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Enhancing the enthalpic contribution of hydrogen
bonds by solvent shielding†
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In biological systems, polar interactions are heavily burdened by high desolvation penalties resulting

from strong solute–solvent interactions. As a consequence thereof, enthalpic contributions of hydrogen

bonds to the free energy of binding are severely diminished. However, this effect is strongly attenuated

for interactions within solvent-shielded areas of proteins. In microcalorimetric experiments, we show

that the bacterial lectin FimH utilizes conformational adaptions to effectively shield its binding site from

solvent. The transition into a lower dielectric environment results in an enthalpic benefit of approximately

�13 kJ mol�1 for mannoside binding. However, this effect can be abrogated, if the hydrogen bond

network within the binding site is disturbed by deoxygenation of the ligand. Conformational adaption

leading to reduced local dielectric constants could represent a general mechanism for proteins to enable

enthalpy-driven recognition of polar ligands.

Introduction

The energetics of hydrogen bonds in biomolecular recognition
are highly affected by severe desolvation penalties imposed by
strong interactions with the aqueous solvent in the unbound
state. A common conception is that strongly directional hydro-
gen bond interactions provide selectivity, but do not necessarily
augment the overall binding affinity of a ligand because
favorable contributions are often canceled out by significant
desolvation penalties.1–3 The free energy penalty for the trans-
fer of a hydroxyl group from aqueous solvent to the gas phase
was estimated as 26 kJ mol�1, with an associated enthalpy
penalty of 36 kJ mol�1 and the transfer of an alcohol function
from bulk solvent into a hydrophobic pocket was associated
with a free energy penalty of 18–21 kJ mol�1.4,5 Furthermore, in
an aqueous system, the contribution of a single hydrogen bond
to the free energy of binding has been estimated to equally
amount to 18–21 kJ mol�1.6–10 In summary, a hydrogen bond
hardly contributes to the binding process, unless additional
conditions are fulfilled. It has been proposed that hydrophobic
occlusion and solvent shielding are able to advance the strength
of hydrogen bonds in biological systems. Thus, enthalpies of

formation for solvent-exposed hydrogen bonds on protein surfaces
amount to �6 kJ mol�1, whereas buried interactions contribute
with up to �25 kJ mol�1.11,12 For the arabinose-binding protein,
removal of buried hydrogen bond interactions in deoxy D-galactose
derivatives was associated with an enthalpy-driven loss in binding
free energy of 30 kJ mol�1.13 Similarly, hydrophobic solvent-
shielding has been shown to impact the activity of enzymes, as
well as the pKa of buried titratable groups.14–18 The exclusion of
polar water molecules effectively creates a low dielectric environ-
ment that supports electrostatic interactions and accelerates
the reaction of charged intermediates. Thus, solvent shielding
of hydrophilic binding sites may contribute to enthalpy-driven
recognition of highly polar molecules such as carbohydrates. In
this study, we aim to demonstrate that proteins actively harness
the modulation of local dielectric properties by conformational
transitions and to quantify the thermodynamic consequences on
polar hydrogen bond interactions.

As a model system to study the impact of the dielectric
constant er on the thermodynamics of binding, we employed
FimH, a bacterial adhesin located on type I pili of uropathogenic
E. coli.19–21 The functional lectin domain of FimH features
a carbohydrate recognition site tailor-made to accommodate
mannose epitopes. The mannose binding affinity of the lectin
domain is allosterically controlled by the adjacent regulatory
pilin domain.22,23 When mechanical forces, such as shear
forces during micturition, cause the separation of lectin and
pilin domain,23,24 a switch from the low-affinity conformation
to the high-affinity conformation of FimH is induced and
mannoside ligands are bound with B100-fold stronger affinity
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compared to the domain-associated low affinity state. Here,
we compare the properties of the two affinity states by means of
two different recombinant FimH constructs.

