends to be well
defined,60,61 so we further assume a large nematic order along
the contour: S0 = 1. The phenomenological constant W 4 0
measures the strength of this parallel anchoring, hence it is a
measure for the preference of stress fibers to align parallel to
the cell boundary. Finally, although stress fiber formation,
hence the material properties of the actin cytoskeleton, is
known to be affected by the pre-existing cytoskeletal
tension,19,20 here we treat our bulk parameters K, W, and d
independently from the active stresses, a0 and s, for sake of
simplicity.

In order to generate stationary configurations of the actin
cytoskeleton, we numerically integrate the following over-
damped equation:

@tQij ¼ �
1

xr

dFcyto

dQij
; (19)

where xr is a rotational drag coefficient, controlling the relaxa-
tion rate of the system, but without affecting the steady-state
configurations. Eqn (19) is numerically integrated with Neu-
mann boundary conditions:

KN�rQij � 2W(Qij � Q0,ij) = 0. (20)

This guarantees the steady-state configurations to be energy-
minimizing, but without imposing a specific non-physical
orientation of the stress fibers along the contour of the cell.

B. The dynamics of the cell contour

The relaxational dynamics of the cell contour are governed, in
our model, by eqn (3), which is now lifted from the assumption
that the orientation n of the stress fibers is uniform along
individual cellular arcs. Furthermore, the contractile stress
given by eqn (2) can now be generalized as:

Ŝout � Ŝin ¼ sÎ þ a0Snn ¼ sþ 1

2
a0S

� �
Î þ a0Q̂; (21)

with a0 a constant independent on the local order parameter.
Comparing eqn (2) and (21) yields a = a0S, thus the formalism
introduced in this section allows us to explicitly account for the
effect of the local orientational order of the stress fibers on the
amount of contractile stress that they exert.

Next, we decompose eqn (3) along the normal and tangent
directions of the cell contour. Since the cells considered here
are pinned at the adhesion sites, which we again assume to be
rigid, and the density of actin along the cell contour is assumed
to be constant, tangential motion is suppressed, i.e., T�qtr = 0.
Together with eqn (21) this yields:

0 = qsl + a0T�Q̂�N, (22a)

xtN � @tr ¼ lkþ sþ 1

2
a0S þ a0N � Q̂ �N : (22b)

Eqn (22a) describes then the relaxation of tension l within the
cell edge, given its shape, whereas eqn (22b) describes the
relaxation of the cellular shape itself. The variations in the
cortical tension might result from a regulation of the myosin
activity or simply form a passive response of the cortical actin to
the tangential stresses.

Integrating eqn (22a) then yields the cortical tension along
an arc:

lðsÞ ¼ lð0Þ � a0

ðs
0

ds0T � Q̂ �N ; (23)

where Q̂ = Q̂(s) varies, in general, along an individual cellular
arc. The integration constant l(0), which represents the cortical
tension at one of the adhesion sites, is related to the minimal
tension lmin withstood by the cortical actin which we used, in
Section II, as material parameter of the problem. In practice, we
first calculate l over an entire arc using a arbitrary guess for
l(0). Then, we apply a uniform shift in such a way that the
minimal l value coincides with lmin.

Combining the dynamics of the cell contour and that of the
cell bulk, we obtain the following coupled differential equa-
tions:

@tr ¼
1

xt
lkþ sþ 1

2
a0S þ a0N � Q̂ �N

� 	
N ; (24a)

@tQ̂ ¼
K

xr
r2Q̂� 2

d2
S2 � 1

 �

Q̂

� 	
: (24b)
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These are complemented by the condition that r is fixed in a
number of specific adhesion sites, the boundary condition
given by eqn (20) for the nematic tensor Q̂ and the requirement
that minsl(s) = lmin on each arc.

IV. Numerical results

Eqn (24) are numerically solved using a finite difference inte-
gration scheme with moving boundary.84 As we detail in the
ESI,† the time-integration is performed iteratively using the
forward Euler algorithm by alternating updates of the cell
contour and of the bulk nematic tensor. This process is iterated
until both the cell shape and the orientation reach a
steady state.

