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tion among known drugs by deep
learning from heterogeneous networks†

Xiangxiang Zeng,‡a Siyi Zhu,‡b Weiqiang Lu,‡c Zehui Liu,‡d Jin Huang, d Yadi Zhou,e

Jiansong Fang,e Yin Huang,ef Huimin Guo,f Lang Li,g Bruce D. Trapp,h

Ruth Nussinov, ij Charis Eng,eklmn Joseph Loscalzoo and Feixiong Cheng *ekl

Without foreknowledge of the complete drug target information, development of promising and affordable

approaches for effective treatment of human diseases is challenging. Here, we develop deepDTnet, a deep

learning methodology for new target identification and drug repurposing in a heterogeneous drug–gene–

disease network embedding 15 types of chemical, genomic, phenotypic, and cellular network profiles.

Trained on 732 U.S. Food and Drug Administration-approved small molecule drugs, deepDTnet shows

high accuracy (the area under the receiver operating characteristic curve ¼ 0.963) in identifying novel

molecular targets for known drugs, outperforming previously published state-of-the-art methodologies.

We then experimentally validate that deepDTnet-predicted topotecan (an approved topoisomerase

inhibitor) is a new, direct inhibitor (IC50 ¼ 0.43 mM) of human retinoic-acid-receptor-related orphan

receptor-gamma t (ROR-gt). Furthermore, by specifically targeting ROR-gt, topotecan reveals a potential

therapeutic effect in a mouse model of multiple sclerosis. In summary, deepDTnet offers a powerful

network-based deep learning methodology for target identification to accelerate drug repurposing and

minimize the translational gap in drug development.
Introduction

A recent study estimates that pharmaceutical companies spent
$2.6 billion in 2015, up from $802 million in 2003, in the
development of a new U.S. Food and Drug Administration
(FDA)-approved drug.1 One of the primary factors for the
increased cost is the high failure rate of randomized control
trials that are expensive and time-consuming to conduct.2,3 The
classical hypothesis of ‘one gene, one drug, one disease’ in the
drug discovery paradigm may have contributed to the low
success rate in drug development. Without prior knowledge of
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the complete drug target information (i.e., the molecular
‘promiscuity’ of drugs), developing promising strategies for
efficacious treatment of multiple complex diseases is chal-
lenging, owing to unintended therapeutic effects or multiple
drug–target interactions leading to off-target toxicities and
suboptimal effectiveness.4

Identication of molecular targets for known drugs is
essential to improve efficacy while minimizing side effects in
clinical trials.5,6 However, experimental determination of drug–
target interactions is costly and time-consuming.7 Computa-
tional approaches offer novel testable hypotheses for
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systematic, unbiased identication of molecular targets of
known drugs.8–11

Several published state-of-the-art methodologies focused on
utilizing drug or target information from homogeneous
networks. Xia et al. proposed a semi-supervised learning
method for prediction of drug–target interactions (DTI) under
the bipartite local model concept, named NetLapRLS.12 Net-
LapRLS applied Laplacian regularized least square and incor-
porated both similarity and DTI kernels into the prediction
framework. Another study used a kernelized Bayesian matrix
factorization with twin kernels to predict DTIs, termed
KBMF2K.13 KBMF2K utilized dimensionality reduction, matrix
factorization, and binary classier in predicting DTIs. Speci-
cally, KBMF2K proposed a joint Bayesian formulation to project
drugs and targets/proteins into a unied subspace using che-
moinformatics and bioinformatics similarities in inferring new
DTIs.13 Homogeneous network-derived methodologies showed
a limited accuracy in inferring novel DTIs.

Recent remarkable advances of omics technologies and
systems pharmacology approaches have generated considerable
knowledge from chemical,8 phenotypic,9 genomic,14 and
cellular networks.4,5,15 A network integrating these parameters
makes it possible to infer whether two drugs share a target. The
drug–target network is a bipartite graph composed of FDA-
approved drugs and proteins linked by experimentally vali-
dated drug–target/protein binary associations.16 Network-based
approaches have been adopted for target identication for
known drugs, which helps counter side effects and accelerate
drug repurposing.4,5,15 However, traditional network topology-
based algorithms are based on a single homogeneous drug–
target network, and perform poorly on low connectivity (degree)
drugs in known drug–target networks. Heterogeneous data
sources provide diverse information and a multi-view perspec-
tive in predicting novel DTIs. Incorporating heterogeneous data
can potentially boost the accuracy of DTI prediction and offer
new insights into drug repurposing. Luo et al.17 utilized an
unsupervised manner to learn low-dimensional feature repre-
sentations of drugs and targets from heterogeneous networks,
termed DTINet. DTINet applied inductive matrix completion18

to predict novel DTIs based on the learned features. Subse-
quently, the same group further proposed, NeoDTI,19 a neural
network-based approach, for DTI prediction with an improved
performance. Yet, the features learned from the unsupervised
learning procedure did not capture non-linearity and randomly
selected drug–target pairs as negative samples oen cause
potential false positive rate. How to integrate large-scale
chemical, genomic, and phenotypic proles with publicly
available systems biology data efficiently to accelerate target
identication and drug development is an essential task in both
the academic and industrial communities.

In this study, we develop a network-based deep learning
methodology, denoted deepDTnet, for in silico identication of
molecular targets for known drugs. Specically, deepDTnet
embeds 15 types of chemical, genomic, phenotypic, and cellular
networks (Fig. 1) to generate biologically and pharmacologically
relevant features through learning low-dimensional but infor-
mative vector representations for both drugs and targets (Fig. 2).
1776 | Chem. Sci., 2020, 11, 1775–1797
The central unifying hypothesis is that a pharmacologically
relevant, systems-based network analysis of large-scale biolog-
ical networks will be more interpretable, visualizing prediction
of molecular targets for known drugs compared to traditional
‘black box’machine-learningmethods. This process is chemical
biology-intuitive because it is analogous to drug target identi-
cation, which oen involves medicinal chemists relating
a drug to the drug–target database of similar drugs they have
seen. Via systematic evaluation, deepDTnet computationally
identies thousands of novel drug–target interactions with high
accuracy, outperforming previously published approaches. In
comparison to existing computational approaches, there are
two signicant improvements in deepDTnet: (1) we proposed
a deep neural networks for graph representations (DNGR)
algorithm20 to learn low-dimensional but informative vectors
representations for both drugs and targets by a unique inte-
gration of large-scale chemical, genomic, and phenotypic
proles, outperforming previously published approaches; and
(2) owing to the lack of experimentally reported negative
samples (non-interactions between drugs and targets) from the
publicly available databases, we employed the Positive-
Unlabeled (PU)-matrix completion algorithm to low-rank
matrix completion, which is able to infer whether two drugs
share a target without negative samples as input. Importantly,
we validate the deepDTnet experimentally and demonstrate
a potential drug repurposing application in a mouse model of
multiple sclerosis. Taken together, if broadly applied, deep-
DTnet offers a powerful deep learning methodology by exploit-
ing advances in big and diverse biomedical data for accelerating
target identication and drug repurposing.

Results
Overview of deepDTnet

Here, we develop a network-based, deep learning methodology,
deepDTnet, for in silico identication of molecular targets
among known drugs. Specically, deepDTnet integrates two key
steps: (1) we apply a deep neural network algorithm for network
embedding, which embeds each vertex in a network into a low-
dimensional vector space; and (2) due to lack of publicly avail-
able negative samples, we use a PU-matrix completion algo-
rithm, which is a vector space projection scheme, for predicting
novel drug–target interactions. As shown in Fig. 1, we rstly
build a heterogeneous network connecting drugs, targets, and
diseases by integrating 15 types of chemical, genomic, pheno-
typic, and cellular network proles (see Methods). deepDTnet
then embeds in total 15 networks (Tables S1 and S2†) to learn
low-dimensional but informative vector representations for
both drugs and targets using a DNGR algorithm20 (Fig. 2). Aer
learning the low-dimensional feature vectors, the optimization
is modied compared to low-rank matrix completion. For any
given drug–target pair, it is difficult to verify unobserved
evidence that such a connection is, indeed, nonexistent, or
hidden, owing to lack of reported negative samples from
publicly available literatures. We, thus, employ the PU-learning
formulation to low-rank matrix completion, which is able to
infer whether two drugs share a target (see Methods).21,22
This journal is © The Royal Society of Chemistry 2020
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Fig. 1 A diagram illustrating the workflow of deepDTnet. DeepDTnet embeds the 15 types of chemical, genomic, phenotypic, and cellular
networks and applies a deep neural network algorithm to learn a low-dimensional vector representation of the features for each node (see ESI
Methods†). After learning the feature matrix X and Y for drugs and targets (i.e., each row in X and Y represents the feature vector of a drug or
a target, respectively), deepDTnet applies PU-matrix completion to find the best projection from the drug space onto target (protein) space, such
that the projected feature vectors of drugs are geometrically close to the feature vectors of their known interacting targets. Finally, deepDTnet
infers new targets for a drug ranked by geometric proximity to the projected feature vector of the drug in the projected space (see Methods).
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High performance of deepDTnet

To evaluate the performance of deepDTnet, we rst build
a drug–target network, including 5680 experimentally validated
drug–target interactions connecting 732 approved drugs and
1176 human targets (Table S3†), by assembling the binding
affinity data from six data resources (see Methods). In a 5-fold
This journal is © The Royal Society of Chemistry 2020
cross-validation, 20% of the experimentally validated drug–
target pairs are randomly selected as the positive samples and
a matching number of randomly sampled non-interacting
(‘unobserved’) pairs are selected as the negative samples
serving as the test set. The remaining 80% of experimentally
validated drug–target pairs and a matching number of
Chem. Sci., 2020, 11, 1775–1797 | 1777

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9sc04336e


Fig. 2 A workflow illustrating the network embedding and performance of deepDTnet. (A) The deep neural networks model for graph repre-
sentations (DNGR) consists of three major steps: (i) a random surfing model to capture the graph structural information and generate a prob-
abilistic co-occurrence (PCO) matrix; (ii) calculation of the shifted positive pointwise mutual information (PPMI) matrix based on the probabilistic
co-occurrence matrix; and (iii) a stacked denoising autoencoder to generate compressed, low-dimensional vectors from the original high-
dimensional vertex vectors. The learned low-dimensional feature vectors encode the relational properties, association information, and
topological context of each node in the heterogeneous drug–gene–disease network (see Methods). (B and C) Performance of deepDTnet was
assessed by both (B) the area under the receiver operating characteristic curve (AUROC) and (C) the area under the precision-recall curve (AUPR)
of deepDTnet against top k predicted list during cross-validation. The experimentally validated drug–target interactions (Table S3†) are used to
evaluate the model performance.