Results and discussion

The isolated FimH lectin domain (FimHLD) is a common in vitro
model for the domain-separated, high-affinity conformation of
the protein.25 FimHLD features a rigid structure and a well-
defined carbohydrate binding site (Fig. 1). Mannoside ligands
engage in an impressive network of ten hydrogen bonds. In the
absence of a ligand, water molecules assume the positions of

mannose hydroxyl groups, pre-organizing the binding site for
carbohydrate recognition (RMSDapo-bound = 0.35 Å). The binding
event is a single-step mechanism that proceeds without
any major conformational adjustment of the residues in the
mannose binding site.26,27 On the other hand, the domain
associated full-length FimH construct (FimHFL) has been
shown to bind mannoside ligands by a more complex mecha-
nism caused by conformational distortions of the protein due
to the presence of the regulatory subunit.22,23 In the absence of
a ligand, the protein exists in an ensemble of conformational
states that are characterized by a shallow, solvent-exposed
binding site, a low affinity to carbohydrate ligands, and a high
degree of flexibility (FimHFL-open, Fig. 1).23,28 In the presence of

Fig. 1 Molecular structure of the bacterial lectin FimH. The isolated lectin domain (FimHLD, PDB 4BUQ) is fairly rigid and pre-organized in the closed
conformation even in the absence of a ligand. The recombinant full-length FimH construct (FimHFL) undergoes a conformational transition from an open
(FimHFL-open, PDB 4XOD) to a closed (FimHFL-closed, PDB 4XOE) state when a ligand binds to the mannose binding site.

Fig. 2 Thermodynamic model of the interaction of FimH with mannoside ligands. FimH states and complexes are colored analogous to available X-ray
structures in Fig. 1. Desolvated states are indicated with an asterisk.
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a ligand, the conformational equilibrium is shifted toward a
closed state (FimHFL-closed), in which the clamp loop is accom-
modated close to the carbohydrate binding site and shields the
mannose moiety from the solvent. The atomistic features of
this mechanism, namely clamp loop mobility in the open and
solvent shielding of the binding site in the closed conforma-
tion, have been thoroughly characterized in MD simulations.29

Although the overall structure of this state differs from
the high-affinity conformation, the binding site regions are
virtually identical (RMSDlectin_domain = 2.0 Å, RMSDbinding_site =
0.2 Å). Fig. 2 depicts a thermodynamic model of ligand binding
to FimHLD and FimHFL. The experimentally observed free energy

of binding to FimHLD DG�LD-obs
� �

is composed of terms for

desolvation DG�desolv-closed
� �

; protein–ligand interaction

DG�bind-closed
� �

; and solvation of the assembled complex DG�solv
� �

(Fig. 2, pathway A). For FimHFL, the conformational rearrange-
ment associated with ligand binding theoretically proceeds via a
conformational selection (Fig. 2, pathway B) or an induced-fit
(Fig. 2, pathway C) mechanism. In case of conformational
selection, the experimentally observed thermodynamics

DG�FL-obs
� �

contain contributions from a conformational transi-

tion to the closed state DG�conf-sel
� �

; desolvation DG�desolv-closed
� �

;

protein–ligand interaction DG�bind-closed
� �

; and solvation of the

assembled complex DG�solv
� �

. In the induced-fit pathway C,

DG�FL-obs is composed of desolvation DG�desolv-open
� �

; low-

affinity binding DG�bind-open
� �

; induced-fit transition DG�ind-fit
� �

;

and solvation of the assembled complex DG�solv
� �

. Thus, the

difference in the thermodynamic profiles of ligand binding to

FimHFL and FimHLD DDG�FL-LD
� �

gives access to an experimental

approximation of clamp loop rearrangement and hydrophobic
occlusion of the polar mannose binding site. In the conforma-
tional selection model (Fig. 2, pathway B), DG�conf-sel is a constant
term, and ligand binding affinity scales entirely with binding
affinity to the closed state. In the induced-fit model (Fig. 2,
pathway C), however, differences between ligands can scale with