To highlight the physical meaning of our numerical results,
we introduce two dimensionless numbers, namely the contrac-
tility number, Co, and the anchoring number, An. Co is defined
as the ratio between the typical distance between two adhesion
sites d and the major semi-axis of the ellipse approximating the
corresponding cellular arc (b = lmin/s, see Section II.A):

Co ¼ sd
lmin

; (25)

and provides a dimensionless measure of the cell contraction
(thus of the cell average curvature). The anchoring number, on
the other hand, is defined as the ratio between a typical length
scale R in which the internal cell structure is confined (not
necessarily equal to the distance d) and the length scale K/W,
which sets the size of the boundary layer where Q̂ crosses over
from its bulk configuration to Q̂0:

An ¼WR

K
: (26)

This number expresses the ratio between the anchoring energy,
which scales as WR [i.e., last term in eqn (17)], and the bulk
energy, which scales as K, thus independently on cell size
[i.e., first term in eqn (17)]. Hence, An represents the competi-
tion between boundary alignment (with strength W) and bulk
alignment (strength K) within the length scale of the cell R.
For An { 1, bulk elasticity dominates over boundary anchoring
and the orientation of the stress fibers in the bulk propagates
into the boundary, resulting into a uniform orientation
throughout the cell and large deviations from parallel anchoring
in proximity of the edge. Conversely, for An c 1, boundary
anchoring dominates bulk elasticity and the orientation of the
stress fibers along the cell edge propagates into the bulk, leading
to non-uniform alignment in the interior of the cell.

To get insight on the effect of the combinations of these
dimensionless parameters on the spatial organization of the
cell, we first consider the simple case in which the adhesion
sites are located at the corners of squares and rectangles
(Section IV.A). In Section IV.B we consider more realistic
adhesion geometries and compare our numerical results with
experimental observations on highly anisotropic cells adhering
to a small number of discrete adhesions.

A. Rectangular cells

Fig. 4 shows the possible configurations of a model cell whose
adhesion sites are located at the vertices of a square, obtained
upon varying An and Co, while keeping g = s/(s + a0) constant.
Fig. S2 in the ESI† shows the effect of varying the ratio between
s and a0 for this model cell. The thick black line represents the
cell boundary, the black lines in the interior of the cells
represent the orientation field n of the stress fibers and the
background color indicates the local nematic order parameter
S, or equivalently, the magnitude of the maximal principal
stress smax = s + a0S.

As expected, for low Co values (left column), cells with large
An exhibit better parallel anchoring than cells with small An
values, but lower nematic order parameter S in the cell interior
(spatial average of S decreases from 1.0 at the bottom left to
0.80 at the top left, see Fig. 4). Interestingly, the alignment of
stress fibers with the walls in the configuration with large An
value (top left) resembles the configurations found by Desh-
pande et al.,35,46 who specifically accounted for the assembly
and dissociation dynamics of the stress fibers. More strikingly,

Fig. 4 Configurations of cells whose adhesion sites are located at the
vertices of a square. The thick black line represents the cell boundary, the
black lines in the interior of the cells represent the orientation field
n = (cos ySF,sin ySF) of the stress fibers and the background color indicates
the local nematic order parameter S. The spatial averages of the order
parameter S are given, from left to right, by: 0.80; 0.80; 0.77 (top row),
0.94; 0.92; 0.92 (middle row), and 1.0; 1.0; 1.0 (bottom row). The vertical
axis corresponds to the anchoring number An = WR/K and the horizontal
axis to the contractility number Co = sd/lmin. The cells shown correspond
to values of An = 0, 1, 10 and Co = 0, 0.125, 0.25, where we take both d and
R equal to the length of the square side. The ratios s/(s + a0) = 1/9,
lminDt/(xtR

2) = 2.8 � 10�6, and KDt/(xrR
2) = 2.8 � 10�6, and the parameters

d = 0.15R, Narc = 20, and Dx = R/19 are the same for all cells. The number of
iterations is 5.5 � 105. For definitions of Dt, Dx, and Narc, see the ESI.†
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the structure reported in the top left of Fig. 4 appears very
similar to those found in experiments of dense suspensions of
pure actin in cell-sized square microchambers,43,44 simulations
of hard rods in quasi-2D confinement,43 and results based on
Frank elasticity,85 even though these systems are very different
from living cells. As is the case in our simulations, in these
studies the tendency of the filaments to align along the square
edges competes with that of aligning along the diagonal.

For large Co values (right column of Fig. 4), the cell deviates
from the square shape. Interestingly, although the contractile
stresses (s and a0) do not directly affect the configuration of the
cytoskeleton, they do it indirectly by influencing the shape
of the cell. This results into an intricate interplay between
shape and orientation, controlled by the numbers An and Co.
In particular, for constant Co, i.e., for fixed stress fiber con-
tractility, increasing An leads to higher tangential alignment of
the stress fibers with the cell edge, thus increasing An decreases
the contractile force experienced by the cell edge, which is
proportional to (n�N)2 [eqn (24a)]. Conversely, for constant An,
increasing Co leads to a more concave cell shape which forces
the stress fibers to bend more. Consequently, the average order
parameter in the cell decreases with increasing Co (see Fig. 4).