1778 | Chem. Sci., 2020, 11, 1775–1797 This journal is © The Royal Society of Chemistry 2020
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Fig. 3 Visualization of the learned drug and target vectors. Visualiza-
tion of the drug vector matrix and protein vector matrix learned by
network embedding using the t-SNE (t-distributed stochastic neighbor
embedding algorithm25). (A) The two-dimensional (2D) representation
of the learned vectors for 14 types of drugs grouped by the first-level
of the Anatomical Therapeutic Chemical Classification System codes
(http://www.whocc.no/atc/). We can observe that semantically similar
drugs are mapped to nearby representations. We assigned the drugs
with multiple ATC codes based on two criteria: (1) the majority rule of
ATC codes, and (2) manually checked and assigned by experts based
on common clinical uses. (B) An illustration of the learned vectors for
four well-known drug target families: G-protein-coupled receptors
(GPCRs), kinases, nuclear receptors (NRs), and ion channels (ICs), non-
linearly projected to 2D space for visualization by the t-SNE algorithm.
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randomly sampled non-interacting pairs are used as the
training set. The area under the receiver operating character-
istic curve (AUROC) is 0.963 (Fig. 2B) and the area under the
recall versus precision curve (AUPR) is 0.969 and (Fig. 2C) for
deepDTnet. deepDTnet outperforms three previous state-of-the-
art approaches: DTINet,11 NetLapRLS (LapRLS),12 and
KBMF2K13 (Fig. 2B and C). In addition, deepDTnet outperforms
that of four traditional machine learning approaches, as well
(Fig. S1 and Table S4†), including random forest, support vector
machine, k-nearest neighbors, and näıve Bayes.

We further focus on DTIs covering four classical druggable
target families: G-protein-coupled receptors (GPCRs), kinases,
nuclear receptors (NRs), and ion channels (ICs) (Fig. S2†).
deepDTnet appears to capture sufficient information in iden-
tifying the known DTIs across all four well-known target fami-
lies: AUROCs are 0.950, 0.981, 0.948, and 0.969 for GPCR,
kinases, NR, and ICs, respectively. These observations indicate
the high accuracy of deepDTnet in practical drug discovery
applications (Fig. S3–S6†). In addition, deepDTnet shows high
accuracy in predicting novel targets for known drugs (Fig. S7†),
and in predicting novel drugs for known targets (Fig. S8†), as
well in both drug's and target's 10-fold cross-validation analysis,
indicating a high robustness.

Previous network-based approaches oen show poor
performance for drugs or targets with low connectivity
(degree) in known drug–target networks.10,23 We nd that
deepDTnet shows high performance for drugs or targets with
both high and low connectivity (Fig. S9 and S10†), suggesting
a low degree bias that is independent of the incompleteness of
existing networks. In addition, targets (proteins) have homo-
logs and drugs share similar chemical structures among each
other. We, therefore, evaluate the performance of deepDTnet
for high versus low similarity drugs or targets based on the
drug's chemical similarities or protein's sequence similarities,
respectively. deepDTnet reveals high performance for drugs
with both low and high chemical similarities (Fig. S11†), and
for targets with both low and high protein sequence similar-
ities (Fig. S12†), as well, suggesting high robustness compared
to traditional chemical similarity-based or bioinformatics-
based approaches. We further collect the newest experimen-
tally validated DTIs from the DrugCentral database24 as an
external validation set (see Methods). We nd that deepDTnet
shows high performance (AUROC ¼ 0.838 and AUPR ¼ 0.861)
and outperforms the four traditional machine learning
approaches on this external validation set, as well (Table S5†),
indicating a high generalizability.
Pharmacological interpretation of deepDTnet

We employ the t-SNE (t-distributed stochastic neighbor
embedding algorithm25) to further visualize the low-
dimensional node representation learned by deepDTnet.
Specically, t-SNE is a nonlinear dimensionality reduction
method that embeds similar objects in high-dimensional space
close in two dimensions (2D). Using t-SNE, we project drugs
grouped by the rst-level of the Anatomical Therapeutic
Chemical classication system (ATC) code onto 2D space.
This journal is © The Royal Society of Chemistry 2020
Fig. 3A shows that deepDTnet is able to distinguish 14 types of
drugs grouped by ATC codes, outperforming DTINet (Fig. S13†).
We further visualize four types of druggable targets (GPCRs,
kinases, NRs, and ICs) in 2D space. Fig. 3B reveals that targets
within the same target family are geographically grouped, and
each group is well separated from each other, further demon-
strating the high embedding ability of deepDTnet. In addition,
low-dimensional vector representations identied by deep-
DTnet outperforms traditional network-based or bioinformatics
approaches (including protein sequence or Gene Ontology
[cellular component] similarity-based measures, Fig. 3B and
S14†). Taken together, t-SNE analysis intuitively demonstrates
the high self-learning capabilities of deepDTnet to uncover,
model, and capture the underlying chemical structure and
semantic relationships between multiple types of drug or target
nodes in the heterogeneous networks (Fig. 3).
Chem. Sci., 2020, 11, 1775–1797 | 1779
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deepDTnet uncovers new molecular targets for known drugs

To uncover new targets for known drugs, we prioritize the top
ve predicted DTIs via deepDTnet for four target families:
GPCRs, kinases, NRs, and ICs. Fig. 4A shows a bipartite drug–
Fig. 4 The uncovered drug–target network via deepDTnet. (A) Compu
target families: G-protein-coupled receptors (GPCRs), kinases, nuclear r
level of the Anatomical Therapeutic Chemical classification system (ATC)
GPCRs, kinases, NRs, and ICs. (B) An illustration of the mechanisms-of-
validated by a recent high-throughput screening assay, for characterizing
The experimental data for the predicted the drug–target interactions an
clinically reported adverse events of known drugs were collected from m

1780 | Chem. Sci., 2020, 11, 1775–1797
target network covering novel predicted DTIs across four target
families. Here, we computationally identify 2214 DTIs con-
necting 79 GPCRs and 732 known drugs based on the top ve
candidates ranked by deepDTnet-predicted scores. The top 10
tationally predicted drug–target networks for four well-known drug
eceptors (NRs), and ion channels (ICs). Drugs are grouped by the first-
codes (http://www.whocc.no/atc/). Drug targets comprise four groups,
action of the deepDTnet-predicted GPCRs for three approved drugs
the mechanisms-of-action of their clinically reported adverse events.

d the target-adverse events were collected from a recent study.27 The
etaADEDB.26

This journal is © The Royal Society of Chemistry 2020
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predicted GPCRs include HTR2A, ADRA2A, CHRM1, HTR2B,
CHRM2, HRH1, ADRB2, HTR2C, ADRB1, and DRD3 (Fig. 4A).
Compared to the known drug–target network (Fig. S2†), the
computationally predicted DTIs by deepDTnet show a stronger
promiscuity on FDA-approved drugs (Fig. 4A). We next inspect
whether the predicted molecular targets by deepDTnet could
help explain the mechanism-of-action of known drugs for
characterizing their adverse effects or therapeutic effects by
network analysis.

Dobutamine is an approved sympathomimetic drug used in
the treatment of heart failure and cardiogenic shock by target-
ing beta1-adrenergic receptors.26 A recent pharmacovigilance
study reported that dobutamine leads to several types of
cardiovascular complications,26 including palpitation, brady-
cardia, and hypertension (Fig. 4B). Via deepDTnet, we nd that
dobutamine has potential interactions with several additional
GPCRs (Table S6†). Among the top 10 predictions ranked by
deepDTnet-predicted scores (Fig. 4B), ve (DRD1, DRD2, DRD3,
ADRA2A, and ADRA2B) are validated by recently published
experimental data27 (Table S6†), including two novel
deepDTnet-predicted GPCRs: ADRA2A (IC50 ¼ 10.83 mM) and
DRD2 (IC50 ¼ 8.22 mM). Genetic studies showed that ADRA2A
plays a crucial role by regulation of systemic sympathetic
activity and cardiovascular responses, such as heart rate and
blood pressure.28,29 Thus, the deepDTnet-predicted off-targets,
such as ADRA2A and ADRA2B, may help explain the cardio-
vascular complications associated with dobutamine treatment
(Fig. 4B). Alosetron (a selective serotonin type-3 receptor
antagonist) and tegaserod (a 5-hydroxytryptamine receptor-4
agonist) were approved for the management of severe
diarrhea-predominant irritable bowel syndrome in women.30

Subsequently, both drugs were withdrawn from the market due
to a potential risk of ischemic colitis31 and several adverse
cardiovascular effects, such as angina pectoris.31 Multiple
polymorphisms in HTR2A, HTR1A, HTR2B, and HTR3C were
identied in patients with high blood pressure,32,33 metabolic
syndrome,32 and obstructive sleep apnea.34 Via deepDTnet, we
computationally identify several validated off-targets for alose-
tron and tegaserod (Table S6†), which may help explain the
molecular mechanisms of several adverse effects, such as sleep
disorder and angina pectoris (Fig. 4B). For example, alosetron is
already annotated as activating HTR2B and tegaserod as acti-
vating HTR1A from the newest DrugCentral database24 (Fig. 4B).
Collectively, the molecular targets identied by deepDTnet offer
new mechanisms-of-action for characterizing adverse effects of
known drugs. We next examined whether the identied novel
molecular targets for known drugs by deepDTnet offer new
possibilities for treating other human diseases (e.g., drug
repurposing).
Experimental identication of topotecan as an antagonist of
retinoic-acid-receptor (RAR)-related orphan receptor-gamma t
(ROR-gt)

Nuclear receptors, ligand-activated transcription factors, play
important roles in biological processes.35 In the past several
decades, multiple small molecules that specically target these
This journal is © The Royal Society of Chemistry 2020
receptors have been successfully approved for the treatment of
human diseases.35 RAR-related orphan receptor-gamma t (ROR-
gt) belongs to the nuclear receptor family of intracellular tran-
scription factors.36 Several ROR-gt antagonists are being inves-
tigated in various stages of drug development for the treatment
of inammatory diseases.37 Fig. 4A shows that several known
drugs were predicted to have potential interactions with ROR-
gt, such as bexarotene, colchicine, tretinoin, tazarotene, and
adapalene. Among the top ve novel candidates, bexarotene38

and tazarotene39 are reported to show potential activities on
ROR-gt.

