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Control of the redox potential of lithium terephthalate Li, TP anode material is demonstrated by functiona-
lizing its terephthalate backbone with an electron-donating amino group; this lowers — as intended — the
redox potential of Li;TP by 0.14 V. The two Li-organic electrode materials, Li, TP and Li;TP-NH,, are fabri-
cated as crystalline thin films from gaseous precursors using the atomic/molecular layer deposition (ALD/
MLD) technique. The amino-functionalized material possesses a previously unknown crystal structure,
addressed here by applying the USPEX evolutionary algorithm for the structure prediction and then LeBail
fitting of the experimental XRD pattern based on the predicted structure model. The ALD/MLD fabrication
yields in situ lithiated active electrode materials without any conductive additivies or binders and thus
allows a straightforward evaluation of their intrinsic electrochemical properties. Comparison between
Li,TP and its amino-functionalized derivative reveals inferior capacity retention and rate capability charac-
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teristics for the latter, which somewhat counterveils the pros-and-cons balance between the two Li-
organic electrode materials. From galvanostatic cycling experiments and post-mortem XRD and SEM ana-
lysis, the issue with Li;TP-NH, is revealed to be in the morphology changes occurring during the dis-
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Introduction

Lithium-ion batteries have found their way to a diverse range
of portable applications owing to their superior performance,
in particular regarding the specific energy and efficiency.
However, it is well known that the present battery chemistries
possess some safety issues; there are also concerns related to
the availability of their raw materials and the notable CO,
emissions during their manufacturing." Alternative next-gene-
ration battery chemistries are thus continuously searched for;
they should be based on cheap and abundant elements, and
exhibit competitive electrochemical performance while being
easy to recycle. Organic electrode materials tick many of these
requirements and they have been gaining increasing attention
in recent years.>® There are however several issues to be
addressed, related e.g. to the fact that small organic molecules
suffer from drastic dissolution in the conventional liquid elec-
trolytes, which results in a capacity decay upon cycling. Another
challenge is their intrinsically low electronic conductivity.
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Different ways have been adopted to fight these challenges such
as coating, grafting, chemical modification, and polymerization.

Organic molecules are remarkably flexible for different
chemical modifications, which opens up enormous possibili-
ties to tune the properties of organic electrode materials.* A
typical organic electrode material comprises one or more
redox active functional groups connected to a larger conju-
gated backbone. The type of the functional group is the deter-
mining factor of the potential where the redox reactions occur.
The resultant loss or gain of electron(s) is then stabilized by
the conjugated backbone. Here we focus on a carbonyl-type
material for which upon reduction, the electron is added to
the lowest unoccupied molecular orbital (LUMO).

When an additional electron-donating functional group is
attached to the carbon skeleton it causes the LUMO energy to
become more positive, thereby lowering the redox potential.”> A
somewhat linear relationship between the redox potential and
LUMO energy has been reported.® The challenge in the evalu-
ation of the effects of different functional groups is to find
simple model systems with a minimum number of other vari-
ables.” The present study was inspired by our recent success in
depositing high-quality lithium terephthalate (Li,TP) thin
films using the atomic/molecular layer deposition (ALD/MLD)
technique, and testing these films as a negative electrode
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Fig. 1 Molecular structures of Li,TP and Li;TP-NH,.

material in a pristine form, e.g. without any conductive addi-
tives or binder material.*® The ALD/MLD technique for metal-
organics is a strongly emerging branch of the conventional
atomic layer deposition (ALD) technology for inorganic thin
films, which has been in industrial use already for decades.'®"*
Like ALD, the combined ALD/MLD technique for metal-organic
thin films is based on sequential, self-saturating surface reac-
tions of gaseous precursors and has the capacity to yield thin
films with incontestable thickness control and uniformity."?
The recent developments in the field of ALD/MLD have opened
new avenues towards new interesting metal-organic
materials.>'*'® Here we extend the ALD/MLD material reper-
toire to dilithium 2-aminoterephthalate (Li,TP-NH,), which
then allows us to evaluate the role of the electron-donating
amino group on the redox potential of the terephthalate skel-
eton, with the anticipation that the somewhat high redox poten-
tial of Li,TP could be decreased by introducing the additional
amino group (Fig. 1). Prior to the present work, Li,TP-NH, has
been synthesized in bulk form and found to be electroactive but
not significantly different from Li, TP regarding the redox poten-
tial.'” On the other hand, these carboxylates behave similarly in
sodium ion batteries,”®> and the sodium equivalent
Na,TP-NH, has shown the expected decrease in redox potential
in bulk samples.**