Finally, we note that all configurations in Fig. 4 display a
broken rotational and/or chiral symmetry. For An = 0 the stress
fibers are uniformly oriented, but any direction is equally likely.
For non-zero An, the stress fibers tend to align along either of
the diagonals (with the same probability) to reduce the amount
of distortion. Upon increasing Co, chirality emerges in the
cytoskeleton and in the cell contour (see, e.g., the cell in the
middle of the right column in Fig. 4). In light of the recent
interest in chiral symmetry breaking in single cells86 and in
multicellular environments,87 we find it particularly interesting
that chiral symmetry breaking can originate from the natural
interplay between the orientation of the stress fibers and the
shape of the cell.

To conclude this section, we focus on four-sided cells whose
adhesion sites are located at the vertices of a rectangle and
explore the effect of the cell aspect ratio (i.e., height/width).
Fig. 5 displays three configurations having fixed maximal width
and aspect ratio varying from 1 to 2. Fig. S3 in the ESI† shows
the effect of increasing the aspect ratio while keeping instead
the area of the rectangle fixed. Upon increasing the cell aspect
ratio, the mean orientation of the stress fibers switches from
the diagonal (aspect ratio 1) to longitudinal (aspect ratio 2),
along with an increase in the order parameter in the cell bulk,
as can be seen in Fig. 5 by the slightly more red-shifted cell
interior (spatial average of S increases from 0.92 to 0.96). This
behavior originates from the competition between bulk and
boundary effects. Whereas the bulk energy favors longitudinal
alignment, as this reduces the amount of bending of the
nematic director, the anchoring energy favors alignment along
all four edges alike, thus favoring highly bent configurations at
the expense of the bulk elastic energy. When the aspect
ratio increases, the bending energy of the bulk in the diagonal
configuration increases, whereas the longitudinal state only
pays the anchoring energy at the short edges, hence independently

on the aspect ratio. Therefore, elongating the cell causes the stress
fibers to transition from tangential to longitudinal alignment,
with a consequent increase of the nematic order parameter.
Interestingly, similar observations were made in experiments
on pure actin filaments in cell-sized microchambers.43,44 More
importantly, the longitudinal orientation of the stress fibers in
cells of aspect ratio 2 is consistent with several experimental
studies of cells adhering on adhesive stripes and elongated
adhesive micropatterns.33,34,62,63,88 Fig. S4 and S5 in the ESI†
show the effect of the anchoring number An, the contractility
number Co, and the ratio between s and a0 on a cell with aspect
ratio 2.

B. Cells on micropillar arrays

In order to validate our model experimentally, we compare
our numerical results with experiments on fibroblastoid and
epithelioid cells27 plated on micropillar arrays.28–30 The cells
are imaged using spinning disk confocal microscopy (see,
e.g., Fig. 6A) and the images are then processed in order to
detect the orientation of the stress fibers. Upon coarse-graining
the local gradients of the image intensity, we reconstruct both
the nematic director n (black lines, representing the orientation
of the stress fibers) and order parameter S (background color,
representing the degree of alignment), as visualized in Fig. 6B.
Because of this coarse-graining, which takes place on a length

Fig. 5 Effect of the aspect ratio of the cell, ranging from 1 to 2, on
cytoskeletal organization for cells whose four adhesion sites are located at
the vertices of a rectangle. The thick black line represents the cell
boundary, the black lines in the interior of the cells represent the orienta-
tion field n = (cos ySF,sin ySF) of the stress fibers and the background color
indicates the local nematic order parameter S. The spatial averages of the
order parameter S are given, from left to right, by: 0.92; 0.95; 0.96. The
simulations shown are performed with An = WR/K = 1 where R is equal to
the short side of the rectangle, and Co = sd/lmin equal to 0.125, 0.1875,
and 0.25 respectively, where d is equal to the long side of the rectangle.
The ratios s/(s + a0) = 1/9, lminDt/(xtR

2) = 2.8� 10�6, and KDt/(xrR
2) = 2.8�

10�6, and the parameters d = 0.15R and Dx = R/19 are the same for all
cells. Narc = 20, 30, 40 from left to right and the number of iterations is
5.5 � 105. For definitions of Dt, Dx, and Narc, see the ESI.†
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scale comparable to the radius of the micropillars (B1 mm) (see
Materials and methods), local variations in orientations and
densities of stress fibers are smoothened out and the influence
of individual micropillars under the cell interior, as visible in
Fig. 6A, is no longer visible in Fig. 6B. Regions in the cell with

low actin expression, that do not show a clear structural
orientation, have a low order parameter S. Hence, in the
experimental data, a low S value might result from either a
low local density of stress fibers, or from a high density of
randomly oriented stress fibers. See Materials and methods
for more detail on the experimental methods and image
processing.