the affinity of a low-affinity encounter complex DG�bind-open
� �

and

the effect of the conformational transition DG�ind-fit
� �

.
As a result of an extensive network of hydrogen bonds

between the pre-organized binding site and the mannose moiety,
the interaction between mannosides 1–4 and FimHLD (high-
affinity state) is characterized by a strongly enthalpic contribu-
tion (Fig. 3A). The weak entropic penalty has been linked to the
rigidification of the tyrosine gate, an ensemble of hydrophobic
residues that control access to the mannose binding site and
interact with the aglycones of ligands 1–4.26,27 An improved p–p-
stacking and hydrophobic interaction between aglycone and
tyrosine gate further accentuates their thermodynamic profile,
as the electrostatic nature of the aglycones gives rise to progres-
sively tighter, enthalpy-driven binding from 4 - 3 - 2 - 1.

The thermodynamic profiles of mannoside interactions with
the FimHFL construct (low-affinity state) show similar charac-
teristics (Fig. 3B). The binding process is equally driven by

enthalpy, with a counteracting entropic penalty. However, the
magnitude of this enthalpy–entropy compensation is much more
substantial. Overall, the binding affinity of the mannosides 1–4 is
reduced roughly by 12 kJ mol�1, approximately two orders of
magnitude in KD, compared with the same ligands binding to
FimHLD. This value represents the experimental approximation of
the thermodynamics related to the conformational rearrangement
from the open (FimHFL-open) to the closed (FimHFL-closed) state.

The difference in the thermodynamics (Fig. 3C) shows that
this fairly constant affinity reduction mainly originates from a

Fig. 3 Thermodynamic profiles (see Fig. S1–S4, ESI†) for the interaction of
mannosides 1–4 with FimHLD (A) and FimHFL (B). Data for the interactions
FimHLD-2/3/4 and FimHFL-2/4 have been published before.24,30,31

(C) Difference in the thermodynamic profiles between ligand binding to
FimHFL and FimHLD. Error bars represent (propagated) 68% confidence
intervals. Numeric data and further information can be found in the ESI.†
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severe entropy penalty of roughly 26 kJ mol�1, which can be
correlated to a shift of the conformational equilibrium of
FimHFL toward a closed state, in which the clamp loop is fixed
near the mannose moiety. The high mannose binding affinity
of FimHLD thus results from pre-organization of the mannose
binding site. This concept has been thoroughly characterized in
the study of enzyme catalysis.32,33 Less intuitively, the thermo-
dynamics are also characterized by a favorable enthalpic con-
tribution of approximately �13 kJ mol�1. Since the mannose
hydrogen bond networks and any other electrostatic contacts
between protein and ligand are identical in the bound states of
FimHLD and FimHFL, this difference has to originate from
the conformational transition of the clamp loop region upon
ligand binding. While the local dielectric constant on protein
surfaces, as in the open form of FimHFL, is commonly esti-
mated to be 20, it is reduced to approximately 5 in the shielded
binding site of FimHFL-closed.17 Based on these simplified
qualitative estimations,34,35 the shift between the open and
closed protein states is accompanied by hydrophobic shielding
of polar hydrogen bond interactions in the binding site. This
leads to reduced local permittivity er in FimHFL-closed, which is
associated with an enhanced enthalpic contribution to binding

DH� / Fe ¼
q1q2

4pe0err2

� �
.

In order to investigate the outcome of a perturbation of
the hydrogen bond network, several deoxygenated derivatives
of n-heptyl a-D-mannoside (4) were subjected to thermodynamic
and structural analyses. The X-ray crystal structures of 4–7 in

