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ABSTRACT: The abstraction reaction of hydrogen from formaldehyde by OH radical plays an 
important role in formaldehyde oxidation. The reaction involves a bimolecular association to 
form a chemically activated hydrogen-bonded reaction complex followed by a unimolecular 
reaction of the complex to generate the products. The reaction rate is usually considered to be 
pressure-independent by assuming equilibrium between the reactants and the complex. However, 
our nonequilibrium calculations based on the chemically significant eigenmode of the master 
equation, carried out with our recently developed TUMME program, indicate that the reaction 
complex makes the rate constant dependent on pressure at low temperatures (T < 200 K). The 
calculations include anharmonicity, variational effects, and multi-dimensional tunneling. We find 
that the reaction rate constant reaches a low-pressure limit at pressures below 10 Torr over the 
whole investigated temperature range (20 K – 1800 K), which explains why the available low-
temperature experiments, which are for pressures below 2 Torr, did not observe the pressure 
dependence. A new extension of the TUMME master-equation program is used to explore the 
time evolutions of the concentrations of the OH radical and the complex under pseudo-first-order 
conditions. The time-dependent evolution of the concentrations of the complex at a low 
temperature provides direct evidence for the stabilization of the reaction complex at high 
pressures, and it shows the negligible role of stabilized reaction complex at low pressures. The 
picture that emerges is qualitatively consistent with our previous study of the reaction of 
methanol with OH in that the tunneling in the unimolecular step from the complex to the 
products affects the phenomenological reaction rate constants differently at high and low 
pressures and leads to a significant pressure effect. 
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 1. Introduction 
  Formaldehyde (HCHO) plays an important role in tropospheric chemistry, and it is an 
intermediate in combustion and forest fires. Formaldehyde reactions are of particular interest for 
understanding the combustion kinetics of oxygenated fuels.1 In the atmosphere, formaldehyde 
pollutants can lead to the formation of ground-level ozone, photochemical oxidants, and 
photochemical smog,2 and it is hazardous to human health. Additionally, formaldehyde is the first 
organic polyatomic molecule observed in the interstellar medium,3 and reactions involving 
formaldehyde have received much attention in ultracold interstellar chemistry.4 
 Among the formaldehyde reactions, the reaction with hydroxyl (OH) radical is one of the 
most important ones. It is the main reaction pathway in formaldehyde oxidation,5 and it is the key 
step in both ozone formation2 and formaldehyde removal in cold molecular clouds4. 

There are two main channels for formaldehyde reaction with hydroxyl: (i) hydrogen 
abstraction to produce H2O and HCO radical (this is the title reaction) and (ii) OH addition to 
generate the hydroxyl methoxy radical. The hydrogen abstraction reaction is the more favorable 
of these.6 Xu et al.5 reported that the addition channel has a higher barrier height than that for 
abstraction [5.7 kcal/mol vs. –1.0 kcal/mol by CCSD(T)/6-311+G(3df,2p)//CCSD/6-
311++G(d,p)] and accounts for only 1% of the overall rate constant at T = 1000–1600 K based 
on variational transition state theory (VTST) calculations. (The reaction rate to produce HCOOH 
+ H is also very small.7) Hence, in this work, we focus only on reaction (i). The reaction is 
assumed to involve bimolecular association to form a chemically activated hydrogen-bonded 
reaction complex (HCHO∙∙∙HO) that can unimolecularly decompose into the final products, as 
follows: 
 HCHO + OH 

1
→ HCHO∙∙∙HO 

2
→ HCO + H2O (1) 

where the first step is barrierless, and the transition state for the second step is denoted as TS. 
The first step is treated as reversible. Later in the article, the bimolecular reactant (HCHO + OH) 
is sometimes denoted as R, the hydrogen-bonded reaction complex (HCHO∙∙∙HO) as RC, and the 
bimolecular product (HCO + H2O) as P.  

Kinetics of reaction (i) has been investigated experimentally in diverse temperature 
ranges.4,8,9,10 In 2017, Ocaña et al.4 observed abnormally high low-temperature rate coefficients 
by using the CRESU technique under ultralow temperature and pressure conditions (22-107 K, 
0.05-2.37 mbar).  

The rate constants of HCHO + OH reactions have been predicted theoretically5,7,11,12,13,14 by 
using conventional transition state theory11, variational transition state theory13,14 (VTST), 
quasiclassical trajectories (QCT),7 and ring polymer molecular dynamics (RPMD)7. Previous 
work7 has emphasized the role of the reaction complex in the observed non-Arrhenius behavior at 
low temperature. Most theoretical studies5,11,12,13 focus on temperatures above 200 K, but others, 
like the recent VTST study by de Souza Machado et al.14 and the QCT/RPMD simulation by 
Mazo-Sevillano et al.7, although they studied lower temperatures, failed to give consistent rate 
constants over the whole temperature range (20 < T < 2200 K)14 and show large discrepancies 
compared to the experiment results7. 
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The present study is carried out with a new version of the recently developed master 
equation program TUMME15,16. We employed the energy-resolved master 
equation15,17,18,19,20,21,22,23,24,25,26,27,28 and obtained phenomenological rate constants from the 
master equation by the method of chemically significant eigenmodes (CSE theory18,23,24,25,25,29). 
Canonical variational theory30 (CVT) with small-curvature tunneling31 (SCT) is used for 
calculating the flux coefficients needed as input to the master equation. This allows us to include 
variational effects,32 multidimensional tunneling,33 and torsional anharmonicity34 in the input 
flux coefficients.  
 
2. Methodology 

We distinguish the rate constant 𝑘𝑘 from flux coefficients 𝑘𝑘�. The former is a time-independent 
phenomenological constant (at a given temperature and within the steady-state time frame) 
obtained from experiment or as output from the master equation or a mechanism, while the latter 
are measures of one-way reactive fluxes that are input to the master equation.  

 
2.1 Master equation for the rate constants  

As shown in eqn (1), there are two elementary reaction steps in the title reaction. We do not 
explicitly include a well-skipping reaction35 in which R is converted directly to P. The energy E 
of the reaction complex is treated as a discrete variable on a grid. The size, Δ𝐸𝐸, of each energy 
bin is set to 0.1 𝑘𝑘B𝑇𝑇 where 𝑘𝑘B and T are is the Boltzmann constant and the temperature, and the 
highest energy Emax on the grid is set to 50 𝑘𝑘B𝑇𝑇 relative to the ground-state energy E0 of reactant 
R. Bin η then contains energies from Emax – η Δ𝐸𝐸 to Emax – (η–1) Δ𝐸𝐸. The number of energy 
bins is denoted as N. 