Results and discussion
ALD/MLD process development

We have previously developed a facile ALD/MLD process for
Li,TP films based on Li(thd) and terephthalic acid (TPA) pre-
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cursors.® Here we adopted the same lithium precursor for the
Li,TP-NH, process and replaced the organic precursor to its
amino-substituted version, ie.  2-aminoterephthalic acid
(TPA-NH,), to make the comparison straightforward. First, we
confirmed the most important characteristics of an ideal ALD/
MLD process, that is, the saturation of the so-called growth-per-
cycle (GPC) value (calculated from the XRR-determined film
thickness value) with increasing precursor pulse lengths; these
experiments were carried out at the deposition temperature
200 °C, and the number of ALD/MLD cycles was fixed to 100
(Fig. 2). In all our depositions the N, purging time was kept con-
stant, at 4 s after the Li(thd) pulse and at 30 s after the organic
precursor pulse. It was revealed that for both the Li,TP-NH, and
Li, TP processes the film growth saturated with a relatively short
(4 s) Li(thd) pulse time, while the organic precursors required a
little longer pulsing time, i.e. 6 s for TPA-NH, and 10 s for TPA.
The resultant GPC values were appreciably high, and also quite
similar for the two processes, i.e. 3.6 A per cycle for Li,TP-NH,
and 3.0 A per cycle for Li,TP. Also, in both cases the growth rate
decreased significantly with increasing deposition temperature
(Fig. 2b); this is a trend seen for most of the reported ALD/MLD
processes.8,14,15,17,18,25,26

We also confirmed the linearity of the film growth with an
increasing number of ALD/MLD cycles after a small incubation
period in the beginning (Fig. 2c). The precise determination of
the film thickness with XRR was possible for the thinner films
only; for the thicker films the surface roughness increased
such that the XRR method became less reliable.”” From the
AFM data the mean surface roughness of the film with 100
cycles was determined to be ~3 nm, while for the thicker films
with 200 and 400 ALD/MLD cycles the roughness was ~10 and
~14 nm, respectively. For the thickest films, we employed spec-
troscopic ellipsometry for the thickness determination.
Additionally, an estimation of the film thickness (~80 nm) for
a film deposited with 200 ALD/MLD cycles was obtained using
AFM; a part of the film was scratched (with a surgical knife)
and then the surface was scanned with an AFM tip to probe
the depth difference between the film surface and the silicon
substrate surface (Fig. 2d).

The Li,TP-NH, films were all crystalline after 200 ALD/MLD
cycles. In Fig. 3a we show a part of the GIXRD pattern around
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Fig. 2 Growth-per-cycle (GPC) values for the Li(thd) + TPA-NH, and Li(thd) + TPA® processes as a function of (a) precursor pulse lengths (at
200 °C with 100 ALD/MLD cycles), and (b) deposition temperature with the following precursor pulse lengths: 4 s of Li(thd) and 10 s of organic in
both cases. In (c) thicknesses of Li,TP-NH; and Li,TP films with increasing number of ALD/MLD cycles. (d) Film thickness determination using AFM

(for a Li,TP-NH, film grown with 200 ALD/MLD cycles).
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(a) GIXRD patterns with calculated FWHM values, and (b) AFM images for Li;TP-NH, films deposited at 200 °C with increasing number of

ALD/MLD cycles. The z-scale in AFM images is 0—-50 nm for the sample with 100 cycles and 0—-250 nm in samples with 200 and 400 cycles.

the main peak for representative films to demonstrate that the
FWHM (full width at half maximum) decreases with an
increasing number of deposition cycles, indicating an increase
of the crystallite size as the films get thicker. The same obser-
vation can be made from the AFM images shown in Fig. 3b.
The AFM data suggest an island-type growth mode (similar to
that previously seen for the Li, TP films);® it seems that initially
the Li,TP-NH, films grow as amorphous, but soon islands of
crystallites start to form which then serve as the preferred sites
for the further film growth. This is in line with the fact that
the film density (calculated from the critical angle value
obtained from the XRR pattern) was initially somewhat higher,
ie 1.59 g em™> for the film deposited with 100 cycles, then
1.40 and 1.44 ¢ cm™ for films deposited with 200 and 400
cycles, respectively.