We next experimentally tested the top 25 novel candidates
prioritized by deepDTnet. In total, 18 purchasable drugs for
ROR-gt were tested using a cell-based luciferase reporter assay
in a HEK293T cell line, a widely used cell line for ROR-gt
luciferase reporter assay40 (see Methods). In this assay, GAL4-
ROR-gt, with fused human ROR-gt-LBD, and a GAL4 DNA
binding domain are co-transfected into HEK293T cells with
a luciferase reporter gene harboring the GAL4 response
element.40 Among 18 deepDTnet-predicted drugs, six drugs,
including tazarotene, norethindrone, rosiglitazone, bezabrate,
topotecan, and spironolactone, have inhibitory activities greater
than 30% against human ROR-gt at a concentration of 10 mM
(Fig. 5A). Topotecan is the most potent inhibitor of ROR-gt with
an inhibitory activity of 71.0% at 10 mM. Furthermore, top-
otecan exhibits a dose-dependent antagonistic activity with an
IC50 value of 0.43 � 0.02 mM in GAL4-ROR-gt expressing
HEK293T cells (Fig. 5B). No suppression is observed in the
control rey luciferase activity experiments, indicating that
topotecan has no nonspecic or off-target effects on luciferase
(Fig. S15A†). In addition, topotecan has a minor effect on
HEK293T cell viability at the same concentration range in the
reporter assay, demonstrating a tolerable toxicity prole in
normal human cells (Fig. S15B†). As topotecan is the most
potent compound in the luciferase reporter assay, we selected it
for further experimental validation.

Nuclear receptors execute their versatile transcriptional
functions by recruiting positive and negative regulatory
proteins, known as coactivators or corepressors, respectively.41

Agonists promote interactions between nuclear receptors and
coactivators, while antagonists either inhibit coactivator
binding or facilitate corepressor recruitment.42 To investigate
further the functional change of the binding of topotecan on
ROR-gt, we utilize a HTRF assay (see Methods) to evaluate
ligand-induced coactivator recruitment to ROR-gt. As shown in
Fig. 5C, topotecan disrupts the interaction of ROR-gt-LBD with
steroid receptor coactivator-1 (SRC-1) cofactor peptide in a dose-
dependent manner with an IC50 value of 6.65 � 0.02 mM. The
HTRF-based coactivator recruitment results indicate that top-
otecan directly binds to ROR-gt and regulates the interaction
between ROR-gt and SRC-1 peptide by inducing a conforma-
tional change on ROR-gt.

Circular dichroism (CD) is a powerful method for probing
protein and ligand interactions in solution.43 Topotecan alters
the CD spectrum of ROR-gt, conrming the direct binding of
topotecan to ROR-gt-LBD (Fig. 5D). High-performance liquid
chromatography (HPLC) further indicates that topotecan
Chem. Sci., 2020, 11, 1775–1797 | 1781
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Fig. 5 DeepDTnet-predicted topotecan is a novel ROR-gt antagonist. (A) The screening results of 18 deepDTnet-predicted drugs at 10 mM in
Gal4-based ROR-gt luciferase assay. (B) Topotecan (TPT) exhibits dose-dependent inhibition of ROR-gt transcriptional activity in Gal4-based
luciferase reporter system. (C) TPT reveals dose-dependent inhibition of ROR-gt LBD and cofactor peptide SRC1 interaction in HTRF assay. (D)
Induced circular dichroism (CD) spectra reveals the direct binding of TPT to ROR-gt LBD. Data are representative of three independent
experiments. (E) High-performance liquid chromatography (HPLC) experiment indicates the binding of TPT to recombinant ROR-gt-LBD. (F) The
predicted ligand-protein binding mode between TPT and ROR-gt using molecular docking (see Methods).
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interacts with ROR-gt-LBD (Fig. 5E). Finally, we examine the
binding mode of topotecan to human ROR-gt using molecular
docking (see Methods). Fig. 5F reveals that topotecan interacts
with multiple important residues on human ROR-gt, such as
Arg364, Met365, Gln286, and Glu379. Specically, topotecan
shows a direct hydrogen-bonding interaction with Gln286,
1782 | Chem. Sci., 2020, 11, 1775–1797
consistent with previously experimental studies.44 Fluorescence
quenching is a widely-used method to assess ligand-protein
binding through measuring the change of intrinsic uores-
cence intensity.45 Considering the presence of tryptophan resi-
dues in ROR-gt-LBD (Trp314 and Trp317), we turned to use
a uorescence-quenching assay to further verify the direct
This journal is © The Royal Society of Chemistry 2020
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interaction between the topotecan and ROR-gt-LBD. As shown
in Fig. S16,† ROR-gt-LBD has a maximal uorescence intensity
at 337 nm and topotecan induces a dose-dependently uores-
cence quenching of ROR-gt-LBD, suggesting a direct binding of
topotecan to ROR-gt-LBD. Of note, topotecan has negligible
intrinsic uorescence within the given wavelength range. To
determine the binding capacity of topotecan and ROR-gt-LBD,
the uorescence data were further analyzed using a modied
Stern–Volmer equation.46 Fig. S16† shows a strong binding
affinity of topotecan for ROR-gt-LBD with a Ka value of 1.6 � 105

M�1. Taken together, by combining deepDTnet prediction and
experimental assays, topotecan is identied as a novel, direct
inhibitor of human ROR-gt.
Topotecan reverses multiple sclerosis in vivo

We next turned to focus on multiple sclerosis, an inammation-
mediated demyelinating disease of the central nervous system
(CNS) and the major cause of non-traumatic neurological
disability in young adults.47 Our studies are designed based
upon three principles: (i) topotecan directly inhibits human
ROR-gt, as identied by deepDTnet and multiple complemen-
tary assays (Fig. 5); (ii) ROR-gt has emerged as a key target for
the treatment of multiple sclerosis;48 and (iii) topotecan has
been shown to have ideal pharmacokinetics in the context of
neurological diseases (i.e., blood–brain barrier [BBB] penetra-
tion), and is under investigation for treatment of Angelman
syndrome based on a preclinical model.49 Experimental auto-
immune encephalomyelitis (EAE) is the most frequently used
experimental animal model for human multiple sclerosis.50 To
investigate the therapeutic potential of topotecan in multiple
sclerosis, EAE is induced in C57BL/6 mice by active immuni-
zation with MOG33–55 in complete Freund's adjuvant (CFA)
followed by pertussis toxin administration (Fig. 6A). Topotecan
(10 mg kg�1) or the vehicle (sterile water, control) is adminis-
tered intraperitoneally every four days during the course of EAE.
Disease severity is assessed and graded using a ve-point
scoring system for 15 days. Administration of topotecan leads
to a signicant delay in the onset of clinical symptoms and an
observable reduction of the clinical score of the EAE mice
(Fig. 6B). During the course of EAE, changes in body weight also
reect disease severity.51 We nd that mice treated with top-
otecan are more tolerant of EAE-induced body weight loss than
vehicle-treated mice (Fig. 6C). Histological analysis of spinal
cords was conducted on day 20 aer immunization (Fig. 6D).
Hematoxylin and Eosin (H&E) staining shows signicant inl-
tration of leukocytes in the spinal cord tissues from vehicle-
treated mice, whereas inltration is greatly reduced following
topotecan treatment. Luxol fast blue (LFB) staining shows
severe demyelination in the white matter of EAE mice, whereas
demyelination is signicantly attenuated in topotecan treated
mice.

Multiple sclerosis is a chronic demyelinating disease
accompanied by BBB disruption.52 Near-infrared in vivo imaging
is further utilized to evaluate the demyelination and blood–
brain barrier leakage in EAE mice.53 A near-infrared uorescent
dye, 3,30-diethylthiatricarbocyanine iodide (DBT), easily enters
This journal is © The Royal Society of Chemistry 2020
the brain and selectively binds to myelin bers.54 As shown in
Fig. 6E, administration of topotecan effectively reverses uo-
rescence in EAE mice. Cy5.5-BSA, a uorescent BSA conjugate
with bright near infrared uorescence, penetrates the brain
when the blood–brain barrier is disrupted. Fig. 6F shows
a higher accumulation of the uorescent probe in the brain of
vehicle treated mice as compared to the topotecan treatment
group.

T helper 17 (Th17) cells are a highly pro-inammatory
lineage of T helper cells dened by their production of inter-
leukin 17 (IL-17).55 ROR-gt is necessary and sufficient for cyto-
kine IL-17 expression in mouse and human Th17 cells.55 Given
the inhibitory effects of topotecan against ROR-gt, we further
investigate whether topotecan affects IL-17 expression in EAE
mice. Of note, ELISA experiments reveal that topotecan treat-
ment signicantly reduces IL-17 production in brain and spinal
cords of EAE mice (Fig. 6G). We further assessed toxicity of
topotecan in EAEmice by hematoxylin and eosin (H&E) staining
(Fig. S17†). Histological analysis of organ sections from vehicle-
versus topotecan-treated groups suggests that topotecan is well
tolerant and safe under given dosage (10 mg kg�1 every four
days) in EAE mice (Fig. S17†). In summary, these results
demonstrate that topotecan alleviates the clinical signs of the
EAE model.