We assume that the back reaction of the bimolecular products, HCO and H2O, is negligible 
so that their concentrations may be set equal to zero in the master equation. We also assume that 
the bimolecular reactants are fully thermalized. 

The energy-resolved master equation for title reaction is then expressed as the following 
matrix equation: 

 d𝐲𝐲
dt

= −𝐖𝐖𝐲𝐲 + 𝐁𝐁𝑛𝑛HCHO𝑛𝑛OH.  (2) 

where  

• y is a concentration vector whose components 𝑦𝑦𝜂𝜂 are the populations of the reaction 

complex in energy bin η, i.e., 𝑦𝑦𝜂𝜂 = 𝑦𝑦�𝐸𝐸𝜂𝜂�; 

• W is a transition matrix for energy-relaxation and dissociation reactions of the reaction 

complex; it involves energy-relaxation probabilities 𝑃𝑃�𝐸𝐸𝜂𝜂�𝐸𝐸𝜂𝜂′� of the reaction complex 
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and microcanonical flux coefficients 𝑘𝑘��𝐸𝐸𝜂𝜂� for the energy-selected dissociation of the 

complex;  

• B is a transition vector containing microcanonical flux coefficients Δ𝑘𝑘��𝐸𝐸𝜂𝜂� for the 

energy-selected association reaction into energy bin η. 
 

In practice, we symmetrize eqn (2) to get a Hermitian transition matrix, 
 d𝐲𝐲�

dt
= −𝐆𝐆𝐲𝐲� + 𝐁𝐁�𝑛𝑛HCHO𝑛𝑛OH (3) 

where a tilde denotes a vector that is left-multiplied by F–1, where F is a diagonal matrix whose 
elements are proportional to the square roots of the thermal populations of the RC15, and G is the 
symmetrized transition matrix (given by 𝐆𝐆 = 𝐅𝐅−1𝐖𝐖𝐅𝐅) whose eigenpairs will be used to calculate 
rate constants. The main tasks to obtain rate constants are to construct W and B (or G and 𝐁𝐁� ) and 
then solve the master equation.  
 
2.2 Master equation for the time-dependent concentrations 

The time-evolution for the present mechanism can only be obtained from the master equation 
if we introduce equations or assumptions to describe the evolution of reactant concentrations. In 
the previous versions (1.0–2.2) of TUMME, the time-evolution was calculated only under the 
assumption that all bimolecular pairs are treated as sinks; this is modeled by setting the 
concentrations of bimolecular pairs as zero, in which case reactants can only be unimolecular 
isomers. In order to solve for the time evolution when there are bimolecular reactants, version 3.0 
of TUMME, which is introduced here, uses a pseudo-first-order assumption. In particular, we 
assume that ： 

a) the bimolecular product is a sink, i.e., terms corresponding to back reactions from 
products are neglected;  

b) the forward bimolecular reaction is pseudo-first-order, i.e., HCHO is present in such large 
excess that its concentration 𝑛𝑛HCHO can be taken as a constant. Then the time dependence 
of the OH concentration is given by   

 d𝑛𝑛OH
d𝑡𝑡

= −�𝑛𝑛HCHOΣ𝜂𝜂=1N Δ𝑘𝑘�R→RC�𝐸𝐸𝜂𝜂��𝑛𝑛OH + � 𝑘𝑘�RC→R�𝐸𝐸𝜂𝜂�𝑦𝑦�𝐸𝐸𝜂𝜂�
𝑁𝑁

𝜂𝜂=1
 (4) 

Combining eqn (4) with the nonhomogeneous eqn  (2) yields a coupled set of homogeneous first-
order ordinary differential equations with the extended concentration vector 𝐲𝐲∗: 
 d𝐲𝐲∗

dt
= −𝐖𝐖∗𝐲𝐲∗ (5) 

where 𝐲𝐲∗ is an extension of concentration vector y, and is obtained by adding 𝑛𝑛OH as an 
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additional component of the vector y: 
 𝑦𝑦𝜂𝜂∗ = �

𝑦𝑦𝜂𝜂                                    0 < 𝜂𝜂 ≤ 𝑁𝑁
𝑛𝑛OH                                  𝜂𝜂 = 𝑁𝑁 + 1 (6) 

where 𝑁𝑁 is the number of energy bins in the concentration vector y, and W* is an extension to the 
transition matrix W, in which association reactions involving the bimolecular reactant R are 
added (the dissociation reactions were already there). The elements of 𝐖𝐖∗ are  
 

𝑊𝑊𝜂𝜂𝜂𝜂′
∗ =

⎩
⎪
⎨

⎪
⎧
𝑊𝑊𝜂𝜂𝜂𝜂′;                                          1 ≤ 𝜂𝜂 ≤ 𝑁𝑁 and 1 ≤ 𝜂𝜂′ ≤ 𝑁𝑁

−Δ𝑘𝑘�R→RC�𝐸𝐸𝜂𝜂�𝑛𝑛HCHO;          1 ≤ 𝜂𝜂 ≤ 𝑁𝑁 and  𝜂𝜂′ = 𝑁𝑁 + 1
−𝑘𝑘�RC→R�𝐸𝐸𝜂𝜂�;                           𝜂𝜂 = 𝑁𝑁 + 1 and 1 ≤ 𝜂𝜂′ ≤ 𝑁𝑁

𝑛𝑛HCHOΣ𝜂𝜂=1
N Δ𝑘𝑘�R→RC�𝐸𝐸𝜂𝜂�;                          𝜂𝜂 = 𝜂𝜂′ = 𝑁𝑁 + 1

 (7) 