Consistent with our results on rectangular cells (Fig. 5), the
stress fibers align parallel to the cell’s longitudinal direction
and perpendicularly to the cell’s shorter edges. Furthermore,
the nematic order parameter is close to unity in proximity of the
cell contour, indicating strong orientational order near the cell
edge, but drops in the interior. This behavior is in part
originating from the lower density of stress fibers around the
center of mass of the cell, and in part from the presence of �1/2
nematic disclinations away from the cell edge. These topologi-
cal defects naturally arise from the tangential orientation along
the boundary. Albeit not uniform throughout the whole cell
contour, thus not sufficient to impose hard topological
constraints on the configuration of the director in the bulk
(i.e., Poincaré–Hopf theorem), this forces a non-zero winding of
the stress fibers, which in turn is accommodated via the
formation of one or more disclinations. As a consequence of
the concave shape of the cell boundary, these defects have most
commonly strength �1/2. The average order parameter in the
cell is S = 0.54.

To compare our theoretical and experimental results, we
extract the locations of the adhesion sites from the experimental
data by selecting micropillars that are close to the cell edge and
experience a significant force (for details, see Materials and
methods), and use them as input parameters for the simulations.
In Fig. 6C–E we show results of simulations of the cell in Fig. 6A
and B for increasing An values, thus decreasing magnitude of the
length scale K/W. Here, we take the length scale R = 23.6 mm to be
the square root of the cell area and we use constant values for the
ratios lmin/s = 14.7 mm and s/(s + a0) = 0.40 as found by an
analysis of the elliptical shape of this cell.22 Fig. 6C shows the
results of a simulation where bulk alignment dominates over
boundary alignment (An = 0.33, K/W = 71 mm), resulting in an
approximately uniform cytoskeleton oriented along the cell’s
longitudinal direction. The nematic order parameter is also
approximatively uniform and close to unity (spatial average of
the order parameter is S = 0.85). For larger An values (Fig. 6D,
An = 1.7 and K/W = 14 mm), anchoring effects become more
prominent, resulting in distortions of the bulk nematic director, a
lower nematic order parameter (spatial average S = 0.60), and the
emergence of a �1/2 disclination in the bottom left side of
the cell. Upon further increasing An (Fig. 6E, An = 8.0 and
K/W = 2.9 mm), the �1/2 topological defect moves towards the
interior, as a consequence of the increased nematic order along
the boundary. This results in a decrease in nematic order para-
meter in the bulk of the cell, consistent with our experimental
data. The spatial average is S = 0.56, close to the experimental
average of S = 0.54.

A qualitative comparison between our in vitro (Fig. 6B)
and in silico cells (Fig. 6E) highlights a number of striking

Fig. 6 Validation of our model to experimental data. (A) Optical micro-
graph (TRITC–Phalloidin) of a fibroblastoid cell (same cell as in Fig. 1 and
3).22 The adhesions (cyan circles) are determined by selecting micropillars
that are close to the cell edge and experience a significant force (Materials
and methods). (B) Experimental data of cell shape and coarse-grained
cytoskeletal structure of this cell. The white line represents the cell
boundary, black lines in the interior of the cells represent the orientation
field n = (cos ySF,sin ySF) of the stress fibers and the background color
indicates the local nematic order parameter S. The spatial average of the
order parameter is S = 0.54. (C–E) Configurations obtained from a
numerical solution of eqn (24) using the adhesion sites of the experimental
data (cyan circles) as input, and with various anchoring number (An) values.
This is calculated from eqn (26), with R = 23.6 mm the square root of the
cell area. The corresponding values of the length scale K/W are 71 mm (C),
14 mm (D), and 2.9 mm (E) respectively. The spatial averages of the order
parameter S are given by: 0.85 (C), 0.60 (D), and 0.56 (E) respectively. The
values for lmin/s = 14.7 mm and s/(s + a0) = 0.40 are found by an analysis of
the elliptical shape of this cell.22 The ratios lminDt/xt = 1.2 � 10�3 mm2 and
KDt/xr = 1.2 � 10�3 mm2, and the parameters d = 11 mm, Narc = 20, and
Dx = 1.1 mm are the same for figures (C–E). The number of iterations is
2.1 � 106. For definitions of Dt, Dx, and Narc, see the ESI.†
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similarities, such as the overall structure of the nematic director,
the large value of the order parameter along the cell edge and in
the thin neck at the bottom-right of the cell and the occurrence of
a�1/2 disclination on the bottom-left side. The main difference is
the order parameter away from the cell edges, which is lower in
the experimental data than in the numerical prediction. The lower
order parameter also results in an additional �1/2 disclination at
the top-left of the cell in Fig. 6B which is absent in Fig. 6E.
We hypothesize that this discrepancy is caused by a lower actin
density in the cell interior, as observed before in many other
experimental studies.60–63 As a consequence of the actin deple-
tion, the nematic order parameter can decrease, and potentially
vanish, in a way that cannot be described by our model, where the
density of the actin fibers is, by contrast, assumed to be uniform
across the cell.