Structure of Li,TP-NH, films

The Li,TP-NH, films were crystalline, but the diffraction
pattern could not be indexed according to any relevant crystal
structure. It should be noted that even though the Li,TP-NH,
phase has been previously synthesized in bulk form (plus XRD
pattern is given),”® its crystal structure has not been reported.
Moreover, unlike the case with e.g. the zirconium analogues,
ZrTP and ZrTP-NH,,>® the Li,TP-NH, structure is apparently

not identical with the Li,TP structure (ESI Fig. 21). We used
the USPEX evolutionary algorithm®® to predict the most prob-
able crystal structure candidates for Li,TP-NH,. The lowest-
energy structure candidate revealed through USPEX is a
layered monoclinic structure with two Li,TP-NH, formula
units in the unit cell (Fig. 4a). Interestingly, there is a direct
subgroup-group relation between this Li,TP-NH, structure can-
didate (Pc) and the layered structure seen for Li,TP (P2,/c) in
both bulk and in our ALD/MLD samples.®*' The USPEX pre-
diction also yielded a few other low-energy monoclinic struc-
tures for Li,TP-NH, with energies not much higher than in the
case of the Pc structure (see ESIT).

In Fig. 4b, we have indexed and LeBail fitted an experi-
mental XRD pattern for our Li,TP-NH, thin-film sample; the
fitting confirms that the structure must be close to the USPEX-
predicted monoclinic Pc structure (with lattice parameters a =
8.68 A, b =5.23 A, ¢ = 8.99 A, and § = 93.76°), the monoclinic
distortion being clearly seen as the splitting of the main reflec-
tion around 20 = 22°. However, a closer look up indicates an
additional tiny reflection around 26 =~ 16° (Fig. 4c), which is
not explained with the Pc model. Considering this reflection,
the best match was found for a cell with P2/m symmetry (a =
8.57 A, b =5.28 A, ¢ = 8.23 A, = 99.85°). For both the afore-
mentioned structure models, the lattice parameters are rather
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Fig. 4 XRD pattern and LeBail fits of Li;TP-NH, with a thickness of around 1000 nm. In (a) the simulated profile fit using lattice parameters pre-
dicted by USPEX evolutionary algorithm, in (b) LeBail fits with tiny reflection at 16° omitted, in (c) the tiny peak is included (inset). Visualization of the

structure can be found in ESI.{ Substrate peaks are removed for clarity.

This journal is © The Royal Society of Chemistry 2020

Dalton Trans., 2020, 49, 1591-1599 | 1593


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9dt04572d

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 08 2563. Downloaded on 2/2/2569 3:05:21.

(cc)

Paper

close to the USPEX-predicted lattice, with a = 8.48 A b=
5.07 A, ¢ = 9.16 A, and f = 94.77°. It should be noted that
neither the experimental nor the simulated diffraction pat-
terns match with the previously reported pattern for a bulk
Li,TP-NH, sample.”® Steric hindrance of the amino group
most likely plays a role here, in such a way that the different
synthesis conditions could lead to different amino group
arrangements.>*3?

The chemical bonding scheme in our Li,TP-NH, thin films
was studied with FTIR spectroscopy. A comparison of the thin-
film spectrum to that of its TPA-NH, precursor confirms the
disappearance of the characteristic carbonyl group (only seen
for the acid precursor) and the appearance of the carboxyl
feature upon the metal carboxylate bond formation (ESI
Fig. 3t). The detailed interpretation of spectral features is
given in ESI Fig. 4,f where we compare our thin-film
Li,TP-NH, spectrum with the previously reported FTIR spec-
trum for a bulk Li,TP-NH, sample®® and also with a spectrum
calculated based on the USPEX predicted monoclinic Pc struc-
ture for Li,TP-NH,; for the peak interpretation (ESI
Table 271),>*?° we also considered the spectra reported for
Li,TP,*® Na,TP-NH,,** and TPA-NH,.*”