We symmetrized the pseudo-first-order master equation (5) as 
 d𝐲𝐲�∗

dt
= −𝐆𝐆∗𝐲𝐲�∗ (8) 

where  
 𝐲𝐲�∗ = 𝐅𝐅∗−1𝐲𝐲∗

𝐆𝐆∗ = 𝐅𝐅∗−1𝐖𝐖∗𝐅𝐅∗
 (9) 

and where 𝐅𝐅∗ is a diagonal matrix whose elements are  
 

𝐹𝐹𝜂𝜂𝜂𝜂∗ =

⎩
⎪
⎨

⎪
⎧�𝜌𝜌RC�𝐸𝐸𝜂𝜂� exp�−𝛽𝛽𝐸𝐸𝜂𝜂� ;     0 < 𝜂𝜂 ≤ 𝑁𝑁

� ΦR
rel𝑄𝑄R

𝑛𝑛HCHOΔ𝐸𝐸
 ;                         𝜂𝜂 = 𝑁𝑁 + 1

 (10) 

The solution of eqn (5) is  
 𝐲𝐲∗(𝑡𝑡) = 𝐅𝐅∗𝐔𝐔∗𝐄𝐄∗𝐔𝐔∗T𝐅𝐅∗−1𝐲𝐲0∗ (11) 

where  𝐔𝐔∗ is the eigenvector matrix of symmetric transition matrix 𝐆𝐆∗, 𝐄𝐄∗ is a diagonal matrix 
with 
 𝐸𝐸𝑖𝑖𝑖𝑖∗ =  e−𝐿𝐿𝑖𝑖

∗𝑡𝑡 (12) 

where 𝐿𝐿𝑖𝑖∗ is an eigenvalue of 𝐆𝐆∗, and 𝐲𝐲0∗ is the initial condition. The superscript * is to distinguish 
notations with our previous TUMME article15. 
 
2.3 Input to the master equation 

The energy-relaxation probabilities are modeled by the exponential-down model;36 this 

model gives the following probability that a complex with energy between 𝐸𝐸𝜂𝜂′  and 𝐸𝐸𝜂𝜂′ + Δ𝐸𝐸 

before a collision with a bath gas will have an energy between 𝐸𝐸𝜂𝜂 and 𝐸𝐸𝜂𝜂 + ΔE after the collision: 
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𝑃𝑃�𝐸𝐸𝜂𝜂�𝐸𝐸𝜂𝜂′� = 𝐴𝐴�𝐸𝐸𝜂𝜂′� exp�−

𝐸𝐸𝜂𝜂′ − 𝐸𝐸𝜂𝜂
⟨Δ𝐸𝐸d⟩

�       for  𝐸𝐸𝜂𝜂′ > 𝐸𝐸𝜂𝜂 (13) 

where 𝐴𝐴�𝐸𝐸𝜂𝜂′� is a normlization constant. The energy transfer probabilities for 𝐸𝐸𝜂𝜂′ < 𝐸𝐸𝜂𝜂 are 

obtained by the detailed balance. In eqn (13), ⟨Δ𝐸𝐸d⟩ is the magnitude of the average energy 
transferred in collisions in which the complex loses energy.  

Next we discuss the input microcanonical reactive flux coefficients. 
a) RC → P Since both RC and TS are found to have only one conformer, we do not need 

multi-structural37 transition state theory. Therefore, we calculate the microcanonical flux 
coefficients of RC→P by CVT/SCT as15,30,31,37,38 

 
𝑘𝑘�RC→P �𝐸𝐸𝜂𝜂� =

𝑁𝑁RC,P
CVT/SCT�𝐸𝐸𝜂𝜂�
ℎ𝜌𝜌RC�𝐸𝐸𝜂𝜂�

 

𝑁𝑁RC,P
CVT/SCT�𝐸𝐸𝜂𝜂� ≈

𝑁𝑁RC,P
HO-CVT/SCT�𝐸𝐸𝜂𝜂�

𝑁𝑁RC,P
HO-‡/SCT�𝐸𝐸𝜂𝜂�

𝑁𝑁RC,P
‡/SCT�𝐸𝐸𝜂𝜂� 

 
(14a) 

 
(14b) 

where 𝑁𝑁RC,P
CVT/SCTis the anharmonic cumulative reactive probability calculated by CVT/SCT, h is 

Planck’s constant; 𝜌𝜌RC is the density of states of the reaction complex; ‡ and CVT denote the 
conventional transition state39 (a dividing surface through the saddle point) and canonical 
variational transition state30 (a dividing surface that maximizes the free energy of activation), 
respectively; and HO-‡/SCT and HO-CVT/SCT denote the harmonic oscillator approximation to 
anharmonic ‡/SCT and anharmonic CVT/SCT.  

The density of states in eqn (14a) is evaluated as the inverse Laplace transform of the 

reaction-complex partition function QRC: 

 
𝜌𝜌RC�𝐸𝐸𝜂𝜂� =

1
2𝜋𝜋𝜋𝜋

� QRC(𝛽𝛽)
𝜎𝜎+𝑖𝑖∞

𝜎𝜎−𝑖𝑖∞
𝑒𝑒𝛽𝛽𝐸𝐸𝜂𝜂𝑑𝑑𝛽𝛽 (15) 

which is implemented in the MSTor program40 by the steepest-descents method41,42,43,44. The 
harmonic approximation to the cumulative reactive probability is expressed as 
 

𝑁𝑁RC,P
HO-CVT/SCT�𝐸𝐸𝜂𝜂� = � d𝜀𝜀𝑃𝑃RC,P

SCT (𝜀𝜀)𝜌𝜌RC,P
HO-CVT�𝐸𝐸𝜂𝜂 − 𝜀𝜀�

𝐸𝐸𝜂𝜂−𝑉𝑉aG* 

𝐸𝐸0,RC−𝑉𝑉aG*
 (16) 

where 𝑃𝑃RC,P
SCT   is the ground-state tunneling transmission probability evaluated by the small-

curvature tunneling method; 𝜌𝜌RC,P
HO-CVT is the harmonic oscillator density of electronic-vibrational-

rotational states of the canonical variational transition state between RC and P; 𝐸𝐸0,RC is the ground-
state energy (with zero-point energy) of RC; 𝑉𝑉aG* is the adiabatic ground state potential energy of 
the canonical variational transition state; and ε is the energy in the reaction coordinate at the CVT.  
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Note that the right-hand side of eqn (16) depends on T because the location of the canonical 
variational transition state depends on T. Therefore the results of eqns (14a), (14b), and (16) depend 
parametrically on T; that is, we use a different set of values for each T.  

We calculate 𝑁𝑁RC,P
HO-‡/SCTand 𝑁𝑁RC,P

‡/SCT by expressions analogous to eqn (16).  