In order to make this comparison quantitative and infer the
value of the phenomenological parameters introduced in this
section, we have further analyzed the residual function

D2 ¼ 1

N

XN
i¼1

1

2
tr Q̂sim;i � Q̂exp;i

� �2� 	
; (27)

expressing the departure of the predicted configurations of the
nematic tensor, Q̂sim, from the experimental ones, Q̂exp. The
index i identifies a pixel in the cell and N is the total number of
pixels common to both numerical and experimental configura-
tions. By construction, D2 captures both differences in the
nematic director n and in the order parameter S [see
eqn (15)], and 0 r D2 r 1, with 0 representing perfect
agreement. Fig. 7 shows a plot of D2 versus the anchoring
number An for the cell shown in Fig. 6. Consistent with the
previous qualitative comparison, the agreement is best at large
An values, indicating a substantial preference of the stress
fibers for parallel anchoring along the cell edge. For the cell
in Fig. 6, D2 is minimized for An = 8.0 (D2 = 0.027), corres-
ponding to a boundary layer K/W = 2.9 mm. The corresponding
numerically calculated configuration is shown in Fig. 6E.
However, the flattening of D2 for large An values implies that
the actual value of An becomes unimportant once the anchoring
torques (with magnitude W), which determine the tangential
alignment of the stress fibers in the cell’s periphery, outcompete
the bulk elastic torques (with magnitude K). Therefore, we
conclude that the cell illustrated in Fig. 6 is best described by
An \ 5, corresponding to a boundary layer K/W t 5 mm. The
corresponding value of D2 = 0.027 indicates good quantitative
agreement between the experimental (Fig. 6B) and simulated
(Fig. 6E) data, despite the difference in order parameter away
from the cell edges. This quantitative agreement indicates that,
although oversimplified in comparison with the complexity of
living cells, our model satisfactorily describes the stationary
configuration of both the nematic order parameter and the
stress fibers orientation.

The same analysis presented above has been repeated for
five other cells (Fig. 8). The first column shows the raw experi-
mental data, the second column shows the coarse-grained
experimental data, and the third column shows the simulations.

For these we used the values of lmin/s and s/(s + a0) obtained from
a previous analysis of the cell morphology22 and the An values
found by a numerical minimization of D2 (see Fig. S6 in the ESI†).
Also for these cells D2 flattens for large An values, and we estimate
An \ 3 and K/W t 7 mm. The minima of D2 are given, from top to
bottom, by 0.016, 0.058, 0.057, 0.034, and 0.037. This indicates
reasonable quantitative agreement between experiment and simu-
lation for all cells, even though the agreement is significantly
better for the cell in Fig. 8F than for those in Fig. 8G and H.
Similar to the cell in Fig. 6, we observe that the main discrepan-
cies are the order parameter in the cell interior, which is smaller
in the experimental data than in the numerical results, and a
number of topological defects in this low nematic order region of
the experimental data that are absent in the numerical data. The
cell in Fig. 8F shows good agreement between the average order
parameter in the experimental (S = 0.54) and numerical (S = 0.52)
data, but for the other cells the average order parameter is
overestimated by the simulations. We again attribute this discre-
pancy to actin density variations in the experiments that are not
captured by the theory. On the other hand, we note that the
overall structure of the stress fiber orientation, including the
emergence of a number of �1/2 topological defects (see,
e.g., Fig. 8F and K), is captured well by our approach. By contrast,
because of the overall convexity of the cells and the lack of strong
anchoring at the boundary, + 1/2 disclinations are less prominent
in both our in vitro and in silico cells and are mainly localized at
the actin-depleted regions.