complex with FimHLD reveal very little variation (RMSDs E 0.2 Å)
upon sequential removal of mannose hydroxyl groups (Fig. 4A),
indicating that the loss of hydrogen bonds is not associated
with any major conformational adjustments. Next, NMR
chemical shift perturbations (CSP) of residues involved in
hydrogen bond interactions to mannose hydroxyl groups were
studied (Fig. 4B). Gly14, engaged in a water-mediated hydrogen
bond to 2-OH, shows a minor CSP upon ligand binding.
Variations between different mannosides are negligible, even
when the 2-OH group is removed (-5). This indicates that the
position of the interacting water molecule W1 is not affected.
The backbone amide NH of Asp47 forms a hydrogen bond with
6-OH, leading only to slight CSP upon binding to the ligands 4
and 5 (2-deoxy). In case of the 3-deoxy derivative 6, the CSP is
more pronounced, whereas the signal is superimposed to the
apo protein for 7 (4-deoxy). CSP of the amide side chain protons
of Gln133 report on hydrogen bond formation with 3-OH. For 4,
the signal of the amide proton (PDB nomenclature He22) is
shifted downfield by 0.8 ppm, indicating hydrogen bond for-
mation. A smaller downfield shift of 0.3–0.5 ppm signifies the
slightly weaker interaction for 5 and 7, whereas the absence of
the interaction for 3-deoxy derivative 6 is obvious from a strong
upfield shift of �1.6 ppm.

Similarly, CSP of the side chain signals of Asn135 indicate
the interaction with 4-OH. The signal is shifted downfield for
4, 5, and 6, whereas a relative upfield shift for the 4-deoxy
derivative 7 signifies the absence of the interaction. Importantly,
none of the observed residues show a marked shift in the

Fig. 4 Structural characterization of interactions between mannoside 4 and the deoxygenated compounds 5–7 and FimHLD. (A) X-ray crystal structures
of mannoside 4 (black, PDB 4BUQ), 2-deoxy-mannoside 5 (blue, PDB 5L4T), 3-deoxy-mannoside 6 (green, PDB 5L4V), and 4-deoxy-mannoside 7 (red,
PDB 5L4X). Hydrogen bond interactions of 4 are indicated as grey dashes. (B) 1H,15N-HSQC NMR experiments reveal chemical shift perturbations for
residues in the mannose binding site in the presence of ligands. Color coding according to panel A. Nomenclature of Asn and Gln d and e protons
according to PDB guidelines. Full spectrum is shown in Fig. S20 (ESI†).
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15N-dimension of the spectra, reporting on changes in dihedral
angles of protein backbone and side chains.

In summary, the structural information obtained by NMR
and X-ray is in good agreement, and the conformational
changes of protein and ligand are remarkably small upon the
loss of relevant interactions. In both experiments, low binding
affinity prevented a characterization of compound 8.

The thermodynamics of 5–7 binding to FimHLD (Fig. 5A)
illustrate that removal of the hydroxyl groups in the 2-, 3-, and
4-position of n-heptyl a-D-mannoside 4 coincide with a sizeable
reduction of the enthalpic contribution to binding.

In addition, the negative value for�TDS1 indicates an increased
degree of disorder, probably as a consequence of the impaired
hydrogen bond network. This is in line with the reduced downfield
shifts in NMR experiments. The interaction of 5–7 with FimHFL

shows an equivalent trend in the thermodynamic profiles
(Fig. 5B). Yet, the magnitude of the enthalpy–entropy compen-
sation effect differs substantially. As a consequence, the fairly
constant trend we observed in the differential profiles for 1–4
(Fig. 3C) is lost for 5–7 (Fig. 5C). Here, the enthalpic contribu-
tion that was attributed to the modulation of binding site
permittivity er in FimHFL is considerably diminished and even
reversed for 6 and 7. Instead, a progressive shift toward
entropic binding is observed.

When the thermodynamic profiles of 5–7 are compared with
the parent compound 4, notable dissimilarities between the
two protein constructs, FimHLD (Fig. 6A) and FimHFL (Fig. 6B)
can be observed. For FimHLD, the enthalpic penalty for removal
of a hydroxyl group amounts to 26–32 kJ mol�1. The same
modification in FimHFL, however, results in an enthalpic
penalty that ranges from 42 kJ mol�1 up to 65 kJ mol�1. The
discrepancy suggests that the loss of a hydrogen bond in the
interaction of 5–7 and FimHFL is superimposed by global

Fig. 5 Thermodynamic profiles (see Fig. S5–S8, ESI†) for the interaction
of deoxygenated n-heptyl a-D-mannoside derivatives 5–8 with FimHLD (A)
and FimHFL (B). Data for the interactions of FimHLD with compounds 5–7
have been published elsewhere.30 (C) Difference in the thermodynamic
profiles between ligand binding to FimHFL and FimHLD. Error bars represent
(propagated) 68% confidence intervals.

