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driven helicity inversion and
circularly polarized luminescence in chiral
aggregation induced emission fluorophores†

Qiang Ye,‡ab Feng Zheng,‡cd Enqi Zhang,a Hari Krishna Bisoyi, b Shuyuan Zheng,a

Dandan Zhu,d Qinghua Lu, *d Hailiang Zhang a and Quan Li *b

Development of functional materials capable of exhibiting chirality tunable circularly polarized

luminescence (CPL) is currently in high demand for potential technological applications. Herein we

demonstrate the formation of both left- and right-handed fluorescent helical superstructures from each

enantiomer of a chiral tetraphenylethylene derivative through judicious choice of the solution processing

conditions. Interestingly, both the aggregation induced emission active enantiomers exhibit handedness

inversion of their supramolecular helical assemblies just by varying the solution polarity without any

change in their molecular chirality. The resulting helical supramolecular aggregates from each

enantiomer are capable of emitting circularly polarized light, thus enabling both right- and left-handed

CPL from a single chiral material. The left- and right-handed supramolecular helical aggregates in the

dried films have been characterized using spectroscopy, scanning electron microscopy, and transmission

electron microscopy techniques. These new chiral aggregation induced emission compounds could find

applications in devices where CPL of opposite handedness is required from the same material and would

facilitate our understanding of the formation of helical assemblies with switchable supramolecular chirality.
Introduction

Controlling handedness is a fascinating challenge that has
attracted much attention over several decades worldwide.1

Thus, much effort has been made to precisely control the
chirality inversion of self-assemblies as well as to gain an
understanding of the inversion mechanisms.2 Primarily, scien-
tists focused on handedness inversion originating from the
breaking of the molecular chiral balance and simultaneous
reestablishment of a new chiral balance with preferred hand-
edness upon the action of stimuli such as heat,3 solvent,4 elec-
trons,5 and redox.6 Adding an ionic7 or achiral matrix8 was also
observed to induce chirality inversion of constructions.
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Aerwards, researchers found that light driving cis–trans
isomerization,9 open–closed cyclization,10 etc. can induce
chirality inversion as well. So far most reported studies on
chirality inversion, which originated from congurational
transformation, have application prospects in life science,11

nonlinear optics,12 asymmetric catalysis,13 photoelectric
devices,14 and so on.

It is known that the chiral supermolecules resulting from
molecular or bulky group asymmetric stacking are among the
most promising chiral materials due to their dynamic,15 stimuli-
responsive16 and amplied chiroptical properties.17 In recent
reports, supramolecular helicity inversion was found in chiral
molecules with cis–trans conguration18 or multiple chiral
centers.19 However, it is a challenge to control the handedness
of the self-assembled supramolecular structures by regulating
the molecular packing model especially from single chiral
center molecules, for example, by modulating external param-
eters without changing the molecular chirality. In addition,
chiroptical properties from chiral supramolecular assemblies
are much stronger and more stable.20 To induce or enhance the
chiroptical properties, especially the circularly polarized lumi-
nescence (CPL), constructing a helical supramolecular assembly
from uorescent molecules is an attractive and efficient
strategy.21

Here we disclose the formation of both le- and right-
handed uorescent helical superstructures from each enan-
tiomer of a chiral tetraphenylethylene (TPE) derivative just by
Chem. Sci., 2020, 11, 9989–9993 | 9989
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Fig. 1 Schematic representation of solvent polarity driven helical
inversion and circularly polarized luminescence in S-TPE–Ph–PEA
assemblies.
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varying the solution polarity (Fig. 1). The molecular design is
such that a chiral phenylethylamine (PEA) is linked to the
uorescent TPE scaffold as the chiral moiety by an amide
linkage through an additional phenyl (Ph) group. Such unique
structural feature endowed the enantiomers with conforma-
tional exibility of rotation about the biphenyl single bond,
which would be able to vary the molecular orientation and
arrangement under different solvent conditions, thus inducing
the variation of chirality and CPL at the supramolecular level.
Indeed, we found that both R and S enantiomers of aggregation
induced emission chiral molecules could form helical assem-
blies with switchable handedness by only regulating the
assembly conditions without changing molecular chirality. By
carefully exploring the assembly process and analyzing molec-
ular packing information, it was discovered that the C–C bond
rotation between two phenyl groups (f1) plays an important
role in simultaneous chirality switching of both supramolecular
assembly and the corresponding CPL.