We also examined the pharmacokinetics prole of topotecan
in C57BL/6 mice (Fig. S18†). Topotecan exhibits a half-life of
4.81 h and a maximal plasma concentration of 7.72 mM at 0.5 h
(Fig. S19 and Table S7†) aer intraperitoneal (i.p.) injection
(10 mg kg�1). Topotecan penetrates the mouse's blood–brain
barrier achieving a maximal brain concentration of 121.29 ng
g�1 at 0.5 h (Fig. S20†). In addition, in vivo binding experiments
in mice using HPLC-MS/MS methodology to assess target
occupancy (Fig. S21†) were performed. T0901317 (ref. 56), an
orthosteric ligand of ROR-gt, was used as the tracer for
assessing topotecan target occupancy. As shown in Fig. 6h,
topotecan's administration by i.p. injection (10 mg kg�1)
reduces the T0901317 level signicantly in the brain (P ¼
0.0029, Table S8†), while it has less effect on its concentration in
plasma (P ¼ 0.688, Fig. S21 and Table S9†). These ndings
suggest that topotecan specically targets ROR-gt in the mouse
brain. In summary, topotecan potentially alleviates the clinical
symptoms in the EAE model via specic inhibition of ROR-gt.
Although potential off-target effects and clinical trials remain to
be investigated, our ndings suggest that topotecan identied
by deepDTnet offers a potential therapeutic strategy for
multiple sclerosis via targeting ROR-gt in the mice brain.
Prediction of promiscuity of known drugs

We nally explore the promiscuity of approved drugs on a pro-
teome-wide scale. Via deepDTnet, we computationally predict
22 739 new drug–target interactions connecting 680 approved
drugs and 1106 targets (Fig. S22†). Among 22 739 predicted
drug–target pairs, 1098 (Table S10†) were validated by the most
recent DrugCentral database.24 These predicted drug–target
interactions (Table S10†) by deepDTnet offer a virtual database
for exploring the promiscuous targets of FDA-approved drugs by
Chem. Sci., 2020, 11, 1775–1797 | 1783
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Fig. 6 DeepDTnet-predicted topotecan (TPT) reverses experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. (A) An
illustration of induction and treatment of EAE. (B) Mean clinical scores of EAE in vehicle- or TPT-treated group (n¼ 10/group). TPT (10mg kg�1) or vehicle
is intraperitoneal administered on day 11 after immunization every four days. Data are presented as themean� SEM of eight mice per group. Student's t-
test is revealed, *P < 0.05, **P < 0.01. (C) The body weight of mice in vehicle- or TPT-treated group. Student's t-test is revealed, *P < 0.05. (D) Section of
spinal cord tissue is prepared on day 20 post immunization and subjected to hematoxylin and eosin (H&E) staining and Luxol fast blue (LFB) staining. (E) In
vivo imaging of myelination using myelin-binding dye, 3,3-diethylthiatricarbocyanine iodide (DBT) on day 20 after immunization. DBT dye readily enters
the brain and specifically binds tomyelinated fibers. (F) In vivo imaging of the blood–brain barrier integrity using Cy5.5-BSA on day 20 after immunization.
Cy5.5-BSA uptake in the brain when the BBB (blood–brain barrier) integrity is disrupted. (G) ELISA analysis of IL-17 production of spinal cords and brain
from vehicle- or TPT-treated EAEmice on day 20 after immunization. Data are presented as themean� SEM. Student's t-test is revealed, **P < 0.01. (H
and I) Concentration of T0901317 in mice brain samples (H) and plasma (I). T0901317 (ref. 56), an orthosteric ligand of ROR-gt, was used as the tracer for
assessing target occupancy of TPT in the mouse model. Student's t-test was performed and sterile water was used as vehicle.
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further experimental or clinical validation, and may aid the
development of new treatment strategies via drug repurposing.
The code package of deepDTnet and the predicted virtual drug–
target networks are freely available at: https://github.com/
ChengF-Lab/deepDTnet.

Discussion

Comprehensive evaluations demonstrate that deepDTnet shows
high performance, uncovering known drug–target interactions,
and outperforming previous state-of-the-art network-based and
traditional machine learning approaches (Fig. 2B and C). For
example, we found that DTINet showed high performance
(AUROC ¼ 0.912) in predicting new targets for drugs with high
degree in the known drug–target network, while having poor
performance (AUROC ¼ 0.757) on drugs with low degree (Table
S11†). Yet, deepDTnet reveals high performance in predicting
drug–target interactions for drugs or targets with both high and
low degree. In order to compare fairly the performance of deep-
DTnet with DTINet,11 we further evaluated them based on the
same dataset published previously.11 We found that deepDTnet
outperformed DTINet11 and NeoDTI,19 a recently updated version
of DTINet, on both an experimentally validated drug–target
network built in this study (Table S3†) and the previously pub-
lished dataset11 (Fig. S23 and S24†). Comparing to DTINet11 and
NeoDTI,19 we implemented deepDTnet via two new components:
autoencoder embedding and PU matrix completion (Fig. 1). We
found that autoencoder embedding, and PU matrix completion
synergistically improved the performance of deepDTnet (Tables
S12 and S13†). Models constructed on more comprehensive
network datasets in this study outperform those constructed
previously based on the published incomplete network datasets
(Fig. S23 and S24†), indicating the importance of big network data
in the deep learning-based prediction of drug–target interactions.

Most importantly, we experimentally validated that topotecan
predicted by deepDTnet has a high inhibitory activity on human
ROR-gt (Fig. 5). We subsequently showed that topotecan has
potential therapeutic effects in EAE, a mouse model of multiple
sclerosis. Both embryonic and adult-induced RORg knock-out
mice frequently develop lymphoma,57 indicating that RORg
gene ablation causes immune system-related pathology. We,
therefore, used in vivo experiments replacing the ROR-gt knock-
out mouse model to assess target occupancy of topotecan. We
found that topotecan penetrate the mouse's blood–brain barrier
achieving amaximal brain concentration of 121.29 ng g�1 at 0.5 h
(Fig. S20†) aer i.p. injection (10 mg kg�1), consistent with
a previous study.58 Multiple sclerosis is considered a systemic
immune disease, as overactive T lymphocytes are found in blood,
spleen, and other organs.59 For example, changes in activated T
cells in the blood correlate with disease activity in patients with
multiple sclerosis.59 Herein, we found that the maximal plasma
concentration of topotecan was 7.72 mM (Fig. S19†), which is
higher than the effective concentration of 0.43 mM by the Gal4-
based luciferase reporter assay (Fig. 5B) and 6.65 mM by the
HTRF assay (Fig. 5C). Thus, topotecan may not only target
peripheral T cells, but also target inltrating T cells in EAE mice
brain. We, therefore, reasoned that topotecan offers a potential
This journal is © The Royal Society of Chemistry 2020
therapeutic strategy for multiple sclerosis by targeting ROR-gt,
although potential off-target effects and clinical trials are highly
warranted. For example, gene expression analysis of topotecan-
treated EAE mice may identify possible mechanism-of-action of
topotecan further and offers potential biomarkers for future
clinical trial design.

Several potential limitations of this study should be dis-
cussed. Weak binding affinity cut-offs (Ki, Kd, and IC50 of 10 mM)
used in the current study may lead to a potential risk of false
positive rate. Recent studies suggested that weak-binding drugs
play important roles in drug discovery and development.60,61 We
have successfully utilized this low binding affinity cutoff of 10
mM for in silico drug repurposing.4,5,15 However, a stronger
binding affinity threshold (e.g., 1 mM) could be a more suitable
cut-off in drug discovery, although it will generate a small sized
drug–target network.62 In addition, the potential literature bias
and incompleteness of biomedical networks (e.g., the human
protein–protein interactome) may also lead to possible errors in
deepDTnet. Several large-scale network datasets, including The
Library of Integrated Network-Based Cellular Signatures
(LINCS)63 available from DrugCentral,24 might improve the
representation of the heterogeneous networks connecting
drugs, genes, and diseases in the framework of deepDTnet.
Integration of more comprehensive human interactome from
recent studies64,65 may improve performance of deepDTnet
further. Data generated from high-throughput image assays66

and large-scale patient data5 would enable further improvement
of deepDTnet. Via ablation analysis (Table S14†), we found that
integration of multiple networks outperforms a single network,
which is consistent with tSNE analysis (Fig. S14†). This is
a surprising result for drugs with low chemical similarity or
targets with low protein sequence similarity (Fig. S11 and S12†).
One possible explanation is that multiple network integration
(including 15 types of chemical, genomic, phenotypic, and
cellular networks) may improve accuracy for low similarity
drugs or targets in comparison to traditional chemoinformatics
or bioinformatics approaches alone. We found much lower
accuracy for low similarity drugs or targets using drug chemical
similarity and target protein sequencing similarity only under
the deepDTnet framework (Table S15†). Thus, we reasoned that
multiple network interactions improved accuracy for low simi-
larity drugs or targets compared to traditional chemo-
informatics or bioinformatics approaches alone. However, the
potential risk of information redundancy from multiple
networks' integration needs to be tested in the future. In addi-
tion, other feature extraction models, such as the multi-task
deep neural network algorithm67 and convolution neural
networks,68 can be used to replace the DNGR embedding model
to improve further the performance of deepDTnet. Optimiza-
tion of hyperparameters is an important step in the entire
deepDTnet framework. Although we utilized several strategies,
including grid search to nd the optimized hyperparameters
(Tables S16 and S17†), further hyper-parameter selection may
improve performance of deepDTnet. Finally, the proposed deep
learning framework could be used to explore other important
clinical questions, such as prediction of drug–disease relation-
ships or drug combinations in drug discovery and development.
Chem. Sci., 2020, 11, 1775–1797 | 1785
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Conclusions

We present deepDTnet, a novel, network-based deep learning
methodology for target identication and drug repurposing,
which systematically embeds 15 types of chemical, genomic,
phenotypic, and cellular networks, and predicts new molecular
targets among known drugs under a PU-learning framework.
Most importantly, we experimentally validated that topotecan
predicted by deepDTnet has a high inhibitory activity against
human ROR-gt. We subsequently showed that topotecan has
potential therapeutic effects in a mouse model of multiple
sclerosis. To the best knowledge of the authors, this is
a systematic deep learning study that integrates the largest
biomedical network datasets for target identication, drug
repurposing, and testing of ndings experimentally. In this way,
we can minimize the translational gap between pre-clinical
testing results in animal models and clinical outcomes in
humans, which is a signicant problem in current drug devel-
opment. In summary, our ndings suggest that target identi-
cation and drug repurposing can benet from network-based,
rational deep learning prediction in order to explore the rela-
tionship between drugs and targets in a heterogeneous drug–
gene–disease network. From a translational perspective, if
broadly applied, the network-based deep learning tools pre-
sented here could help develop novel, efficacious treatment
strategies for multiple complex diseases.