Most interesting observations were made by comparing the
spectra of our present Li,TP-NH, and Li,TP thin films, see
Fig. 5. The dominant peaks in terephthalate systems are
caused by the asymmetric (v,5) and symmetric (vs) stretches of
carboxylate around 1600 cm™" and 1400 cm™", respectively.'*
The position of these peaks is often strongly affected by the
nature of the substituents. In particular, electron donating
groups attached to aromatic carbon skeleton are expected to
shift v, to the higher energies (blue shift), while electron with-
drawing groups such as -NH, should result in a shift to the
lower energies (red shift). Electron withdrawing substituents
also shift v, to the lower energies but this behavior is less pre-
dictable depending also on the position of the substituent
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Fig. 5 FTIR spectra for Li,TP-NH, and Li,TP; inset shows the antisym-
metric (as) and symmetric (s) vibrations of the amino group at higher
wavenumbers.
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(relative to carboxylate).”® Indeed, from Fig. 5 it is seen that v,
red shifts from 1572 em™ (Li,TP) to 1568 cm™" (Li,TP-NH,)
upon the addition of the -NH, group, and v, from 1393 cm™*
(Li,TP) to 1372 em™" (Li,TP-NH,). The separation (4) between
0,5 and vy is indicative of the binding mode of the carboxylate
unit."**® For our Li,TP-NH, thin-film sample, the obtained A
value of 196 cm™" suggests a bridging-type connection, which
is in accordance with the USPEX-predicted structure model.

Another important observation is related to the stretching
modes of the benzene ring (19a and 19b; ESI Table 2t), being
composed of partly stretching and partly bending character of
the C=C bonds. In para disubstituted benzene (like Li,TP) the
19a mode lies at higher wavenumbers,* while in asymmetric
trisubstituted benzene the 19b mode is at a higher frequency,
according to the normal coordinate analysis.*® This is impor-
tant since with monosubstituted benzenes the vibration 19a
has been found to become more intense with donor substitu-
ents, while 19b gets stronger with acceptor substituents. A
similar correlation could explain the strong peak observed at
1433 em™! for our Li,TP-NH, thin film. Another observation is
that the amino group is apparently not reacting with the Li
(thd), as the characteristic antisymmetric and symmetric peaks
due to the amino group remain intact. However, this does not
mean that the amino group would not show any coordination
effect on the lithium oxide layer; indeed a small shoulder is
seen in the asymmetric stretch of the amino peaks.

Electrochemical characteristics

Cyclic voltammetry in coin-cell configuration was used to
investigate the redox behaviors of the Li,TP-NH, and Li,TP
films. The voltammograms were recorded between 0.25-3.0 V
for Li,TP-NH, and 0.01-3 V for Li,TP; in the first case scan-
ning to too low potentials was found to be detrimental and
was hence avoided. The 1° and 2" cycles were measured with
a scan rate of 0.1 mV s, followed by cycles with higher rates
of 0.5 and 1 mV s~ ' (Fig. 6). For both materials, the 1% cycle
was found drastically different from the following cycles, pre-
sumably due to solid electrolyte interphase (SEI) formation.*’
After the 1° cycle, Li,TP-NH, shows wide reduction and oxi-
dation peaks centered around 0.62 and 0.82 V, respectively,
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Fig. 6 Cyclic voltammograms for (a) Li,TP-NH; (0.25-3.0 V), and (b)
Li, TP (0.01-3.0 V) with various scan rates. The dark grey line represents
the 1% cycle, and the red, blue, and green lines represent the subsequent
cycles. Each cycle starts at the original open circuit voltage, being ca. 2
V for both the samples.
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while Li, TP exhibits relatively sharp peaks at 0.76 V (reduction)
and 1.0 V (oxidation). Hence the electron-donating amino
group indeed lowers the redox peak potential of Li,TP by 0.14
V. The magnitude of the decrease in the potential is not enor-
mous but it is in line with the results previously reported for
the Na-based counterparts (0.19 V; quasi-open circuit vol-
tages).>* According to DFT calculations by Renault et al.’®
lithiation of Li,TP-NH, occurs preferably on the carbonyl next
to the amino group. This preferred process can be observed as
a shoulder of the main reduction peak; this shoulder is
however seen with the slowest scan rate of 0.1 mV s™' only,
indicating slow diffusion or kinetics of the electrode (Fig. 6a;
red curve). Finally we note that the positive impact of the
amino group in lowering the redox potential loses some of its
significance due to the poorer electrode kinetics and/or slower
diffusion into the electrode, the reason of which will be dis-
cussed in more detail later on.