Results and discussion

The S- and R-enantiomers of the chiral aggregation induced
emission active compounds based on TPE and PEA were
synthesized and characterized according to the procedure
illustrated in the ESI (Scheme S1†), with the given names of S-
TPE–Ph–PEA and R-TPE–Ph–PEA, respectively. Both S- and R-
TPE–Ph–PEA molecules self-assemble when processed from
a series of dichloromethane–hexane (DCM/HEX) mixtures with
gradually decreased polarity, named as S-assembly and R-
assembly. The DCM/HEX mixture is chosen for studies on the
assemblies since DCM is found to be a good solvent while HEX
is found to be a nonsolvent for these compounds during their
synthesis and workup process. The UV/Vis spectra of S- and R-
TPE–Ph–PEA in solution presented absorption bands at 252 nm,
277 nm and 341 nm, corresponding to the p–p* transition of
9990 | Chem. Sci., 2020, 11, 9989–9993
the chiral PEA moiety, acylamino substituent phenyl and TPE
moiety, respectively (Fig. 2a and S4†). The S- and R-TPE–Ph–PEA
compounds successfully inherited aggregation-induced emis-
sion properties from the TPE moieties (Fig. S2†), presenting
a high uorescence quantum yield of 40% and 40.5% in the
solid state, respectively.

The circular dichroism spectra of the S-enantiomer in DCM
and HEX solutions are depicted in Fig. 2b. The corresponding
spectra of the R-isomer is shown in Fig. S2.† The S-assemblies
produced by drying the solution cast lms of the chiral
compounds from DCM and a DCM–HEX (3 : 7) mixture showed
a Cotton effect with positive peaks at 360 nm and 278 nm, as
well as a negative peak at 253 nm. The positive peaks are
assigned to the absorption band of TPE and an acylamino
substituted phenyl group, respectively, while the negative peak
corresponds to the chiral centers of PEA (Fig. 2c). The CD
spectra of the above S-assemblies indicated right-handed hel-
icity. Upon further reducing the solvent polarity by increasing
the volume ratio of hexane up to 80%, a helical assembly was
revealed by the negative CD absorption around 360 nm, which
indicated le-handed helicity (Fig. 2c). Thus, supramolecular
chirality inversion was achieved from a single enantiomer. The
same phenomena were observed for the R-assemblies
(Fig. S4c†). Notably, the molecular chirality, i.e., typical CD
absorption signals of PEA around 253 nm, is almost identical
for both S-/R-assemblies and DCM solution in all cases, sug-
gesting that the molecular chirality did not change during the
self-assembly process. Moreover, the CD spectra of S- and R-
TPE–Ph–PEA in HEX showed the same chirality as those in the
breaking of the molecular chiral balance, but only attributed to
different types of molecular packing induced by the solvent
environment. Here we note that preliminary investigations on
other solvent mixtures tested, i.e., chloroform/hexane,
dichloromethane/ethyl acetate, ethyl acetate/hexane, and ethyl
acetate/methylcyclohexane, did not indicate the occurrence of
handedness inversion in the supramolecular assemblies of S-
and R-TPE–Ph–PEA.

The helical-assembly induced CPL of S- and R-assemblies,
originating from the excited state, was also switchable under
different assembly conditions (Fig. 2d and S4d†), indicating
that the handedness inversion was an intrinsic rather than
a casual phenomenon. The absorption and uorescence spectra
of the assemblies are depicted in Fig. S5 and S6.† In DCM and
DCM/HEX (8 : 2 and 3 : 7) systems, S-assembly showed a posi-
tive Cotton effect in CPL spectra, implying a right-handed
helical structure, while in DCM/HEX (2 : 8 and 1 : 9) systems,
a negative signal was determined, corresponding to a le-
handed helical structure. The CPL of R-assembly behaved in
the same manner (Fig. S4d†). In addition, both S- and R-
assemblies were found to have similar variation of the CPL
intensity. Before the Cotton effect inversion, CPL intensity was
weakened with increasing the HEX volume ratio.

On the other hand, aer inversion CPL intensity enhanced
by further increasing the HEX volume ratio, especially when the
ratio of DCM/HEX reached 1 : 9.