Methods and materials
Drug–target network

The drug–target network can be described as a bipartite graph
G(D,T,P), where the drug set is denoted as D¼ {d1, d2,., dn}, the
target set as T ¼ {t1, t2,., tm}, and the interaction set as P ¼
{pij:di˛ D, tj˛ T}. An interaction is drawn between di and tjwhen
drug di binds with target tjwith binding affinity (such as IC50, Ki,
or Kd) less than a given threshold value. Mathematically, a drug–
target bipartite network can be presented by an n�m adjacency
matrix {pij}, where pij ¼ 1 if the binding affinity between di and tj
is less than 10 mM, otherwise pij ¼ 0, as described as below.

pij ¼
�
1 IC50ðKiÞ# 10 mM
0 IC50ðKiÞ. 10 mM

(1)

We used a weak binding affinity cutoff of 10 mM as weak-
binding drugs play important roles in drug discovery and devel-
opment as well.60,61 We collect drug–target interaction informa-
tion from the DrugBank database (v4.3),69 the Therapeutic Target
Database (TTD, data downloaded by September 2017),70 and the
PharmGKB database (data downloaded by July 2017).71 Speci-
cally, bioactivity data for drug–target pairs are collected from
ChEMBL (v20),72 BindingDB,73 and IUPHAR/BPS Guide to PHAR-
MACOLOGY.74 All data were downloaded by July 2017. The
chemical structure of each drug with SMILES format is extracted
fromDrugBank.69Here, only drug–target interactionsmeeting the
following three criteria are used (see ESI Note 1†): (i) the human
target is represented by a unique UniProt accession number; (ii)
the target is marked as ‘reviewed’ in the UniProt database
1786 | Chem. Sci., 2020, 11, 1775–1797
(December 2018);75 and (iii) binding affinities, including Ki, Kd,
IC50 or EC50 each#10 mM. In total, 5680 drug–target interactions
connecting 732 FDA-approved drugs and 1178 unique human
targets (proteins) were used. The details for building the experi-
mentally validated drug–target network are provided in a recent
publication.4,5,15 For the external validation set, we assembled the
newest literature-derived experimentally validated drug–target
interactions from the DrugCentral database,24 excluding over-
lapping pairs from the aforementioned datasets.

The human protein–protein interactome

To build a comprehensive human protein–protein interactome,
we assembled data from a total of 15 bioinformatics and systems
biology databases with multiple experimental evidences. Specif-
ically, we focused on high-quality protein–protein interactions
(PPIs) with ve types of experimental evidences: (i) binary PPIs
tested by high-throughput yeast-two-hybrid (Y2H) systems: we
combined binary PPIs tested from two public available high-
quality Y2H datasets76,77 and one unpublished dataset,5 publicly
available at: http://ccsb.dana-farber.org/interactome-data.html;
(ii) kinase-substrate interactions by literature-derived low-
throughput or high-throughput experiments from Human
Protein Resource Database (HPRD),78 PhosphoNetworks,79 Kino-
meNetworkX,80 DbPTM 3.0,81 PhosphositePlus,82 and Phospho.
ELM;83 (iii) literature-curated PPIs identied by affinity purica-
tion followed by mass spectrometry (AP-MS), Y2H, or by
literature-derived low-throughput experiments from BioGRID,84

PINA,85 MINT,86 IntAct,87 and InnateDB;88 (iv) binary, physical
PPIs from protein three-dimensional (3D) structures from
instruct;89 (v) protein complexes data (56 000 candidate interac-
tions) identied by a robust affinity purication-mass spec-
trometry methodology were collected from BioPlex V2.016;90 and
(vi) signaling network by literature-derived low-throughput
experiments downloaded from SignaLink2.0.91 All data were
downloaded in June, 2017. The genes were mapped to their
Entrez ID based on the NCBI database92 as well as their official
gene symbols based on GeneCards (http://www.genecards.org/).
In this study, all inferred data, including evolutionary analysis,
gene expression data, andmetabolic associations, were excluded.
Finally, duplicated pairs were removed. The resulting human
protein–protein interactome used in this study includes 16 133
PPIs connecting 1915 unique drug targets (proteins) (data can be
downloaded from https://github.com/ChengF-Lab/deepDTnet).
The detailed descriptions for building human protein–protein
interactome are provided in our previous studies.4,5,15

Drug–drug interactions

We compiled clinically reported DDI data from the DrugBank
database (v4.3).69 Here, we focused on drug interactions where
each drug has the experimentally validated target information.
The chemical name, generic name or commercial name of each
drug were standardized by Medical Subject Headings (MeSH)
and Unied Medical Language System (UMLS) vocabularies93

and further transferred to DrugBank ID from the DrugBank
database (v4.3).69 In total, 132 768 clinically reported DDIs
connecting 732 unique FDA-approved drugs were retained.
This journal is © The Royal Society of Chemistry 2020
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Drug–disease network

We collected the known drug indications (drug–disease asso-
ciations) from several public resources, including repoDB,94

DrugBank (v4.3),69 and DrugCentral95 databases. Compound
name, generic name or commercial name of each drugs and
disease names were standardized by Medical Subject Headings
(MeSH) and Unied Medical Language System (UMLS) vocab-
ularies.93 In total, 1208 drug–disease pairs connecting 732 drugs
and 440 diseases were used in this study.
Drug-side effect network

We collected the clinically reported drug side effects or adverse
drug event (ADE) information by assembling data from Meta-
ADEDB,96 CTD,97 SIDER (version 2),98 and OFFSIDES.99 Only ADE
data with clinically reported evidence were used. All drugs and
ADE items in MetaADEDB were annotated using MeSH and
UMLS vocabularies, and duplicated drug–ADE associations were
excluded. In total, 263 805 drug–ADE associations collecting 732
approved drugs and 12 904 ADEs were used in this study.
Chemical similarity analysis of drug pairs

We downloaded chemical structure information (SMILES format)
from the DrugBank database and computed MACCS ngerprints
of each drug using Open Babel v2.3.1.100 If two drug molecules
have a and b bits set in their MACCS fragment bit-strings, with c
of these bits being set in the ngerprints of both drugs, the
Tanimoto coefficient (T) of a drug–drug pair is dened as:

T ¼ c

aþ b� c
(2)

T is widely used in drug discovery and development,101 offering
a value in the range of zero (no bits in common) to one (all bits
are the same).
Protein sequence similarity analysis

Data resource. We downloaded the canonical protein
sequences of drug targets (proteins) in Homo sapiens from
Uniprot database (http://www.uniprot.org/, June 2017).

Similarity of drug targets. We calculated the protein
sequence similarity Sp(a,b) of two drug targets a and b using the
Smith–Waterman algorithm.102 The Smith–Waterman algo-
rithm performs local sequence alignment by comparing
segments of all possible lengths and optimizing the similarity
measure for determining similar regions between two strings of
protein canonical sequences of drug targets.

Similarity of drug pairs. The overall sequence similarity of
the drug targets binding two drugs, A and B, is determined by
eqn (3) by averaging all pairs of proteins a and b with a ˛ A and
b ˛ B under the condition as b. This condition ensures that for
drugs with common targets, we do not take pairs into account in
which a target would be compared to itself.

�
Sp

� ¼ 1

npairs

X
fa;bg

Spða; bÞ (3)
This journal is © The Royal Society of Chemistry 2020
Gene co-expression analysis for drug targets

Data source.We downloaded the RNA-seq data (RPKM value)
across 32 tissues from GTEx V6 release (accessed on April 01,
2016, https://gtexportal.org/home/). For each tissue, we regar-
ded those genes with RPKM $ 1 in more than 80% samples as
tissue-expressed genes.

Co-expression analysis of drug targets. To measure the
extent to which drug target-coding genes (a and b) associated
with the drug-treated diseases are co-expressed, we calculated
the Pearson's correlation coefficient (PCC(a,b)) and the corre-
sponding p-value via F-statistics for each pair of drug target-
coding genes a and b across 32 human tissues. In order to
reduce the noise of co-expression analysis, we mapped PCC(a,b)
into the human protein–protein interactome network to build
a co-expressed protein–protein interactome network as
described previously.103

Co-expression analysis of drug pairs. The co-expression
similarity of the drug target-coding genes associated with two
drugs A and B is computed by averaging PCC(a,b) over all pairs
of targets a and b with a ˛ A and b ˛ B as below:

hScoi ¼ 1

npairs

X
fa;bg

|PCCða; bÞ| (4)
Gene Ontology (GO) similarity analysis for drug targets

Data source. The Gene Ontology (GO) annotation for all drug
target-coding genes are downloaded (June 2017) from website:
http://www.geneontology.org/. We used three types of the exper-
imentally validated or literature-derived evidences: biological
processes (BP), molecular function (MF), and cellular component
(CC), excluding annotations inferred computationally.

Similarity of drug targets. The semantic comparison of GO
annotations provides quantitative ways to compute similarities
between genes and gene products. We computed GO similarity
SGO(a,b) for each pair of drug target-coding genes a and b using
a graph-based semantic similarity measure algorithm104

implemented in an R package, named GOSemSim.105 In this
study, three types of pairwise drug targets' GO similarities were
used: BP, MF, and CC.

Similarity of drug pairs. The overall GO similarity of the drug
target-coding genes binding to two drugs A and B is determined
by eqn (5), averaging all pairs of drug target-coding genes a and
b with a ˛ A and b ˛ B.

hSGOi ¼ 1

npairs

X
fa;bg

SGOða; bÞ (5)

Here three types of pairwise drugs' GO similarities were used:
BP, MF, and CC.
Clinical similarity analysis for drug pairs

Clinical similarities of drug pairs derived from the drug
Anatomical Therapeutic Chemical (ATC) classication systems
codes have been commonly used to predict new drug targets.96

The ATC codes for all FDA-approved drugs used in this study
Chem. Sci., 2020, 11, 1775–1797 | 1787
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were downloaded from the DrugBank database (v4.3).69 The kth
level drug clinical similarity (Sk) of drugs A and B is dened via
the ATC codes as below.

SkðA;BÞ ¼ ATCkðAÞXATCkðBÞ
ATCkðAÞWATCkðBÞ (6)

where ATCk represents all ATC codes at the kth level. A score
SATC(A,B) is used to dene the clinical similarity between drugs
A and B:

SATCðA;BÞ ¼

Xn

k¼1

SkðA;BÞ

n
(7)

where n represents the ve levels of ATC codes (ranging from 1
to 5). Note that drugs can have multiple ATC codes. For
example, nicotine (a potent parasympathomimetic stimulant)
has four different ATC codes: N07BA01, A11HA01, C04AC01,
C10AD02. For a drug with multiple ATC codes, the clinical
similarity was computed for each ATC code, and the average
clinical similarity was used.
Disease–gene network

We integrated disease–gene annotation data from three
commonly used bioinformatics data sources as described
below.