Galvanostatic charge/discharge cyclings were performed
with various current rates to investigate the cycling perform-
ance (Fig. 7); in these experiments, the voltage range was
0.4-3.0 V for both materials. In line with the cyclic voltamme-
try results, the performance of Li,TP-NH, was inferior to that
of Li,TP in the rate capability tests. The capacity retention
between 1.1 and 53.0 pA ecm™> was 67% for Li, TP but only 24%
for Li,TP-NH,. After the initial cycles, the coulombic efficiency
on average was 99% for Li,TP and 97% for Li,TP-NH,. The
capacity values were ~9 pA h em™ for Li, TP and ~8 pA h cm™>
for Li,TP-NH,.

While the targeted role of the additional functional groups
is to decrease or increase the redox potential,*’ they may also
have unintended consequences. It has been shown that elec-
tron donor functional groups may disturb the n—r orbital stack-
ing of the benzene rings and actually decrease the conductivity
of the material.”> According to the calculations by Zhang
et al.,* Li" hopping is fast in Li,TP and occurs mostly within
the stacked m-orbitals of the benzene rings; this is also the
path of the least resistance for the electrons in Li,TP.'>**
Upon replacing one of the hydrogen atoms in the benzene ring
with an additional functional group a shift occurs for the
HOMO and LUMO orbitals and thereby also for the m-orbital
stacking. This might be one of the reasons for the poorer
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electrochemical performance. Functional groups may also
introduce a steric hindrance for the Li* diffusion.

The flat (dis)charge curve extending even up to high current
densities for Li, TP is not seen for Li,TP-NH, (Fig. 7). Such
sloping potentials as observed for the present Li,TP-NH, thin
film and also previously reported for bulk Li,TP-NH,.*®
Sloping voltage profiles are rather common in organic polymer
batteries, where the redox active groups are interconnected
and the potential strongly depends on the lithiation degree.*®
Park et al.** explained the difference as a change of the reac-
tion type, from two-phase reaction to one-phase reaction.
Electron donors are prone to cause charge reorganizations and
formation of occupied states in the aromatic core; these
changes may have an effect on the voltage profile.*® Therefore,
there might be multiple reasons behind the observed change
in the voltage profile.

From the rate capability measurement data shown in Fig. 7
it can be seen that the delithiation is never complete in the
cycle succeeding the increase in current density, i.e., in these
first discharge/charge cycles the capacity from lithiation is
larger than the capacity from delithiation indicating that with
the same current density, delithiation is the slower reaction.
Afterwards, the capacity loss can be recovered with lower
current rates, as seen in the increased delithiation capacity. A
larger cut-off voltage for delithiation might solve the issue, but
3.0 V is already a very high voltage for a negative electrode
material.

Its has been observed that the electronic conductivity of
organic electrodes increases with the amount of intercalated
lithium.** Therefore, during lithiation, the material probably
becomes more and more conducting such that it becomes
easier to intercalate lithium to the lattice. This is actually what
can be seen with Li, TP with the larger current densities during
lithiation where the potential momentarily drops lower than
the plateau. Hence, after a certain lithiation threshold, it
becomes easier to continue the lithiation, presumably due to
the decrease in resistivity. Clearly, this same behavior is not
seen with Li,TP-NH,, presumably due to its intrinsically
higher resistivity.