Finally, in nematic liquid crystals, anchoring, namely the
orientation of the nematogens by a surface, originates at the
molecular scale as consequence of steric, van der Waals and
dipolar interactions, and, similarly to epitaxy in solids, can be
controlled via the surface chemistry (see e.g. ref. 89). Whereas
the biological role of anchoring in the actin cytoskeleton is yet

Fig. 7 Residual function D2, defined in eqn (27), as a function of the
anchoring number An (eqn (26) with R = 23.6 mm) for the cell displayed
in Fig. 6. The error bars display the standard deviation obtained using
jackknife resampling. For large An values the residual flattens, indicating
that the actual value of An becomes unimportant once the anchoring
torques (with magnitude W), which determine the tangential alignment of
the stress fibers in the cell’s periphery, outcompete the bulk elastic torques
(with magnitude K). The minimum (D2 = 0.027) is found for An = 8.0.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
 2

56
3.

 D
ow

nl
oa

de
d 

on
 1

4/
8/

25
67

 2
2:

08
:4

0.
 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0sm00492h


This journal is©The Royal Society of Chemistry 2020 Soft Matter, 2020, 16, 6328--6343 | 6339

to be explored and understood, the prevalence of parallel
anchoring (i.e. the stress fibers are tangent to the cell contour)
highlighted by our comparative analysis, suggests that steric

interactions may be instrumental in the organization of the
actin cytoskeleton, consistently with studies of actin assemblies
in microchambers.43–45

V. Conclusions

In this article we investigated the spatial organization of cells
adhering on a rigid substrate at a discrete number of points.
Our approach is based on a contour model for the cell
shape8,23–26 coupled with a continuous phenomenological
model for the actin cytoskeleton, inspired by the physics of
nematic liquid crystals.70 This approach can be carried out at
various levels of complexity, offering progressively insightful
results. Assuming that the orientation of the stress fibers is
uniform along individual cellular arcs (but varies from arc to
arc), it is possible to achieve a complete analytical description
of the geometry of the cell, in which all arcs are approximated
by different portions of a unique ellipse. The eccentricity of this
ellipse depends on the ratio between the isotropic and directed
stresses arising in the actin cytoskeleton, and the orientation of
the major axis of this ellipse is parallel to the stress fibers. This
parallel alignment highlights the ability of cells to employ their
actin cytoskeleton to regulate their shape. The method further
allows to analytically calculate the traction forces exerted by the
cell on the adhesion sites and compare them with traction force
microscopy data.

Lifting the assumption that the stress fibers are uniformly
oriented along individual cellular arcs allows one to describe the
mechanical interplay between cellular shape and the configu-
ration of the actin cytoskeleton. Using numerical simulations and
inputs from experiments on fibroblastoid and epithelioid cells
plated on micropillar arrays, we identified a feedback mechanism
rooted in the competition between the tendency of stress fibers to
align uniformly in the bulk of the cell, but tangentially with
respect to the cell edge. Our approach enables us to predict both
the shape of the cell and the orientation of the stress fibers and
can account for the emergence of topological defects and other
distinctive morphological features. The predicted stress fiber
orientations are in good agreement with the experimental data
and further offer an indirect way to estimate quantities that are
generally precluded to direct measurement, such as the cell’s
internal stresses and the orientational stiffness of the actin
cytoskeleton. The main discrepancy between our predictions
and the experimental data is the overestimation of the nematic
order parameter in the cell interior, which should be addressed in
future work by explicitely accounting for actin density variations.

The success of this relatively simple approach is remarkable
given the enormous complexity of the cytoskeleton and the
many physical, chemical, and biological mechanisms asso-
ciated with stress fiber dynamics and alignment.21,35–53 Yet,
the agreement between our theoretical and experimental
results suggests that, on the scale of the whole cell, the myriad
of complex mechanisms that govern the dynamics of the stress
fibers in adherent cells can be effectively described in terms of
simple entropic mechanisms, as those at the heart of the physics