Scanning electron microscopy (SEM) was employed to obtain
more detailed information on the morphologies of the
This journal is © The Royal Society of Chemistry 2020
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Fig. 4 TEM images of S-TPE–Ph–PEA assemblies from the DCM/HEX
1 : 9 system after self-assembling for 2 min (a) and 4min (b), illustrating
the formation and growth of helical fibers of S-TPE–Ph–PEA assem-
blies from solutions with a concentration of 1 � 10�4 M.

Fig. 3 SEM images of S-TPE–Ph–PEA assemblies in DCM/HEX with
different ratios: (a) DCM, (b) 8 : 2, (c) 3 : 7, (d) 2 : 8 and (e) 1 : 9. (f)
Confocal fluorescence microscope image of S-TPE–Ph–PEA
assemblies in DCM/HEX with a ratio of 1 : 9.

Fig. 2 Absorption spectra (5 � 10�6 M) (a); CD spectra in solution (b).
CD spectra from solid films (c) and circularly polarized luminescence
spectra (d) of S-TPE–Ph–PEA assemblies obtained from different
solutions: DCM (blue); DCM/HEX 3 : 7 (cyan); DCM/HEX 2 : 8 (pink)
and DCM/HEX 1 : 9 (red).
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assemblies. Interestingly, increasing the hexane composition in
the DCM solutions of S-TPE–Ph–PEA with a concentration of 1
� 10�4 M resulted in a morphological change from plate to
disordered lm and to helical bers (Fig. 3). In DCM, the rela-
tively hydrophobic S- and R-TPE–Ph–PEA molecules would
already aggregate due to extended p-conjugation of TPE moie-
ties (Fig. S1†).22 Upon increasing the hexane content in DCM to
20%, right-handed helical assemblies were found as shown in
Fig. 3b. Moreover, aer further increasing the hexane content to
80% and more, distinct le-handed helical bers were observed
(Fig. 3d and e) which would possibly form from the delicate
balance between multiple noncovalent interactions such as
hydrogen-bonding interactions, hydrophobic and hydrophilic
interactions in DCM/HEX mixtures. Conrmed by SEM, S-
assemblies in DCM/HEX (2 : 8 and 1 : 9) systems revealed
distinct le-handed bers. These supramolecular helical bers
are highly luminescent and emit circularly polarized light
(Fig. 3f). Similar results were found for R-assemblies; le-
handed helical assemblies were found in lms obtained from
a solution containing 20% hexane while right-handed helical
bers were formed in DCM/HEX (2 : 8 and 1 : 9) systems
(Fig. S7†). For self-assembly from the DCM/HEX 1 : 9 system,
a homogeneous screw pitch was determined to be ca. 140 nm
with a width of about 30 nm for S-assembly, and around 190 nm
with a width of ca. 40 nm for R-assembly.

The transmission electron microscope (TEM) studies pre-
sented sufficient evidence for the self-assembly process and the
growth of helical bers with inversed helicity in DCM/HEX
(1 : 9) for both S-assemblies (Fig. 4) and R-assemblies
(Fig. S6†). At the beginning (ca. 1 min), only slender bers
without a helical structure were observed. With the ongoing
assembly process, obvious helical bers with le-handed
chirality were formed as shown in Fig. 4a (2 min). It was
worth noting that smaller helical bers assembled into larger
helical bers through entanglement with each other (Fig. 4b).
Helical bers for R-assemblies observed by TEM are shown in
This journal is © The Royal Society of Chemistry 2020
Fig. S8.† At the end of the assembly process, larger nano-helical
bers were dramatically generated with a homogeneous width
of about 27 nm and pitches to be ca. 130 nm for S-assembly, and
about 35 nm and pitches around 160 nm for R-assembly. It was
noted that the obvious helix structure was found only in bers
large enough because the surface tension interaction of solvent
restricted the surface morphology.