The performance of the films was also tested over 200
charge/discharge cycles. Cycling started again with a slow

°) d)
35 _18 120
&N 1.1 27 53 106 212 318 53.0 11 o
£ 16 [ wer =
30 S 100
L gl ooco oo B> R, 3
<25 ° =
= 212k 80 g
820 210} . =
[e)) = £
s ] s 332 2000080000 o 160 [
515 o ... g 2
> Ss Re=t,., 40 B
1.0 o, g
= =
0.5 S Ll [+ T 2 3
g < atason gy
& o ©_Coulombic Effc o [ &)
0.0
0 2 4 6 8 10 12 0 10 20 30 40
ecific Capaci cm cle
Specific Capacity (pAh/cm 2 Cycl

Fig. 7 Rate capability measurements for Li,TP-NH; (a and b) and Li,TP (c and d): cycling starts with a format cycle with a small current of 0.5 pA
cm™2, thereafter the current is increased after every 5 cycles before returning to the original value (1.1, 2.7, 5.3, 10.6, 21.2, 31.8, 53.0 yA cm™2). In (a)
and (c) the shape of the charge—discharge curve at different cycles and in (b) and (d) capacity plotted with coulombic efficiency.
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Fig. 8 Performance of Li,TP-NH, and Li,TP during extended cycling in a half-cell. In (a) capacity retention and coulombic efficiency over 200
cycles and in (b) and (c) the observed change in the charge—discharge curve of Li,TP-NH, and Li,TP, respectively.

format cycle (0.5 pA cm™>) followed by cycling with 2.7 pA
em ™2 (Fig. 8). It was seen that Li, TP retains 95% of its capacity
and shows very stable performance over the whole cycling
period, while Li,TP-NH, retains 90% of its capacity, but also
shows an interesting behavior, where the capacity first
increases followed by a steady decrease (Fig. 8a). In previous
works, similar abnormal excess capacity has been ascribed to
the lithiation of the aromatic skeleton. This could have an
effect on the reversibility of the redox reaction as some of the
lithium inserted in low potentials would require very high
potentials to leave the electrode.”” Amino groups have been
reported to suppress the dissolution of organic electrodes,*® so
the decrease in capacity is most likely not due to dissolution,
and as can be seen in the Fig. 9b, the thickness of the film has
only increased due to the formation of SEI. The coulombic
efficiency of Li,TP is very high (>99%) after the initial cycles
compared to rather poor efficiency of 95% of Li,TP-NH,. The
lower coulombic efficiency is a direct sign that the redox reac-
tion with Li,TP-NH, is not as reversible as with Li,TP within
this potential range. The coulombic efficiency of Li,TP-NH, is
noticeably low during the cycles related to the lithiation of the
aromatic skeleton. Similar low coulombic efficiency with Li, TP
was observed by Lee et al.®” when the low potential cut-off
voltage was decreased to 0.0 V, where the aromatic skeleton of
Li, TP was purposely lithiated. Therefore, both the gradual

a) b) =
— Pristine Li, TP-NH,|

— Cycled Li,TP-NH,
Pristine Li, TP
—— Cycled Li, TP

10 15 20 25 30 35 40 45 50
2theta (°)

Fig. 9
cycled Li,TP-NH; and Li,TP electrodes.
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increase in capacity and the lower coulombic efficiency are
possibly caused by the lithiation of the aromatic skeleton.

The shape of the charge-discharge curve of Li,TP-NH,
changes drastically over the cycling while that of Li,TP
remains essentially unchanged (Fig. 8b and c). The steady
slope of Li,TP-NH, disappears completely and the over-poten-
tial increases. The drastic changes in the shape of the charge-
discharge curve are a direct indication of changes occurring
on the material during cycling, which might be due to the
amorphization of the material caused by the lithiation of the
aromatic skeleton®” or other significant morphological
changes of the electrode. In Fig. 9 we display post-mortem
XRD and cross section SEM image for a pristine and cycled
electrodes; both clearly show that the Li,TP-NH, turns amor-
phous upon cycling. From the SEM images it is moreover seen
that the cycled electrode is considerably thicker (formation of
SEI) and it consists of a sea of small particles, while in the
pristine electrode the crystallites are larger. The Li,TP on the
otherhand shows only minor changes on the surface and the
crystallites remain intact.