Note that 𝑁𝑁RC,P
CVT/SCT, 𝜌𝜌RC, 𝑁𝑁RC,P

‡/SCT, and QRC all contain anharmonicity in two ways: vibrational 

frequencies are scaled, and torsional anharmonicity is included (details of both are below). 
b) R → RC  The microcanonical flux coefficients of the barrierless association reaction 

R→RC are obtained by inverse Laplace transform of the canonical hard-sphere collision flux 
coefficient. The hard-sphere collision flux coefficient is  
 

𝑘𝑘�R→RC (𝛽𝛽) =
𝜋𝜋𝑑𝑑R2

4
�

8
𝜋𝜋𝑚𝑚R𝛽𝛽

 (17) 

where 𝛽𝛽 is 1
kB𝑇𝑇

, and 𝑚𝑚R and 𝑑𝑑R are respectively the relative-translational reduced mass and the 

effective collision diameter of R. The canonical flux coefficient is the Laplace transform of the 
microcanonical flux coefficient and is given by 
 𝑘𝑘�R→RC (𝛽𝛽) =

1
ΦR
relQR

��𝑘𝑘�R→RC (𝐸𝐸)𝜌𝜌R(𝐸𝐸)�𝑒𝑒−𝛽𝛽𝐸𝐸𝑑𝑑𝐸𝐸 (18) 

where 𝜌𝜌R, ΦR
rel, and QR are respectively the joint density of states, the relative translational 

canonical partition function, and the electronic-vibrational-rotational canonical partition function 
of the bimolecular pair R; and the zero of energy is set at the ground state (including zero-point 
energy) of the reactant R. Taking the inverse Laplace transform yields45 
 

𝑘𝑘�R→RC �𝐸𝐸𝜂𝜂� =
1

2𝜋𝜋𝜋𝜋
� 𝑘𝑘�R→RC (𝛽𝛽)ΦR

relQR

𝜎𝜎+𝑖𝑖∞

𝜎𝜎−𝑖𝑖∞
𝑒𝑒𝛽𝛽𝐸𝐸𝜂𝜂𝑑𝑑𝛽𝛽

=
8𝜋𝜋𝑑𝑑R

2

ℎ𝜌𝜌R�𝐸𝐸𝜂𝜂�
�
𝜋𝜋𝑚𝑚R

ℎ2
�  � 𝜌𝜌R�𝐸𝐸𝜂𝜂 − 𝜀𝜀�𝜀𝜀𝑑𝑑𝜀𝜀

𝐸𝐸𝜂𝜂

0
 

(19) 

And the associated bin-selected microcanonical flux coefficient is 
 

Δ𝑘𝑘�R→RC�𝐸𝐸𝜂𝜂� = 𝑘𝑘�R→RC �𝐸𝐸𝜂𝜂�
𝜌𝜌R�𝐸𝐸𝜂𝜂�𝑒𝑒−𝛽𝛽𝐸𝐸𝜂𝜂Δ𝐸𝐸

ΦR
relQR

= �8𝜋𝜋𝑑𝑑R
2 �
𝜋𝜋𝑚𝑚R

ℎ2
�� 𝜌𝜌R�𝐸𝐸𝜂𝜂 − 𝜀𝜀�𝜀𝜀𝑑𝑑𝜀𝜀

𝐸𝐸𝜂𝜂

0
�
𝑒𝑒−𝛽𝛽𝐸𝐸𝜂𝜂Δ𝐸𝐸
ℎΦR

relQR
 

(20) 

where Δ𝑘𝑘�R→RC is the element of the vector B, and ∆E is energetic spacing of energy bins. 
c) RC→R The microcanonical flux coefficients of the dissociation reaction RC→R, which 
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is the reverse reaction of the barrierless association reaction R→RC, are estimated by the detailed 
balance with R→RC, which yield15, 

 𝑘𝑘�RC→R� 𝐸𝐸𝜂𝜂� = 𝑘𝑘�R→RC �𝐸𝐸𝜂𝜂� × 𝜌𝜌R�𝐸𝐸𝜂𝜂�
𝜌𝜌RC�𝐸𝐸𝜂𝜂�

                        (21) 

          = �8𝜋𝜋𝑑𝑑R
2 �
𝜋𝜋𝑚𝑚R

ℎ2
�� 𝜌𝜌R�𝐸𝐸𝜂𝜂 − 𝜀𝜀�𝜀𝜀𝑑𝑑𝜀𝜀

𝐸𝐸𝜂𝜂

0
�

1
ℎ𝜌𝜌RC�𝐸𝐸𝜂𝜂�

 

 
2.4 Rate constants from solving the master equation 

The phenomenological rate constants can be extracted by solving eqn  (2) by interpreting the 
solution with CSE theory, which divides eigenvalues of the transition matrix into chemically 
significant eigenmodes and internal-energy-relaxation eigenmodes according to their 
magnitudes.20,23,24,25,26 Let 𝑀𝑀 be the total number of chemical configurations involved in the 
reaction system, let S be the number of chemical configurations included in the concentration 
vector (in the present case we have S equals 1 in Section 2.1, and it equals 2 in Section 2.2), and 
let 𝑁𝑁CSE be the number of chemically significant eigenmodes. These variables are related by 
 𝑁𝑁CSE = 𝑆𝑆 − 𝛿𝛿𝑀𝑀𝑀𝑀 (22) 

where 𝛿𝛿𝑀𝑀𝑀𝑀 is a Kronecker delta function that is 1 when M equals S (which is the case for a 
conservative system, i.e., a system without sinks) and 0 when M is greater than S (which is the 
case for a nonconservative system. i.e., a system with sinks, such that the concentration vector 
tends to the null vector when 𝑡𝑡 → ∞). In ref. 25, Miller and Klippenstein discussed a 
conservative reaction system where all chemical configurations (also called species in their 
article) are included in the concentration vector (denotes as |𝑤𝑤(𝑡𝑡)⟩ in their article) and gave the 
relationship that 𝑁𝑁CSE equals S – 1. The relationship in eqn (22) is a generalization of that result.  

The chemically signficant eignemodes of G are used when extracting a rate constant or rate 
constants from the equations of section 2.1, while all the eigenmodes of G* are used to derive the 
time evolution of the population from the equations of section 2.2. Because we assume the 
products are a nonreversible sink, the mechansim studied here is a nonconservative system; this 
means that 𝑁𝑁CSE equals 1 for extracting rate constants from G.  