Fig. 6 Difference in thermodynamic profiles between 4 and deoxygenated
n-heptyl a-D-mannoside derivatives 5–7 with FimHLD (A) or FimHFL (B). Error
bars represent propagated 68% confidence intervals.
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effects resulting from a modulation of clamp loop dynamics
and the associated solvent shielding mechanism.

Thus, the observed thermodynamics are not indicative
of the protein–ligand interaction itself, but instead reflect a
shift in the conformational equilibrium of the protein. This
mechanism has been termed entropy–enthalpy transduction.36

The existence of distinctive enthalpy–entropy compensation
profiles for different ligands might also indicate that binding
does not proceed via selection of a preexisting FimHFL con-
formation (Fig. 2, pathway B), but through a ligand-induced fit
(Fig. 2, pathway C). The conformational equilibrium in a
conformational selection model is an inherent property of the
protein and does not depend on the nature of a ligand.
Thus, DG�conf-sel must be a constant term, and differences in
ligand thermodynamics originate solely from interaction
with the binding-competent conformation DG�bind-closed

� �
: In

an induced-fit model, however, formation of an encounter

complex DG�bind-copen
� �

and contrasting consequences of the

conformational transition DG�ind-fit (e.g. loss of enthalpic benefit
from solvent shielding) can account for differences between
ligands. For ligands with an intact mannoside core (1–4),
the induced-fit transition reaches its full effect so that the
differential thermodynamic profiles (Fig. 3C) appear constant.

Intriguingly, X-ray and NMR experiments yielded no infor-
mation about the binding mode of 8 to FimHLD. ITC data
suggests that this compound actually binds with very low, but
similar affinity to the high- and low-affinity construct of the
protein (Fig. 5). These observations could signify a different
binding mode that does not proceed via a conformational
rearrangement in FimHFL.

Conclusions

In conclusion, we have investigated the binding thermo-
dynamics of two FimH constructs that share a similar binding
mode but explore a very different conformational landscape.
We could demonstrate that an observed enthalpic contribution
of roughly �13 kJ mol�1 for mannoside ligands is a direct
consequence of solvent shielding enabled by the rearrange-
ment of the clamp loop in FimHFL and the associated modula-
tion of local dielectric properties. When the hydrogen bond
network in the binding site is disrupted, the enthalpic benefit is
completely abolished (Fig. 5C). In the case of FimHFL, the effect
of the solvent shielding mechanism is superimposed by an
entropic penalty for the arrest of the clamp loop dynamics.

A similar transition of the binding site into a lower dielectric
environment was observed for a number of other carbohydrate
binding proteins, such as arabinose-binding protein (ABP),
glucose/galactose-binding protein (GGBP) und sialic acid-
binding periplasmic protein (SiaP). Their conformational tran-
sition upon ligand binding involves a twist of rigid protein
domains around a fixed axis (‘‘hinge-bending’’ motions).37–40

These transitions do not alter the flexibility of individual
protein domains to an extent as observed in FimH and
can be considered entropically neutral. Thus, modulation of

binding site permittivity could represent a general mechanism
for carbohydrate binding proteins to enable enthalpy-driven
recognition of polar ligands in aqueous solution.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

B. E. gratefully acknowledges funding from the Swiss National
Science Foundation (PZ) and German Academic Exchange
Service (BF).

Notes and references
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S. Phillips and S. W. Homans, J. Mol. Biol., 2006, 362, 994–1003.

6 G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford
University Press, Oxford, 1997.

7 T. Steiner, Angew. Chem., Int. Ed., 2002, 41, 48–76.
8 C. P. Sager, D. Eris-, M. Smieško, R. Hevey and B. Ernst,
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