Fig. 8 Comparison of experimental data on five anisotropic cells with the
results of computer simulations. (A–E) Optical micrographs (TRITC–
Phalloidin) of epithelioid (A, B and E) and fibroblastoid (C and D) cells on
a microfabricated elastomeric pillar array.22 The adhesions (cyan circles)
are determined by selecting micropillars that are close to the cell edge and
experience a significant force (Materials and methods). (F–J) Experimental
data of cell shape and coarse-grained cytoskeletal structure on a square
lattice of these cells. The white line represents the cell boundary, the black
lines in the interior of the cells represent the orientation field n =
(cos ySF,sin ySF) of the stress fibers and the background color indicates
the local nematic order parameter S. The spatial averages of the order
parameter S are given, from top to bottom, by: 0.54; 0.44; 0.45; 0.46; 0.37.
(K–O) Simulations with the adhesion sites of the experimental data as
input. The spatial averages of the order parameter S are given, from top to
bottom, by: 0.52; 0.68; 0.61; 0.59; 0.53. The values for lmin/s = 12.6; 15.7;
18.0; 10.8; 13.4 mm and s/(s + a0) = 0.75; 0.25; 0.46; 0.95; 0.52 are found
by an analysis of the elliptical shape of these cells.22 The values of An = 4.4;
4.1; 19; 4.6; 4.7, where R = 17.3; 24.4; 39.9; 24.9; 25.3 mm is defined as the
square root of the cell area, are determined by minimizing D2, with the
minima given by D2 = 0.016; 0.058; 0.057; 0.034; 0.037. These An values
correspond to K/W = 3.9; 5.9; 2.1; 5.4; 5.4 mm. The ratios lminDt/xt =
1.2 � 10�3 mm2 and KDt/xr = 1.2 � 10�3 mm2, and the parameters d = 11 mm,
Narc = 20, and Dx = 1.1 mm are the same for all cells. The number of
iterations is 2.1 � 106. For definitions of Dt, Dx, and Narc, see the ESI.†
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of liquid crystals. Moreover, this quantitative agreement further
establishes the fact that the dynamics and alignment of stress
fibers in cells cannot be understood from dynamics at the
sub-cellular scale alone, and highlights the crucial role of the
boundary conditions inferred by cellular shape.60,61

In addition, our analysis demonstrates that chiral symmetry
breaking can originate from the natural interplay between the
orientation of the stress fibers and the shape of the cell. A more
detailed investigation of this mechanism is beyond the scope
of this study, but will represent a challenge in the near future with
the goal of shedding light on the fascinating examples of chiral
symmetry breaking observed both in single cells86 and tissues.87

In the future, we plan to use our model to investigate the
mechanics of cells adhering to micropatterned substrates that
impose reproducible cell shapes,67 with special emphasis to the
interplay between cytoskeletal anisotropy and the geometry of
the adhesive patches. These systems are not new to theoretical
research, but previous studies have focused on either the
cytoskeleton49 or on cell shape,90 rather then on their interaction.
This will enable us to more rigorously compare our model
predictions with existing experimental data on stress fiber orien-
tation in various adhesive geometries,16,60–62,91 including convex
shapes such as circles or spherocylinders.63,86,92 Additionally, our
model could be further extended to account for the mechanical
feedback on myosin activity (see e.g. ref. 63, 68, 69 and 71) as well
as the interactions of the stress fibers with the micropillars in the
bulk of the cell body.28,71,72 Furthermore, our framework could be
extended to study the role of cytoskeletal anisotropy in cell
motility, for instance by taking into account the dynamics of focal
adhesions,47,48 biochemical pathways in the actin cytoskeleton,93

actin filament turnover and the viscoelasticity of stress fibers,79,80

or cellular protrusions and retractions.94 Finally, our approach
could be extended to computational frameworks such as vertex
models, Cellular Potts Models, or phase field models,95 and could
provide a starting point for exploring the role of anisotropy in
multicellular environments such as tissues.96–103
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Appendix A: materials and methods
1 Cell culture and fluorescent labeling

Epithelioid GE11 and fibroblastoid GD25 cells27 expressing
either a5b1 or avb3 (GDb1, GDb3, GEb1 and GEb3) have been

cultured as described before.104 Cells have cultured in medium
(DMEM; Dulbecco’s Modified Eagle’s Medium, Invitrogen/
Fisher Scientific) supplemented with 10% fetal bovine serum
(HyClone, Etten-Leur, The Netherlands), 25 U ml�1 penicillin
and 25 mg ml�1 streptomycin (Invitrogen/Fisher Scientific cat.
# 15070-063). Cells were fixed in 4% formaldehyde and
then permeabilised with 0.1% Triton-X and 0.5% BSA in PBS.
Tetramethylrhodamine (TRITC)–Phalloidin (Fisher Emergo
B.V. cat. # A12380, Thermo Fisher) was subsequently used to
stain F-actin.