Before one can obtain the rate constants, one must determine whether any of the chemical 
configurations have merged. As will be mentioned in Section 4.1, in the present reaction the 
reaction complex RC is only 3-4 kcal/mol lower than the reactant R, and – under some conditions 
of temperature and pressure – it can equilibrate with the reactant. When equilibrium is reached, R 
and RC should be “merged”, i.e., considered as a single species.15, 46 When a RC is merged with 
R, the title reaction becomes a one-step reaction between reactant R and product P that is 
bimolecular in both directions. (The rate constants involving RC, namely 𝑘𝑘R→RC, 𝑘𝑘RC→R, and 
𝑘𝑘RC→P  , become meaningless.)  

The product P is assumed to be a sink in our treatment, and thus our master equation 
calculations do not not give phenomenological rate constants of reactions starting from the 
product. 
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When R and RC have not merged, four rate constants 𝑘𝑘R→RC, 𝑘𝑘R→P, 𝑘𝑘RC→R, and 𝑘𝑘RC→P are 
obtained from the chemically significant eigenvector by eqns (47) of ref. 15. Specifically, for the 
master equation we studied here, eqn (3), because we have 𝑁𝑁CSE equal to 1, the expression of 
𝑘𝑘RC→R becomes 
 

𝑘𝑘RC→R = � 𝑘𝑘�RC→R�𝐸𝐸𝜂𝜂�
𝑢𝑢𝜂𝜂

(1)𝐹𝐹𝜂𝜂
Σ𝜂𝜂=1𝑁𝑁 𝑢𝑢𝜂𝜂

(1)𝐹𝐹𝜂𝜂

𝑁𝑁

𝜂𝜂=1
 (23) 

where 𝑢𝑢𝜂𝜂
(1) is an element of the eigenvector of G that corresponds to the chemically significant 

eigenvalue (which is 𝐿𝐿1), and 𝐹𝐹𝜂𝜂 is an element of the diagonal matrix F. The expression for 
𝑘𝑘RC→P and 𝑘𝑘R→RC is the same except 𝑘𝑘�RC→P�𝐸𝐸𝜂𝜂� replaces 𝑘𝑘�RC→R�𝐸𝐸𝜂𝜂� and Δ𝑘𝑘�R→RC�𝐸𝐸𝜂𝜂� replaces 
𝑘𝑘�RC→R�𝐸𝐸𝜂𝜂�, respectively. Note that eqn (23) is equivalent to eqn (5) of an earlier article.47 For 
𝑘𝑘R→P, eqns (47) of ref. 15 reduce for our case to: 
 

𝑘𝑘R→P = � � 𝑘𝑘�RC→P�𝐸𝐸𝜂𝜂′�
𝑁𝑁

𝜂𝜂=1
(𝐖𝐖−1)𝜂𝜂′𝜂𝜂 Δ𝑘𝑘�R→RC�𝐸𝐸𝜂𝜂�

𝑁𝑁

𝜂𝜂′=1
 (24) 

                                    –� � 𝑘𝑘�RC→P�𝐸𝐸𝜂𝜂′�
𝑁𝑁

𝜂𝜂=1

𝐹𝐹𝜂𝜂′𝑢𝑢𝜂𝜂′
(1)𝐹𝐹𝜂𝜂−1𝑢𝑢𝜂𝜂

(1)

𝐿𝐿1
Δ𝑘𝑘�R→RC�𝐸𝐸𝜂𝜂�

𝑁𝑁

𝜂𝜂′=1
 

In ref. 15, the bimolecular-to-bimolecular rate constant is written as a sum over relaxational 
eigenmodes, but here we write it equivalently as a sum over all modes minus the contribution of 
the chemically significant eigenmode.  

In the present mechanism, when the reaction complex is merged with the reactant, there is 
no CSE eigenmode. If we label the merged R and RC as R, we have only one rate constant, 
𝑘𝑘R→P, and it is given by 
 

𝑘𝑘R→P = � � 𝑘𝑘�RC→P�𝐸𝐸𝜂𝜂′�
𝑁𝑁

𝜂𝜂=1
(𝐖𝐖−1)𝜂𝜂′𝜂𝜂 Δ𝑘𝑘�R→RC�𝐸𝐸𝜂𝜂�

𝑁𝑁

𝜂𝜂′=1
 (25) 

While the collision rate (also pressure, embedded in W) approaches zero, eqn (25) degenerates to 
eqn (10b) of ref 25. 

 Even though rate constants are calculated from the version of the master equation that does 
not involve the pseudo-first-order assumption, the time evoution curves produced by rate 
constants match perfectly well with those from eqn (11) which is derived using the pseudo-first 
order assumption. This is illustrated in Figure S3 in the supporting information. 

Rate constants should satisfy the macroscopic detailed balance condition. Georgievskii et al. 
concluded that as long as CSE assumptions are good, the phenomenological rate constants 
extracted from master equations satisfy this condition26. Therefore 𝑘𝑘R→RC and 𝑘𝑘RC→Rare not 
independent, and their ratio should equal the equilibrium constant. The ratios of these two rate 
constants at various pressures and temperatures are listed in Tables S1 and S2 of Supporting 
Information, and these tables confirm that detailed balance is well satisfied when the CSE 
assumptions are well satisfied. 
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3. Computational details 
Based on optimized geometries by the CCSD(T)/aug-cc-pVTZ method from Ali et al.’s 

work12, we calculated the T1 diagnostics48,49 for reactants, reaction complex, transition state, and 
products of the title reaction with the CCSD50/ jul-cc-pVTZ51,52 method. Table 1 shows that all 
obtained T1 values are smaller than 0.045 for radicals and 0.02 for closed-shell molecules, 
indicating that all the species involved in the title reaction can be well approximated by a single-
configuration reference wave function. This is consistent with the finding of Machado et al.14 
Therefore our direct dynamics calculations used single-configuration Kohn-Sham theory with the 
M08-HX53 exchange-correlation functional, which has shown good performance in calculating 
transition structures54, bond dissociation enthalpies55 and barrier heights56 for systems well 
characterized by a single electronic configuration. 