Material properties such as the electrode morphology*® and
shape of crystallites®>>" of the active material may have a con-
siderable effect on mass and electron transport of the elec-
trode and thereby its electrochemical performance. In
addition, it has been shown that particle pulverization can

(a) Diffraction patterns of Li,TP-NH, (the shift in baseline and peaks at 44° are due to steel substrate), and (b) SEM images for a pristine and

This journal is © The Royal Society of Chemistry 2020
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take place and is detrimental to the electrochemical perform-
ance of organic electrode materials.”> The observed morpho-
logical changes occurring during cycling for our Li,TP-NH,
electrode are very likely the cause of the capacity decay. We ten-
tatively believe that the breakage of the crystal structure orig-
inates from the lithiation of the aromatic skeleton.*”

Conclusions

We have widened the repertoire of lithium-bearing ALD/MLD
processes to the amino-functionalized lithium terephthalate,
i.e. dilithium 2-aminoterephthalate or Li,TP-NH,. The
Li,TP-NH, films were found to initially grow smooth and
amorphous but after a certain threshold number of ALD/MLD
cycles crystallites started to form. The Li,TP-NH, crystals were
not of any previously known crystal structure; we thus deter-
mined the structure with a combined prediction (USPEX),
modelling (DFT) and fitting (LeBail) approach. Additional evi-
dence for the resulting monoclinic structure was revealed from
the FTIR data.

Electrochemical measurements verified the validity of our
initial design concept, that is, the possibility to use additional
electron-donating functional groups to lower the redox poten-
tial of the lithium terephthalate Li,TP anode material. The
decrease in the potential achieved with the amino group
attached to the terephthalate backbone was 0.14
V. Unfortunately, this benefit was gained at the expense of the
lower coulombic efficiency and poorer rate capability. We
observed effects such as morphology, crystallinity changes,
and delamination but no dissolution in the post-mortem ana-
lysis of the electrodes.

As these thin film electrodes are free from any conductive
carbon or other additives and their preparation route is the
same their performance should be indicative of the actual
material. This especially makes the post-mortem analysis
simpler as the interactions in the cells are minimized. We
believe that manufacturing the organic electrode materials in
the thin film form is the key to better understand their electro-
chemical performance.

Experimental

The Li,TP-NH, and Li,TP (for reference) thin films were de-
posited from Li(thd) (thd = 2,2,6,6-tetramethyl-3,5-heptane-
dione), 2-aminoterephthalic acid (98%, Tokyo Chemical
Industry Co. Ltd) and terephthalic acid (98%, Tokyo Chemical
Industry Co. Ltd) precursors. The Li(thd) precursor powder
was synthetized by mixing LiOH (98%, Alfa Aesar) in 1:1 H,0
and EtOH mixture with thd (Tokyo Chemical Industry Co. Ltd)
in 1:1 H,O and EtOH mixture. The resulting white mixture
was further dried in vacuum and purified by sublimation. The
films were deposited in an F-120 flow-type hot-wall ALD
reactor (ASM Microchemistry Ltd) at low pressure (~5 mbar).
The carrier and purging gas was nitrogen (produced from the

This journal is © The Royal Society of Chemistry 2020
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air with nitrogen generator Parker HPN2-5000, with less than
10 ppm of oxygen). For the Li, TP films, the deposition process
parameters were adopted from our previous work,® while for
the Li,TP-NH, films the parameters were optimized in this
work. The sublimation temperature for the TPA-NH, was
185 °C and 175 °C for Li(thd). For the structure characteriz-
ations, Si(100) substrates were used, while for the electro-
chemical characterizations the films were grown on stainless
steel disks (@ 15.5 mm).

X-ray diffraction patterns were collected for the films with
PANanalytical X'Pert Pro diffractometer (Cu Koy; 4 =
1.540598 A) both in the conventional (XRD) and the grazing-
incidence (GIXRD; incident angle 0.5°) modes. The XRD pat-
terns measured in Bragg-Brentano mode were indexed and
fitted with the LeBail method using the options integrated
into the FullProf software package (Treor90 and CheckCell).”?
The film thickness and density were estimated for the films
from the X-ray reflection (XRR) patterns measured with the
same apparatus. It should be noted that the density calcu-
lation (see ESIY) is based on an approximated chemical com-
position of the film, which naturally courses some uncertainty;
nevertheless, within a series of similar samples, the possible
trends should be meaningful.®>* For the thickest and roughest
films, the film thickness was determined with spectroscopic
ellipsometer =~ measurements  (Woollam  Spectroscopic
Ellipsometer; CompleteEASE software).