OMIM. The OMIM database (Online Mendelian Inheritance
in Man: http://www.omim.org/, June 2017)106 is a comprehen-
sive collection covering literature-curated human disease genes
with various high-quality experimental evidences.

CTD. The Comparative Toxicogenomics Database (http://
ctdbase.org/, June 2017)107 provides information about interac-
tions between chemicals and gene products, and their associ-
ation with various diseases. Here, only manually curated gene–
disease interactions from the literatures were used.

HuGE navigator. HuGE Navigator is an integrated disease
candidate gene database based on the core data from PubMed
abstracts using text mining algorithms.108 Here, the literature-
reported disease–gene annotation data with known PubMed
IDs from HuGE Navigator were used (June 2017).

We integrated disease–gene annotation data from 8 different
resources and excluded the duplicated entries. We annotated all
protein-coding genes using gene Entrez ID, chromosomal
location, and the official gene symbols from the NCBI data-
base.92 In total, 23 080 disease–genes pairs connecting 440
diseases and 1915 drug targets-coding genes were used in
deepDTnet.
Pipeline of deepDTnet

Network embedding. Fig. 1 illustrates the detailed pipeline
of deepDTnet. In total, deepDTnet embeds 15 types of
biomedical networks covering chemical, genomic, phenotypic,
and cellular proles. Network embedding is an important
method to learn low-dimensional representations of vertexes in
networks, aiming to capture and preserve the network struc-
ture.109,110 In order to capture rich semantic information, we
utilize network embedding to extract low-dimensional features
1788 | Chem. Sci., 2020, 11, 1775–1797
from networks. Intuitively, the low-dimensional vectors ob-
tained from this process encode the relevant biological prop-
erties, association information, and topological context of each
drug (or target) node in the heterogeneous drug–target–disease
network (Table S1†).

DNGR model. In this study, we used the DNGR embedding
model20 to learn features. DNGR model consists of three major
steps. First, motivated by the PageRank model used for ranking
tasks, it utilizes a random surng model to capture network
information and generate a probabilistic co-occurrence matrix.
Next, it calculates the PPMI matrix based on the probabilistic
co-occurrence matrix as previously shown.111 Lastly, a stacked
denoising autoencoder is used to learn low-dimensional vertex
representations (Fig. 2A).

(a) Random surng. The vertices of a network are rst ordered
randomly. Assuming our currently vertex is the i-th vertex,
a transition matrix A captures the transition probabilities
between different vertices. In this paper, we consider a random
surng model with restart, which introduces a pre-dened
restart probability at the initial node for every iteration. It
takes both local and global topological connectivity patterns
within the network into consideration to fully exploit the
underlying direct or indirect relations between nodes. Thus, at
each time, there is a probability a that the random surng
procedure will continue, and a probability 1 � a that it will
return to the original vertex and restart the procedure, which
can be diagonalized as follow:

pk ¼ apk�1A + (1 � a)p0 (8)

where pk is a row vector, whose j-th entry indicates the proba-
bility of reaching the j-th vertex aer k steps of transitions, and
p0 is the initial 1-hot vector with the value of the i-th entry being
1 and all other entries being 0. The random surng step yields
a probabilistic co-occurrence matrix.

(b) PPMI matrix. Aer yielding the probabilistic co-occurrence
matrix, we calculate a shied positive pointwise mutual infor-
mation (PPMI) matrix by following Bullinaria and Levy.111 The
PPMI matrix can be viewed as a matrix factorization method
which factorizes a co-occurrence matrix to yield network
representations. The PPMI matrix can be constructed as follow:

PPMI ¼ max

0
BBB@log

Mði; jÞ �
XNd

i

XNt

j

Mði; jÞ

XNd

i

Mði; jÞ �
XNt

j

Mði; jÞ
; 0

1
CCCA (9)

where M is the original co-occurrence matrix, Nd is the drug
number, and Nt is the target number. We assign each negative
value to 0.

(c) Stacked denoising autoencoder. Finally, to investigate the
construction of high quality low-dimensional vector represen-
tations for vertices from the PPMI matrix that conveys essential
structural information of the network, we use a stacked
denoising autoencoder (SDAE), which is a popular model used
in deep learning, to generate compressed, low-dimensional
vectors from the original high-dimensional vertex vectors.
This journal is © The Royal Society of Chemistry 2020
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This process essentially performs dimension reduction
mapping data from a high dimensional space into a lower
dimensional space. Denoising autoencoders partially corrupt
the input data before taking the training step; adding noise
helps a SDAE to learn features that are robust to partial
corruption of input data. Specically, we corrupt each input
sample x (a vector) randomly by assigning the entries in the
vector to 0 with a certain probability. This idea is analogous to
that of modeling missing entries in matrix completion tasks,
where the goal is to exploit regularities in the data matrix to
recover effectively the complete matrix under certain assump-
tions. A SDAE model minimizes the regularized problem and
tackles reconstruction error, dened as follows:

min
fwlg;fblg

kx� x̂kF2 þ l
X
l

kWlkF2 (10)

where L is the number of layers, Wl is weight matrix, and bl is
bias vector of layer l ˛ {1,., L} which can be learned by a back-
propagation algorithm. l is a regularization parameter and k$kF
denotes the Frobenius norm. The rst L/2 layers of the model
act as an encoder, and the last L/2 layers act as a decoder. The
middle layer is the key that enables SDAE to reduce dimen-
sionality and extract effective representations of side
information.

Low rank matrix completion. Before describing the PU-
matrix completion, we rst introduce low rank matrix comple-
tion and inductive matrix completion. The problem of recov-
ering a matrix from a given subset of its entries arises in many
practical problems of interest. The famous Netix problem of
predicting user-movie rating is one example that motivates the
traditional matrix completion problem. The low rank matrix
completion (MC) is one of the most popular and successful
collaborative ltering methods apply to recommender
systems.112 The main task is to approximate the rating matrix
with a low-rank matrix and to recover an underlying matrix by
using the partial observed entities of Pij, the optimization
function is dened as follows:

min
W ;H

X
ði;jÞ˛U

�
Pij �

�
WHT

�
ij

�2

þ l

2

�
kWkF2 þ kHkF2

�
(11)

where l is a regularization parameter and U ˛ Nd � Nt is the
observed entries from the true underlying matrix. Under the
assumption that the matrix is modeled to be low rank, i.e.,
W ¼ ℝNd�k and H ¼ ℝNt�k, and these matrices share a low
dimensional latent space, satisfying k � Nd, Nt.

Inductive matrix completion. Traditional matrix completion
is based on the transductive setting. In addition, all matrix
completion approaches suffer from extreme sparsity of the
observed matrix and the cold-start problem. To alleviate this
limitation, an inductive matrix completion (IMC)113 strategy was
developed, which can be interpreted as a generalization of the
transductive multi-label formulation, and enables us to incor-
porate side information. This technology was applied to make
predictions on gene–disease associations.18 The IMC assumes
that the underlying association matrix is generated by applying
drug and target feature vectors to a low-rank matrix, which is
learned from a training set of drug–target associations, the loss
This journal is © The Royal Society of Chemistry 2020
function l measures the deviation between the predictions and
observations is formulated as:

min
W ;H

X
ði;jÞ˛U

l
�
Pij; xi

TWHTyj
�þ l

2

�
kWkF2 þ kHkF2

�
(12)

where side information of both entities is given in two matrices:
xi˛ℝNd denotes the feature vector for drug i and yj˛ℝNt denotes
the feature vector for target j.

PU-matrix completion. IMC method use the known drug–
target interaction as the positive training set A and the unknown
drug–target interaction as the negative training set B. However,
such kind of classiers is actually built from a noisy negative
set, as there can be unknown drug–target interactions in B
itself. In practice, we only observe positive associations between
drugs and targets, which means no “negative” entries are
sampled. Consequently, this problem is naturally studied in the
positive-unlabeled (PU in short) learning framework, where
observed and unobserved entries are penalized differently in
the objective. Assume the drug–target associations matrix is
given as P˛ℝNd�Nt , where Nd is the number of drugs andNt is the
number of targets. When Pij¼ 1, infers drug i is linked to target j
while zero indicates the relationship is unobserved. Aer the
feature extraction process, we construct a decomposing func-
tion to recover a low-rank matrix Z˛ℝfd�ft from the known
associations matrix P with the form of Z¼WHT, whereW˛ℝfd�k

and H˛ℝft�k, k � Nd, Nt. The optimization problem of our
model is parameterized as:

min
W ;H

X
ði;jÞ˛Uþ

�
Pij � xiWHTyj

T
�2

þ a
X

ði;jÞ˛U�

�
Pij � xiWHTyj

T
�2

þ l
�
kWkF2 þ kHkF2

�
(13)

where the set U includes both positive and negative entries,
such that U¼ U+WU�, let U+ denotes the observed samples and
U� denotes the missing entries chosen as negatives. For biased
inductive matrix completion, the value a is the key parameter,
which determines the penalty of the unobserved entries toward
zero. We set a < 1 because the penalty weights for observed
entries must be greater than the missing ones. In our experi-
ment, the biased value a and regulation parameter l are
selected over the grid search. Next, we approximate the likeli-
hood of the pairwise interaction score between drug i and target
j as:

Score(i,j) ¼ xiWHTyj
T (14)

where the higher score means a higher possibility that drug i is
correlated with target j. The optimization process of hyper-
parameters is provided in Tables S15 and S16.†

Construction of similarity networks. For the homogeneous
interaction networks (e.g., drug–drug interaction network) and
similarity networks (e.g., drug chemical similarity network), we
generate the feature representation of each drug or target by
directly running the DNGR model on each of these networks.
For the association networks, i.e., drug–disease, drug-side-
effect, and protein-disease networks, we construct the
Chem. Sci., 2020, 11, 1775–1797 | 1789
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corresponding similarity networks based on the Jaccard simi-
larity coefficient rst, and then run the DNGR model on these
similarity networks. Jaccard similarity is a common statistic
used for characterizing the similarity and diversity between two
sets of samples. Taking the drug–disease association network as
an example, we use the following formula to measure the
similarity between drug i and drug j:

Simði; jÞ ¼ |diseaseiXdiseasej |

|diseaseiWdiseasej |
(15)

where diseasei denotes the set of diseases of drug i. Then we run
the DNGRmodel on this similarity network to obtain the feature
representation of drugs. In the same manner, we can construct
the similarity networks of proteins.
Performance evaluation of deepDTnet

Evaluation metrics. We introduced several evaluation
metrics for evaluating performance of drug–target interaction
prediction.