Table 1. T1 diagnostics 
Singlet species T1 Radical species T1 

Formaldehyde 0.015 OH 0.008 

H2O 0.009 Reaction Complex 0.014 

  Transition State 0.032 

  HCO 0.026 

 
The M08-HX exchange-correlation functional method combined with aug-cc-pVTZ57 basis 

set (the combination is denoted M08-HX/aug-cc-pVTZ) was used to obtain the potential energy 
surface (PES) of the reaction for the dynamic calculations. The M08-HX/aug-cc-pVTZ 
frequencies are scaled by 0.97558 to include anharmonicity and to compensate for systematic 
errors in M08-HX/aug-cc-pVTZ. 

We use enthalpies of reaction at 0 K and enthalpies of activation at 0 K as a way to compare 
various theoretical electronic structure methods and to illustrate reaction profiles. Enthalpies of a 
species (reactant, product, or transition state) at 0 K are equal to that species’ equilibrium Born-
Oppenheimer potential energy plus its zero-point vibrational energy; relative enthalpies are 
obtained by subtracting the enthalpy of the reactant, and the relative enthalpy of a transition state 
is called the enthalpy of activation.  

To examine the accuracy of the M08-HX/aug-cc-pVTZ model chemistry, we compared the 
relative enthalpies of stationary points along the PES (reactant, reaction complex, transition 
states, and product) to those computed by high-level coupled cluster calculations, in particular 
CCSD(T)-F12b59,60 /jul-cc-pVTZ calculations. For these coupled cluster calculations, we used 
the CCSD(T)/aug-cc-pVTZ optimized geometries and frequencies reported by M. Akbar Ali et 
al12. Density functional calculations were carried out using Gaussian 1661, and coupled cluster 
calculations were performed using Molpro 201562. 

In the direct dynamic calculations, the minimum-energy path between RC and P was obtained 
with a step size of 0.002 Å (with all coordinates scaled to a mass of 1 amu) by Gaussrate 1763, 
and the Hessian was calculated at each step. The small-curvature tunneling transmission 
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possibility 𝑃𝑃RC,P
SCT  is calculated by Polyrate 201764. The density of states including torsional 

anharmonicity is evaluated by MSTor40. The computational details of the torsional anharmonicity 
of the RC and the saddle point are given in the SI.  

The bath gas considered in this article is N2. The collision rate between the RC and the bath 
gas is calculated by the Lennard-Jones (LJ) model. The LJ parameters 𝜀𝜀, 𝜎𝜎 for N2 and RC are 
56.993 cm-1, 191.134 cm-1 and 3.74 Å, 4.94 Å respectively12. The energy-transfer-down 
parameter ⟨Δ𝐸𝐸d⟩ is taken as 200(T/300)0.85 cm-1.12  

The hard-sphere model is used for collisions of bimolecular reactants. To obtain the average 
collision diameter 𝑑𝑑R in eqn (17), we first substituted each atom in the molecule by a sphere with 
radius equal to the collision radius65 of the atom. Then we chose the length of the model along 
the O-C direction as the collision diameter for HCHO and the length along the O-H direction as 
collision diameter for OH radical. This yields 4.515 Å and 3.704 Å, respectively, and we used 
their arithmetic average for 𝑑𝑑R. 

The master equation is solved by TUMME–version 3.016 in quadruple precision.  
Since we study the reaction under pseudo-first-order conditions with the concentration of 

HCHO in excess, the partial pressure of HCHO should be much larger than that of OH, but 
because we assume all energy transfer collisions are with the bath gas, it should be much smaller 
than that of N2. In the present work, we calculated the time evolution from eqn (11) for T = 100 K 
and p = 10, 104, and 107 Torr. According to the ideal gas equation, the corresponding 
concentrations of N2 are 1.6×10-2, 1.6, and 1.6×103 mol/L. The pseudo-first order master 
equation [eqn (5) or (8)] is homogenous; and therefore the concentration of OH is arbitrary as 
long as it is much less than that of HCHO, and the concentration of HCHO is arbitrary as long as 
it is much less than that of N2. For concreteness and in order to use concentration units in the 
examples, we arbitrarily assigned the initial concentration of OH as 10-7 mol/L and the essentially 
constant concentration of HCHO as 10-5 mol/L. In all cases when we specify a pressure, we mean 
the pressure of N2, which, accordingly to the above discussion, is essentially the same as the total 
pressure.  
 
4. Results and discussion 
4.1 Energies and structures  

The geometries of the reaction complex (RC) and transition state (TS) by the M08-HX/aug-
cc-pVTZ method are presented in Figure 1. As the figure shows, the reaction complex RC is a 
hydrogen-bonding-stabilized van der Waals complex (HCHO∙∙∙HO). To form transition structure 
(OHCH∙∙∙OH) from the RC, the OH radical needs to reorient for abstracting the hydrogen of 
HCHO.  

The enthalpy profile calculated for the title reaction by the M08-HX/aug-cc-pVTZ method is 
shown in Figure 2. For comparison, the results by CCSD(T)-F12b/jul-cc-pVTZ//CCSD(T)/aug-
cc-pVTZ calculations are also given in Figure 2. From the values in the figure, one can calculate 



 

 

12 

that the M08-HX results have a mean unsigned deviation of 0.49 kcal/mol from the coupled 
cluster benchmark for the enthalpies of the complex, the transition state, and the products relative 
to the reactants.  

Figure 2 shows that the enthalpy of the complex RC is 3–4 kcal/mol lower than that of the 
reactant R; this indicates a medium-strength hydrogen-bonding interaction, and the transition 
state is also slightly lower than R. 
 

 
Figure 1. The geometry structures of RC and TS optimized by M08-HX/aug-cc-pVTZ. Distances are 
shown in Å. 

 

 
Figure 2. M08-HX/aug-cc-pVTZ enthalpies and enthalpies of activation at 0 K relative to the reactants. 
The enthalpy at 0 K equals the electronic energy plus the zero-point energy. The values in parentheses are 
benchmarks calculated by CCSD(T)-F12b/jul-cc-pVTZ//CCSD(T)/aug-cc-pVTZ with zero-point energies 
estimated by CCSD(T)/aug-cc-pVTZ. The optimization and frequency calculations for CCSD(T)/aug-cc-
pVTZ are from ref. 12. 
 