Preliminary computational studies were carried out to
understand the assembly of the compounds under different
polarity conditions. As shown in Fig. S11–S21,† the rotation of
two dihedral angles f1 and f2 would bring different confor-
mations to both S- and R-TPE–Ph–PEA molecules. In view of
Chem. Sci., 2020, 11, 9989–9993 | 9991
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Fig. 5 Possible molecular assemblies computationally determined for
S-TPE–Ph–PEA in DCM and hexane.
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this, a computational study was carried out to determine the
most stable conformers in different solvents. We carried out
a potential energy scan (PES) on the TPE–Ph–PEA molecules by
varying the degree of f1 and f2 (Fig. S12 and S13†). Considering
all possibilities, four possible conformations for each enan-
tiomer were found. These conformers were then optimized in
solvation models with hexane and DCM and are summarized in
Fig. S14 and S15.† From frequency analysis, the relative Gibbs
free energies of each conformer were calculated and are
summarized in Table S1.† When using DCM as a solvation
model, S3 and R3 conformers were found to have the lowest
energy for S-TPE–Ph–PEA and R-TPE–Ph–PEA, respectively, in
which the dihedral angle f1 was found to twist by about 35�,
while f2 twisted by about 90�. On the other hand, in the hexane
solvation model, one conformer with the lowest energy was
located, S4 for S-TPE–Ph–PEA and R4 for R-TPE–Ph–PEA, in
which the dihedral angle f1 was found to twist by about �140�,
while f2 twisted by about 90�. Since f1, resulting from the C–C
rotation between two phenyl rings, can lead to the formation of
both cis-like and trans-like conformations of the chiral building
blocks (Fig. S14†), it is believed to play a signicant role in
molecular packing in the helical assemblies during solvent
drying which could induce the handedness inversion in such
self-assembly systems. The non-covalent bonding interactions
like intermolecular hydrogen bonding between the amide
groups, p–p interaction, and C–H–p interaction could provide
additional stability to these handedness invertible helical
luminescent aggregates.

We envisioned that we could predict the possible packing
models of S- and R-TPE–Ph–PEA molecules according to the
experimental PXRD patterns, and thereby gain insight into the
molecular packing of the assemblies. Computational models
for the most stable conformer of S-TPE–Ph–PEA in hexane, S4,
were minimized using the COMPASSII force eld in different
space groups, and the corresponding simulated XRD patterns
were generated (Fig. S16†). It is shown in Fig. S17† that the
simulated packing model for S4 has a head-to-tail arrangement
in a unit cell (b), and the molecules are packed to form a chain-
9992 | Chem. Sci., 2020, 11, 9989–9993
like structure with a le-handed helix (c). Similar simulations
were performed to predict the possible packing models for
compounds in DCM based on their experimental powder XRD
patterns. The simulated XRD pattern is shown in Fig. S19.† It
corresponds to the predicted packing model as shown in
Fig. S20,† where the most stable conformer S3 in DCM assem-
bles into a right-handed form structure. Combining X-ray
diffraction experiments of S-TPE–Ph–PEA assemblies
(Fig. S9†) and a computational study in DCM and hexane, the
possible mechanisms of molecular packing models of S-TPE–
Ph–PEA were proposed to illustrate handness inversion (Fig. 5)
during assembly processes in different solutions. Interestingly,
the lowest energy conformers S3 and R3 in DCM solution have
cis-like conformation, while the lowest energy conformers S4
and R4 in hexane have trans-like conformation. Both S3 and S4
or R3 and R4 showed the same chirality as their corresponding
molecular chirality in solution; however, the corresponding
assemblies show handedness inversion aer properly assem-
bling during solvent evaporation due to different spatial struc-
tures of conformers. This exciting result gives a broad view to
fabricate helical inversion systems that simply design one
conguration chiral molecule with cis-like and trans-like
conformations just by regulating their packing structures.

Conclusions

In summary, the realization of both le- and right-handed uo-
rescent helical assemblies from each enantiomer of a chiral
aggregation induced emission active tetraphenylethylene deriva-
tive has been demonstrated by modulating the polarity of the
processing solution without changing the molecular chirality. The
S-enantiomer forms right-handed helical assemblies inmore polar
solution while le-handed helical assemblies are obtained from
less polar solution for this enantiomer. Thus, the inversion of
supramolecular chirality has been achieved in the system. The R-
enantiomer exhibits a similar behavior. The driving force for such
supramolecular assembly has been attributed to the rotation of the
C–C bond between two phenyl rings and different types of
molecular packing induced by different non-covalent interactions
in assemblies. Moreover, the switching and enhancement of CPL
emission were achieved by helicity inversion of the assemblies
which is a challenging task but is highly desirable for device
applications involving chirality switchable CPL. These results
would provide new insights into preparing both le- and right-
handed helical structures through building block conformation-
controlled cis-like and trans-like components from the same
chiral molecules, thus presenting broad potential applications in
chemistry, materials science and life science.
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