PRE is the precision of specic objectives.114

PRE ¼ TP

TPþ FP
(16)

where TP and FP are the number of true positive and false
positive samples with respect to a specic objective, respec-
tively. Based on the denition, the larger PRE value represents
the better prediction performance.

REC is the recall of specic objectives.114

REC ¼ TP

TPþ FN
(17)

where FN is the number of false negative samples with respect
a specic objective. Based on the denition, the larger REC
value represents the better prediction performance.

The area under the receiver operating characteristic (ROC)
curve (AUROC)114 is the global prediction performance. The
ROC curve is obtained by calculating the true positive rate (TPR)
and the false positive rate (FPR) via varying cutoff.

TPR ¼ TP

TPþ FN
(18)

FPR ¼ FP

TNþ FP
(19)

where TN is the number of negative samples correctly
identied.

As studied in previous works,115 AUROC is likely to be overly
optimistic in the evaluation of the performance of a prediction
algorithm, especially on highly skewed data, while area under
the Precision Recall (PR) curve (AUPR) can provide a better
assessment in this scenario. A precision-recall point is a point
with a pair of x and y values in the precision-recall space where x
is recall and y is precision. A precision-recall curve is created by
connecting all precision-recall points.

Prediction of drug–target interactions. We performed a 5-
fold cross-validation procedure to evaluate the prediction
performance of deepDTnet. We built the experimentally
1790 | Chem. Sci., 2020, 11, 1775–1797
validated drug–target network, including 5680 DTIs connecting
732 drugs and 1178 targets. In each fold, 20% of the known
interacting drug–target pairs were randomly chosen and
a matching number of randomly sampled non-interacting pairs
were held out as the test set, and the remaining 80% known
interactions and a matching number of randomly sampled non-
interacting pairs were used to train the model. Considering the
potential bias caused by random sample division for perfor-
mance evaluation, we repeatedly conduct the experiment 30
times.

Comparison with machine learning approaches

Naive Bayes. Naive Bayes classiers are a family of simple
“probabilistic classiers” based on applying Baye's theorem
with strong (naive) conditional independence assumptions
between every pair of features given the value of the class vari-
able. We used the MATLAB implementation of the Naive Bayes
classier.

Supporting vector machine (SVM). SVM is based on a statis-
tical learning theory derived from the structural risk minimi-
zation principle and Vapnik–Chervonenkis (VC) dimension. A
so margin SVM with radial basis function (RBF) kernel in the
Gaussian form was used in our experiment, and the optimal
hyperparameters of the SVM (C and l) were determined by
a grid search. We use the MATLAB version of SVM imple-
mentation provided in the LIBSVM package.116

k-Nearest neighbors (k-NN). k-NN is a non-parametric
method used for classication and regression, and is based
on feature similarity. An object is classied by a majority vote of
its neighbors, with the object being assigned to the class most
common among its k nearest neighbors. k-NN is a type of
instance-based learning, or lazy learning, where the function is
only approximated locally and all computation is deferred until
classication. We used the MATLAB implementation of the k-
NN classier (k ¼ 3).

Random forest. Random forest (RF) represents a collection
of decision trees, which are grown from bootstrap samples of
the training data without pruning, andmakes predictions based
on majority votes of the ensemble trees. RF takes advantage of
Out-of-Bag (OOB) error as an unbiased estimate of generalized
test error. We use the MATLAB implementation of the Tree-
Bagger classier and set the number of trees 100 in our
experiment.

Evaluation of bias of degree, chemical and target similarities

Prediction of new targets (or drugs) for known drugs (or
targets). To evaluate the performance of deepDTnet in identi-
fying novel targets for known drugs (drug's cross-validation) or
in identifying novel drugs for known targets (target's cross-
validation), we also performed two additional 10-fold cross-
validation tests. In the rst case, the drugs in the experimen-
tally validated drug–target network were split into ten subsets of
roughly equal size. Each subset was then taken in turn as a test
set. We removed all the associations of the drugs in the test set,
so that these drugs can be viewed as novel drugs. Later, we can
determine how many associations were discovered by
This journal is © The Royal Society of Chemistry 2020
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deepDTnet, which may shed light on the capacity to mine novel
associations. In the second case, we did the same test with the
targets (proteins) in the experimentally validated drug–target
network, and deepDTnet also showed good performance in
predicting novel targets.

Evaluation of degree bias of drugs or targets in the known
drug–target network. Several network-based methods such as
random walk oen suffer a common problem, in which high
degree nodes may lead to good performance, while low degree
nodes have poor performance. deepDTnet applies a novel
feature extraction strategy with a deep neural network
embedding scheme, which is able to capture the underlying
topological properties for nodes with both high and low
degree (connectivity) for the heterogeneous drug–gene–
disease network. To conrm the effectiveness of our method
on this issue, we performed the following two additional
validations: (1) we calculated the degree of each drug in the
experimentally validated drug–target network and divided the
drug nodes into two parts according to the degree of drugs:
here the cut-off degree (connectivity) was setup to 5. Then we
calculate the AUROC and AUPR of these two parts separately
and compare the difference between the results. (2) In the
same way, we calculated the degree of each protein and
divided the protein nodes into two parts according to the
degree of proteins: the cut-off degree we chose 5. Experiments
show that the AUROC and AUPR value was close in the above
settings with degree above cut-off versus degree below cut-off,
which demonstrated that deepDTnet was robust against
degree bias of networks.

Evaluation of chemical similarity bias and protein sequence
similarity bias. Traditional chemoinformatics and bio-
informatics approaches oen show high performance for drugs
with high chemical similarities or targets with high protein
similarities based on similarity principles. Here we evaluated
the performance inuences of bias of chemical similarities or
target similarities. In the chemical similarity bias experiment,
we calculated the average similarity of each drug node accord-
ing to the drug chemical similarity, and then dividing the drug
nodes into two parts according to the median of each node's
average similarity. The median value in the experiment is
0.3372. In the protein similarity bias experiment, we did the
experiment in the same way, which we calculated the average
similarity of each protein node according to the protein
sequence similarity matrix, and then dividing the protein nodes
into two parts according to the median of each node's average
similarity. The median value here is 0.1510.
Reagents

In total, 18 compounds, including bexarotene, tazarotene,
progesterone, daunorubicin, colchicine, norethindrone, epi-
rubicin, fenobrate, mycophenolic acid, ethynodiol diacetate,
mitoxantrone, lovastatin, rosiglitazone, bezabrate, topotecan,
disulram, amcinonide, and spironolactone, are purchased
from Target Molecule Corporation (Boston, MA). Stock solu-
tions of topotecan were prepared in sterile water. All other
compounds are dissolved in dimethyl sulfoxide.
This journal is © The Royal Society of Chemistry 2020
ROR-gt-LBD expression and purication

Key resources used in this study are provided in Table S18.† The
ligand binding domains (LBD, 262–518) of human ROR-gt is
PCR-amplied from pCDNA2-FLAG-ROR-gt (kindly provided by
Prof. Dan R. Littman, New York University) and cloned into
pET15b (Novagen, Madison, WI) with an N-terminal 6� His tag
for expression in BL21 (DE3). The expression and purication of
recombinant ROR-gt-LBD is performed as described previ-
ously.56 In brief, the cells are grown at 37 �C in LB media sup-
plemented with ampicillin (50 mg mL�1). At the OD600 of 1,
protein expression is induced for an additional 20 h at 16 �C by
adding 0.2 mM isopropyl b-D-1-thiogalactopyranoside (IPTG).
The cells are harvested by centrifugation at 3500 rpm for 30 min
and resuspended in lysis buffer A (20 mM Tris pH 7.0, 200 mM
NaCl, 4% glycerol). Then the suspension is lysed by sonication
and centrifuged at 12 000 rpm for 30 min at 4 �C. The super-
natant is loaded on the Ni-NTA His-Bind column which is pre-
equilibrated with buffer A and washed with buffer B (20 mM
Tris pH 7.0, 200 mM NaCl, 4% glycerol, 100 mM imidazole)
until no non-specic unbound protein is detected. ROR-gt-LBD
is eluted with buffer C (20 mM Tris pH 7.0, 200 mM NaCl, 4%
glycerol, 500 mM imidazole). The puried proteins are dialyzed
against buffer D (20 mM Tris pH 7.0, 200 mMNaCl, 4% glycerol,
5 mM DTT) and concentrated by using 10 kDa centrifugal lters
from Merck Millipore (KGaA of Darmstadt, Germany). Protein
samples are subjected to SDS-PAGE and protein concentration
is measured by BCA method.
Homogeneous time resolved uorescence (HTRF) assay

The homogeneous HTRF assay is conducted with 6� His tag
ROR-gt-LBD and biotin labelled cofactor peptide as described
previously with minor modications.56 Briey, ROR-gt-LBD is
prepared as described above and the SRC1–2 peptide (sequence
CPSSHSSLTERHKILHRLLQEGSPS) is biotinylated at the N
terminus (GL Biochem Ltd). Europium-labelled anti-His anti-
body and XL665-labelled streptavidin are purchased from Cis-
bio bioassays (Codolet, France). The HTRF reaction contains
100 nM ROR-gt-LBD, 100 nM SRC1–2 peptide, 0.5 nM Eu-
labelled anti-His antibody and 41.67 nM XL665-labelled strep-
tavidin according to manufacturer's instructions. Assay buffer
contains 20 mM Tris (pH ¼ 7), 200 mM NaCl, 5 mM dithio-
threitol (DTT) and 4% glycerol. The mixtures are incubated 2 h
at room temperature, and uorescence intensity is measured on
an EnVision Multilabel Plate Reader (PerkinElmer, Waltham,
MA) with excitation at 330 nm and emission at 620 nm and
665 nm. The ratio of intensity at 665 nm/620 nm is used to
calculate cofactor recruitment activity.
Luciferase reporter assay

ROR-gt luciferase reporter assay is performed as described
previously.117 293T cell was widely used in ROR-gt luciferase
reporter assay to evaluate potential ROR-gt inhibitor.118,119 ROR-
gt-LBD (97–516) is PCR-amplied from pCDNA2-FLAG-ROR-gt
and cloned into pFN11A (BIND) (Promega, Madison, WI)
harboring a yeast Gal4 DNA-binding domain (Gal4-DBD). 293T
Chem. Sci., 2020, 11, 1775–1797 | 1791
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cells are co-transfected with 2 mg pGL4.35 vector (Promega,
Madison, WI), a luciferase reporter containing GAL4 DNA-
binding sequences and 2 mg pFN11A (BIND)-Gal4-ROR-gt-LBD
using Lipofectamine 2000 (Invitrogen, Carlsbad, CA) in 6 cm
dish. Aer 20 h, compounds at indicated concentrations are
incubated with 293T cells for an additional 24 h. Then, cells are
washed twice with ice-cold PBS and lysed with passive lysis
buffer. Dual-Glo® Reagent (Promega, Madison, WI) is added to
each well and chemiluminescence is determined using an
EnVision Multilabel Plate Reader (PerkinElmer, Waltham, MA).