4.2 Rate constants 

The CSE theory15,25,26, assumes that there are will be 𝑁𝑁CSE eigenvalues much smaller than 
others. As explained in Section 2.4, in the present case 𝑁𝑁CSE is 1 below the merger temperature 
and 0 above it.  Therefore, below the merger temperature, the rate constants are computed from 
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one eigenpair of the transition matrix G. Table 2 shows, for various combinations of T and p, the 
two smallest eigenvalues (the chemically significant eigenvalue and the slowest internal-energy-
relaxation eigenvalue) of G. We can see that there is a good separation of time scales at 100 K 
and for high enough p at 300–600 K, but not in the other cases.  

 
Table 2. The smallest two eigenvalues of transition matrix G a 

a 
 𝐿𝐿1 and 𝐿𝐿2 denote the smallest and second smallest eigenvalue of G; Z denotes the collision 

frequency calculated by the LJ model [eqn (48) of ref 15]. 
b 

 These values are calculated with Δ𝐸𝐸 = 0.01𝑘𝑘B𝑇𝑇; others are calculated with Δ𝐸𝐸 = 0.1𝑘𝑘B𝑇𝑇. We found 
that at high temperature, the second smallest eigenvalue is sometimes sensitive to the energy step Δ𝐸𝐸.  
 
Rather than determine when to merge R and RC from the ratio of eigenvalues in Table 2, we 

can employ the projection of the chemically significant eigenvector onto the internal-energy-
relaxation space as the criterion to monitor mergers; the projection is defined as15, 26  
 𝑃𝑃 = 1 − 𝐸𝐸𝑃𝑃𝐸𝐸𝑆𝑆 (26) 

where EPCS denotes the squared projection of the chemically significant eigenvector onto the 
basis vector of the chemical space [eqn (79) of ref 15]. Here the chemical space basis vector 
corresponds to a Boltzmann distribution of the bins of RC. We set the threshold to be 0.2, and 
when value of the projection P is greater than 0.2, the RC is considered to be thermally 
equilibrated with R. Values of the projection P calculated at different pressures are plotted as 
functions of temperature in Figure 3. For a specific pressure, we can find a merger temperature 
𝑇𝑇m, above which R and RC are merged. With the merger condition taken as 𝑃𝑃 = 0.2, 𝑇𝑇m equals 
about 200, 250, 300, and 450 K for pressures of 10-2, 10, 104, and 107 Torr, respectively. Table 2 
and Figure 3 both show that mergers are favored by high temperature and low pressure. In fact, 

the figure is consistent with Table 2 if we put the merger boundary at 𝐿𝐿2
𝐿𝐿1

 equal to 4. We list some 

values of the resulting rate constants in Tables 3 and 4, where they are compared with flux 
coefficients. 

 

p/Torr  10-2 101 104 107 

T/K 𝐿𝐿1
𝑍𝑍

 𝐿𝐿2
𝑍𝑍

 𝐿𝐿1
𝑍𝑍

 
𝐿𝐿2
𝑍𝑍

 
𝐿𝐿1
𝑍𝑍

 
𝐿𝐿2
𝑍𝑍

 
𝐿𝐿1
𝑍𝑍

 
𝐿𝐿2
𝑍𝑍

 

100 2.95×10-4 0.14 2.84×10-5 0.12 6.70×10-7 0.10 3.22×10-9 9.66×10-2 
300 0.12 0.60 6.12×10-2 0.45 2.13×10-2 0.29 3.76×10-3 0.15 
600 0.65 0.99 0.45 0.93 0.25 0.77 8.96×10-2 0.48 

1000 1.00 1.00b 1.00 1.00b 0.80 1.00b 0.40 0.92 
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Figure 3. Projection of the chemical significant eigenvector onto the internal-energy-relaxation space.   

 
Table 3. Logarithms (base 10) of rate constants and flux coefficients (in cm3 molecule–1 s–1) 

 𝑘𝑘R→RC 𝑘𝑘R→RC 𝑘𝑘R→RC 𝑘𝑘R→RC 𝑘𝑘�R→RC 𝑘𝑘R→P 𝑘𝑘R→P 𝑘𝑘R→P 𝑘𝑘R→P 
T(K)/p(Torr) 10-2 101 104 107 HPLa 10-2 101 104 107 

20 -23.62 -17.25 -10.15 -9.99 -9.99 -10.08 -10.08 -10.58 -13.45 
100 -19.71 -15.34 -10.90 -9.67 -9.63 -10.58 -10.58 -10.61 -11.96 
200 -19.35 -15.64 -11.76 -9.71 -9.48 -10.88 -10.87 -10.88 -11.34 
250  -15.77 -12.05 -9.79 -9.43  -10.97 -10.97 -11.26 
300   -12.29 -9.87 -9.39  -10.97 -10.97 -11.17 
450    -10.06 -9.30  -10.90 -10.90 -10.98 
600     -9.24  -10.83 -10.83 -10.87 

1000     -9.13  -10.56 -10.56 -10.56 
aHPL denotes the high-pressure limit which is the canonical flux coefficient25. In our model, the flux 

coefficient is zero for R→P.  
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Table 4. Logarithms (base 10) of rate constants and flux coeffieiencts (in s–1) 

 𝑘𝑘RC→R 𝑘𝑘RC→R 𝑘𝑘RC→R 𝑘𝑘RC→R 𝑘𝑘�RC→R 𝑘𝑘RC→P 𝑘𝑘RC→P 𝑘𝑘RC→P 𝑘𝑘RC→P 𝑘𝑘�RC→P 
T(K)/p(Torr) 10-2 101 104 107 HPLa 10-2 101 104 107 HPLa 

20 -42.36 -35.99 -28.88 -28.73 -28.73 -4.67 -4.67 -4.67 -4.67 -4.67 
100 -4.16 0.20 4.65 5.88 5.91 1.99 3.97 5.24 5.48 5.48 
200 0.80 4.47 8.31 10.36 10.59 3.68 6.25 8.17 9.11 9.27 
 250  5.28 8.94 11.17 11.53  6.63 8.58 9.75 10.03 
300   9.33 11.69 12.15   8.86 10.19 10.60 
450    12.47 13.13    10.85 11.54 

aHPL denotes the high-pressure limit which is the canonical flux coefficient25. 
 