The bonding structure and the presence of intended func-
tional groups were investigated with Fourier transform infrared
spectroscopy (FTIR; Nicolet Magna 750). The FTIR measure-
ments were performed in a range of 400 to 4000 cm ™" with a
resolution of 4 cm™'. The atomic force microscope images
were conducted in tapping mode with a Veeco Dimension
5000. Tips used were Mikromasch HQ: NSC14/AIBS tips with a
typical radius of 8 nm and 5 N m™" force constant.

For the electrochemical evaluation, the thin films were de-
posited on steel substrates. The thickness of the thin film
could not be measured from the steel substrate, and therefore
the exact mass of the electrode cannot be reliably determined.
However, the mass of the electrode can be estimated from the
growth rate on the silicon substrate. This will cause some sys-
tematic error in the data because the nucleation model on
different substrates can differ.”> However, as the film’s goal
thickness was fixed to 170 nm, it makes much more sense just
to compare the capacity per area and it makes the electrode
comparison more practical. The theoretical capacity of
Li,TP-NH, is 277.8 mA h g~". Assuming the film’s thickness of
170 nm and calculated density, the areal capacity should be
around 8 pA h cm™? for both of the materials. This is relatively
close value to the measured ones when taking into account all
of the possible errors in calculated density, film thickness, and
the exact area of the current collector as films grow in every
direction and underneath the substrate. The samples were first
dried in a vacuum oven (110 °C) for 24 hours and moved into
argon filled glovebox with oxygen levels under 1 ppm.
Afterwards, the films were directly applied as the working elec-
trode in a CR2016 coin cell with a lithium metal counter elec-
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trode to evaluate their electrochemical performance. The elec-
trolyte was 1 M LiPF; in a 1:1 EC/DMC solution. Cyclic vol-
tammetry measurements were carried out with Autolab
PGSTA302N potentiostat, and galvanostatic cyclings in a
Neware battery testing unit with various current densities. The
galvanostatic cycling voltage range was chosen to limit the
reactions occurring below 0.4 V. In cyclic voltammetry each
cycle starts at the original open circuit voltage, being ca. 2 V
for both the samples.

We also carried out crystal structure predictions for
Li,TP-NH, with the evolutionary algorithms implemented in
the USPEX 9.4.4 code.*® All quantum chemical calculations
within the USPEX simulations were performed using Quantum
Espresso program package (version 6.0).°® We used density
functional theory (DFT) with the PBE exchange-correlation
functional and GBRV ultrasoft pseudopotentials.>”*® Kinetic
energy cut-offs of 40 Ry and 200 Ry were applied for wavefunc-
tions and charge densities, respectively. In the USPEX simu-
lations, we applied a molecular crystal structure prediction
algorithm.’® Each simulation included two Li" cations per
each 2-aminoterephtalate dianion and all structures where the
dianion did not stay intact were discarded. The USPEX simu-
lations were run with different numbers of formula units in
the unit cell (Z = 2, 3, and 4). All simulations produced a
similar type of layered structures, but the lowest-energy struc-
tures were obtained from two simulations carried out for Z = 2.
The full USPEX and Quantum Espresso input files for one Z =
2 simulation are included in ESL.¥

The low-energy structures produced by USPEX were re-opti-
mized using the CRYSTAL17 program package, hybrid PBEO
density functional method, and triple-zeta-valence + polariz-
ation (TZVP) level of basis set. The Gaussian Type Orbital basis
sets have been derived from Karlsruhe basis sets®® and
adapted for solid-state calculations."®" For all low-energy
structures, we applied a k-mesh of 3 x 5 x 3 for the reciprocal
space sampling. The structures were optimized with the
default optimization convergence criteria in CRYSTAL17 and
the lowest-energy structures were confirmed to be true local
minima by means of harmonic frequency calculations. The
harmonic vibrational frequencies and IR intensities were
obtained with the computational scheme implemented in
CRYSTAL.®®> For the simulated IR spectra, we applied a
Lorentzian lineshape and an FWHM of 16 cm™'. The band
assignments were carried out by visual inspection of the
normal modes using the Jmol program package.®®
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