Cell viability assay

293T cells are obtained from the American Type Culture
Collection (Manassas, VA) and cultured in Dulbecco's Modied
Eagle Medium (DMEM) medium supplemented with 10% fetal
bovine serum (FBS, Gibco, Waltham, MA), 100 unit/mL peni-
cillin and 100 mg mL�1 streptomycin at 37 �C in a humidied
incubator with 5% CO2. To assess cytotoxicity, 293T cells are
seeded in 96-well plates at the density of 5 � 104 cells per well
and then incubated with varied concentrations of topotecan for
24 h. Cell viability is measured by MTT assay. Cell survival is
assessed as percentage of absorbance relative to that of
untreated cells.

High-performance liquid chromatography (HPLC)

In brief, topotecan (5 mL, 20 mM) is incubated with human
recombinant ROR-gt-LBD protein (5 mL, 1 mg mL�1) for 2 h at
4 �C. Ni-NTA beads are used to capture the complex of topotecan
and ROR-gt-LBD, and the bound topotecan is extracted by
organic solvent. The mixture is centrifuged to remove precipi-
tate (10 000 g for 10 min at 4 �C). An aliquot of the supernatant
is injected on an Agilent Eclipse plus C-18 column (4.6 mm �
100 mm, 3.5 mm particle size) in an Agilent HPLC system (1260
innity) and detected at 260 nm. The mobile phase is a mixture
of methanol and 0.1% H3PO4 (35 : 65) with a ow rate of 1
mL min�1.

Circular dichroism

Circular dichroism (CD) analysis of the interaction of TPT and
ROR-gt-LBD is performed as described previously.120,121 Briey,
TPT (5 mL, 10 mM in sterile water) is incubated with recombi-
nant ROR-gt-LBD protein (1 mL, 1 mg mL�1) for 2 h at 4 �C. The
CD spectra (200–260 nm) is scanned using a chirascan circular
dichroism spectrometer (Applied PhotoPhysics, United
Kingdom) with a step size of 1 nm at 20 �C. Three independent
spectral scans are collected and representative data are
presented.

Fluorescence quenching assay

Fluorescence quenching assay was performed as previously re-
ported.122 In briey, ROR-gt-LBD (30 mM) was incubated with
increasing concentrations of TPT (10 mM to 50 mM) for 30 min.
The uorescence emission (290–500 nm) was recorded with an
excitation wavelength of 280 nm. Fluorescence spectra were
detected using a Cary Eclipse uorescence spectrophotometer
1792 | Chem. Sci., 2020, 11, 1775–1797
(Agilent Technologies, CA, USA). The Ka of topotecan-ROR-gt
complex was calculated from uorescence quenching data
according to the following modied Stern–Volmer equation:46

log(Fo � F)/F ¼ log Ka + n log[L]

where n is the Hill coefficient, Fo ¼ uorescence intensity of
values of the protein (ROR-gt-LBD), F ¼ uorescence intensity
of protein in the presence of quencher (topotecan), L ¼
concentration of ligand (topotecan). The values for binding
constant (Ka) and number of binding sites were derived from
the Y-axis intercept and slope, respectively.

Molecular docking

The three-dimensional (3D) structure of topotecan is framed by
Chem 3D ultra 12.0 soware (ChemOffice; Cambridge So
Corporation, US, 2010). The crystal structure of the ROR-gt in
complex with a synthetic partial agonists GSK2435341A is
retrieved from the Protein Data Bank (PDB code: 4XT9). All the
water molecules and bound ligands in the ROR-gt structure are
removed. Topotecan is docked into the ligand binding pocket of
ROR-gt by using AutoDock Vina (The Scripps Research Institute,
CA, USA).123 The best-scored binding conformation of topotecan
and ROR-gt is selected by the scoring system to assess the
interaction mode. The docking results are displayed by PyMOL
soware (https://www.pymol.org/).

Pharmacokinetic evaluation

All mouse experiments were performed at East China University
of Science and Technology (Shanghai, China) and were
approved by the Institutional Animal Care and Use Committee
of Shanghai. Male C57BL/6 mice (6–8 weeks) are purchased
from the National Rodent Laboratory Animal Resources. The
mice were injected i.p. with 10 mg kg�1 of topotecan dissolved
in water (volume 5 mL kg�1). Blood and brain samples were
collected at 0.17, 0.5, 1, 2, 4, 8, 12 and 24 h aer injection. Brain
samples were homogenized in precooled normal saline before
analysis. An aliquot of plasma (40 mL) or brain homogenate (300
mL) was added with 10 mL of irinotecan (internal standard, IS)
working solution (500 ng mL�1) and 600 mL of acetonitrile.
These mixtures were vacuum dried at 50 �C for 90 min (Lab-
conco CentriVap, USA), and the dried extract was reconstituted
with 100 mL of water/acetonitrile (90 : 10 v/v, 0.1% formic acid).
Aer centrifugation, a 2 mL aliquot of supernatant was analyzed
by HPLC-MS/MS on Thermo Scientic Q Exactive Focus hydrid
quadrupole-orbitrap mass spectrometer (USA). The pharmaco-
kinetic parameters were calculated using Phoenix WinNonlin
7.0 soware (Pharsight, Mountain View, CA, USA).

Target occupancy assay

An in vivo receptor occupancy assay was performed using HPLC-
MS/MS methodology.121,124,127 T0901317 (ref. 56), an orthosteric
ligand of ROR-gt, was used as the tracer for assessing target
occupancy. The mice were pre-injected i.p. with 10 mg kg�1 of
topotecan dissolved in water (volume 5 mL kg�1). Aer 10 min
pretreatment, mice were then injected i.p. with T0901317 (5 mg
This journal is © The Royal Society of Chemistry 2020
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kg�1). Blood and brain samples were collected at 30 min aer
the second injection and the HPLC-MS/MS detection of
T0901317 was performed using gliclazide as an internal
standard.

Experimental autoimmune encephalomyelitis (EAE)
induction

C57BL/6 mice are purchased from the National Rodent Labo-
ratory Animal Resources. EAE mouse model is induced as
described previously.125,126 In brief, female C57BL/6 mice (8–12
weeks old) are subcutaneously immunized with 300 mg MOG35–
55 (amino acids 35–55, MEVGWYRSPFSROVHLYRNGK; GL
biochem) in an equal amount of Complete Freund's adjuvant
(including M. tuberculosis H37Ra extract 1 mg mL�1) on days 0.
Pertussis toxin (100 ng per mouse) is intraperitoneally admin-
istered on days 0 and 2. The onset and severity of EAE are
recorded daily by two independent researchers using the
following scale system: (0) no clinical sign; (1) limp tail or
waddling gait with tail tonicity; (2) wobbly gait; (3) hindlimb
paralysis; (4) hindlimb and forelimb paralysis; (5) death.40

Animals with scores of 3 and up are provided access to food and
water at the bottom of the cage. Topotecan (10 mg kg�1) or
vehicle (sterile water) is administered to mice by intraperitoneal
injection on day 11 post immunization every four days. The
mouse body weight is measured every day.

ELISA

IL-17 production in spinal cords and brain is detected using
commercially available ELISA kit (Neobioscience) according to
the manufacturer's instructions.

In vivo imaging

In vivo optical imaging is performed using IVIS Spectrum CT
Imaging System (PerkinElmer, Inc. USA). In order to eliminate
the inuence of autouorescence and light scattering caused by
fur, all the mice are shaved before the experiments. Mice are
administered with avertin anesthesia in all imaging experi-
ments. Myelination is imaged using 3,3-diethylthia-
tricarbocyanine iodide (DBT), a near-infrared dye that readily
enters the brain and specically binds to myelinated bers.54

Briey, mouse is intravenously injected with DBT (0.5 mg kg�1,
100 mL PBS) through the tail vein and image acquisition is
performed at 4 min post-injection.53 The settings are Epi-FI,
Ex740/Em790, binning 8, FStop 2, FOV D, height 1.50. Blood–
brain barrier permeability is evaluated using Cy5.5 labeled
bovine serum albumin (BSA-Cy5.5) with bright near infrared
uorescence as described previously.53 In brief, mouse is
intravenously injected with BSA-Cy5.5 at a dosage of 50 mg kg�1

and optical imaging is carried out at approximately 6 h post-
injection. The settings are Epi-FI, Ex660/Em720, binning 8,
FStop 2, FOV D, lamp level high, height 1.50.

Histological analysis

Mice are subjected to PBS-perfusion and spinal cords are xed
in 10% formalin, followed by embedding in paraffin.127 Spinal
This journal is © The Royal Society of Chemistry 2020
cords sections are stained with hematoxylin and eosin (H&E)
and with Luxol fast blue (LFB) to evaluate inammation and
demyelination, respectively. To assess toxicity of TPT in EAE
mice, the organ sections from vehicle- or TPT-treat EAEmice are
stained with H&E staining. All tissue sections are 5 mm thick.

Statistical analysis

The data shown in the study were obtained from at least three
independent experiments; all data in different experimental
groups were expressed as the mean � standard deviation (SD).
Comparisons between two groups are performed using
Student's t-test (GraphPad Prism Soware, San Diego, CA). P <
0.05 is considered statistically signicant.

Code availability

The code for deepDTnet is available at https://github.com/
ChengF-Lab/deepDTnet.

Data availability

All data used in this study are available at https://github.com/
ChengF-Lab/deepDTnet.
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