2. Micropillar arrays

Micropillar arrays were fabricated using polydimethylsiloxane
(PDMS) as described in ref. 29 and 30. The 2 mm diameter
micropillars are arranged in a hexagonal lattice with a 4 mm
center-to-center distance. The micropillar height is 6.9 mm,
resulting in a stiffness of 16.2 nN mm�1. The pillar tops were
fluorescently labeled using an Alexa 405-fibronectin conjugate
(Alexa Fluors, Invitrogen/Fisher Scientific, Breda, The Netherlands;
Fibronectin cat. #1141, Sigma Aldrich, Zwijndrecht, The
Netherlands). Pillar deflections were determined with B30 nm
precision using a specifically designed Matlab script resulting in a
B0.5 nN precision in force.30

3. Imaging

High-resolution imaging was performed on an in-house
constructed spinning disk confocal microscope based on an
Axiovert200 microscope body with a Zeiss Plan-Apochromat
100� 1.4NA objective (Zeiss, Sliedrecht, The Netherlands) and
a CSU-X1 spinning disk unit (CSU-X1, Yokogawa, Amersfoort,
The Netherlands). Imaging was done using an emCCD camera
(iXon 897, Andor, Belfast, UK). Alexa405 and TRITC were exited
using 405 nm (Crystalaser, Reno, NV) and 561 nm (Cobolt,
Stockholm, Sweden) lasers, respectively. This results in a
resolution of approximately 150 nm and 200 nm respectively.

4. Image analysis

The locations of the cell interior and the cell edge were found
by applying a low-pass filter on the images using Matlab. The
interior of the cell was then sampled by overlaying a square
lattice of 512 � 512 pixels (1 pixel = 0.138 � 0.138 mm2) on the
microscope field-of-view (Fig. 6A and 8A–E).

For all pixels that are inside the cell, the configuration of the
stress fibers was analyzed by calculating the nematic tensor
using ImageJ with the OrientationJ plugin,105 see the ESI.† The
data were further coarse-grained in blocks of 8 � 8 pixels
corresponding to regions of size 1.104 � 1.104 mm2 in real space.
This results in a new 64 � 64 lattice. The value of the nematic
tensor in the new coarse-grained pixels was obtained from an
average over those of the original 8 � 8 pixels located inside the
cell. In turn, the coarse-grained pixels were considered inside the
cell if more than half of the original pixels were inside the cell.

5. Force analysis

The forces that the cells exert on the micropillar array were
measured. We selected the pillars in Fig. 6 and 8 as adhesion
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sites according to the following two criteria: (1) they are within
10 pixels (1.38 mm) from the edge of the cell. (2) They are
subject to a force that is at least 3 times larger than the average
force on all the pillars or the tangent vector along the
cell contour rotates by an angle of at least 301 at the location
of that pillar.

6. Ellipse fitting

Ellipses in Fig. 3 are fitted, using Matlab, to the part of the cell
edge delimited by two consecutive pillars, provided the pillars
satisfy the two criteria listed in Section A.5 and the distance
between them is larger than 50 pixels (6.90 mm). Each ellipse is
described by five parameters: the two coordinates of the center,
the two semi-axes and the orientation of the ellipse’s long-
itudinal direction. In fitting ellipses to cellular arcs, the orien-
tation of the longitudinal direction of a given ellipse is
constrained to be equal to the local orientation of stress fibers
along the same arc, consistent with our predictions [eqn (6)].
This local stress fiber orientation is found by averaging the
nematic director (Section A.4) over all pixels which are between
2.07 mm and 6.90 mm (15 and 50 non-coarse-grained pixels)
away from the corresponding cell edge and whose nematic
order parameter S is larger than 0.15. Then, each cellular arc is
fitted separately to obtain the coordinates of the center and the
lengths of the two semi-axes of the ellipse, and the resulting
lengths are averaged over the N ellipses in the cell that meet the
criteria listed above. The resulting numbers serve as initial
parameters for a global fit, which simultaneously fits N cellular
arcs to a unique ellipse. This global fit then finds optimal
values for the coordinates of the center of each ellipse, and for
the length of the two semi-axes of the unique ellipse, by
minimizing the distance between fitted ellipses and the cellular
arcs using w2. All reported ellipse parameters are obtained
using this global fit. Ellipses whose w2 is greater than 10 were
discarded, which occurs in case of membrane ruffling and
other out-of-equilibrium events.
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H. L. Sweeney and D. E. Discher, J. Cell Biol., 2004, 166,
877–887.

19 T. Yeung, P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz,
M. Funaki, N. Zahir, W. Ming, V. Weaver and P. A. Janmey,
Cell Motil., 2005, 60, 24–34.

20 F. Grinnell, Trends Cell Biol., 2000, 10, 362–365.
21 A. Zemel, F. Rehfeldt, A. E. X. Brown, D. E. Discher and

S. A. Safran, J. Phys.: Condens. Matter, 2010, 22, 194110.
22 W. Pomp, K. Schakenraad, H. E. Balcıoğlu, H. van Hoorn,
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60 M. Théry, A. Pépin, E. Dressaire, Y. Chen and M. Bornens,

Cell Motil., 2006, 63, 341–355.
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