For the four pressures in Table 2 and Figure 3 and for temperature ranges in which the 

merger does not occur, Figures 4 shows R→RC and R→P phenomenological rate constants 
extracted from eqn (2). Figure 4 reveals that 𝑘𝑘R→RC and 𝑘𝑘R→P show very different dependences 
on pressures. As pressure increases, 𝑘𝑘R→RC increases, whereas 𝑘𝑘R→P decreases. At high p and low 
T, energetic molecules coming from the reactant will tend to be stabilized in the reaction complex 
RC rather than proceeding straight to products, and thus the rate constant 𝑘𝑘R→P is small under 
those conditions. Note that although we do not include an R → P elementary step, we still get 
reactions producing P. This occurs in two ways: (A) Molecules may access RC-like geometries 
(so that they may be considered to be metastable RC species) and react to form P before they are 
stabilized. (B) Reaction may occur by tunneling from stabilized RC or by overbarrier processes 
from the high-energy tail of stabilized RC. (All the high-energy bins of RC correspond to 
metastable RC). Low pressure and high temperature are favorable for conversion to product 
before stabilization (route A) and are also – as we have seen – favorable for equilibration of RC 
with reactants. Because of routes A and B, it is unnecessary to include an elementary R → P step 
unless one identifies a path from R to P that does not pass through geometries that can be 
considered to belong to excited vibrational states of RC. And if one did include an elementary R 
→ P step, it would entail double counting some trajectories unless one reduced the probability of 
R → RC to eliminate those RC that pass rapidly to product. 
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Figure 4 Phenomenological bimolecular rate constants for R→RC and R→P extracted from the master 
equation by CSE theory. Solid lines for 107 Torr; dashed lines for 104 Torr; dash-dot lines for 10 Torr; 
dotted lines for 10-2 Torr. This figure includes only unmerged (T,p) conditions (using the P = 0.2 criterion). 
 
For the four pressures in Table 2 and Figures 3 and 4 and for temperature ranges in which the 
merger does not occur, Figure 5 shows the 𝑘𝑘RC→R and 𝑘𝑘RC→P, phenomenological rate constants 
extracted from eqn (2). The figure shows that that 𝑘𝑘RC→R is more sensitive to pressure than 
𝑘𝑘RC→P, and at low temperatures 𝑘𝑘RC→P is much larger than 𝑘𝑘RC→R due to the lower barrier and 
the tunneling between the reaction complex and the product.  
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Figure 5 Phenomenological bimolecular rate constants for RC→R and RC→P extracted from the master 
equation by CSE theory. Solid lines for 107 Torr; dashed lines for 104 Torr; dash-dot lines for 10 Torr; 
dotted lines for 10-2 Torr. This figure includes only unmerged (T,p) conditions (using the P = 0.2 criterion). 
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4.3 Role of the reaction complex 

In previous work on the high-pressure and low-pressure limits of the CH3OH + OH 
abstraction reaction66, it was found that high pressures stabilize an intermediate complex and that 
tunneling will speed up the depletion of that complex at low temperature. Here we use the master 
equation to quantitatively assess the corresponding issues for the HCHO + OH reaction.  

For a temperature of 100 K and pressures of 10 Torr, 104 Torr, and 107 Torr, Figure 6 shows 
the depletion of OH radical and the buildup and depletion of the reaction complex, where the 
time evolution of their concentrations is obtained from the solution of eqn (11). The initial 
concentration of OH is taken as 10-7 mol/L; the concentrations of HCHO considered to be 
constant at 10-5 mol/L; the initial concentration of RC is zero; and the constant concentrations of 
bath gas are specified in Section 3. Figure 6 shows that the reaction complex RC only 
accumulates to a significant extent at high pressures. 

       
Figure 6. The time-evolution of 𝑛𝑛OH (solid lines) and 𝑛𝑛RC (dash-dot lines) evaluated by eqn (11). The 
initial condition is set as 𝑛𝑛OH(𝑡𝑡 = 0) = 10-7 mol/L, 𝑛𝑛RC(𝑡𝑡 = 0) = 0 and 𝑛𝑛HCHO is assumed to be constant 
at 10-5 mol/L. 
 

To further explore the dependence of the time evolution profiles on pressure and tunneling, 
we consider the time-dependent unitless quantity defined as  
 

 𝑓𝑓(𝑡𝑡) =
∑ 𝑦𝑦RC�𝐸𝐸𝜂𝜂, 𝑡𝑡�𝐸𝐸𝜂𝜂≤𝐸𝐸0

‡

𝑛𝑛OH(𝑡𝑡 = 0)  (27) 
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where 𝐸𝐸0
‡ is the ground-state enthalpy of the conventional transition state between RC and P. 

When the zero of energy is at the reactant ground state, as it is in the present article, the ground-
state enthalpy of the conventional transition state is the conventional-transition-state-theory 
approximation to the ground-state vibrationally adiabatic barrier height. The fraction defined in 
eqn (27) may be interpreted as the fraction of OH radicals that have been converted to stabilized 
RC. For several pressures (10, 100, 103, and 107 Torr) and a temperature of 100 K, Figure 7 
compares the calculated f(t) with and without including RC→P tunneling in the master equation 
calculations.  

 

 
Figure 7. Time evolution of the OH radicals that have been converted to stabilized RC. Solid lines denote 
results that include RC→P tunneling while dash-dot lines denote results without RC→P tunneling. The 
abscissa is the time after initiation of the reaction. 

 
Since the ground-state energy (𝐸𝐸0

‡) of the RC–P transition state is lower than that of the 
reactant R, and since P is treated as a sink, there is only one way to accumulate complexes, and 
that is by deactivation of energetic RC by collisions with bath gas molecules. The collision rate is 
proportional to pressure, and thus – for a given time after initiation– we expect f(t) to be larger 
when the pressure is higher; Figure 7 shows this expected trend. It also shows that, when 
tunneling is included, that the fraction f(t) reaches its maximum within a few µs (<5 µs), and then 
stays in a plateau close to the maximum for a time period > 40 µs at 10 Torr, ~20 µs at 100 Torr, 
~10 µs at 103 Torr, and ~2 µs at 107 Torr. This behavior is a result of competing effects since high 
pressure both increases deactivation of energetic RC and increases the activation of stabilized 
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RC. Figure 7 shows that the concentration vs. time profile of RC is quite different when 
tunneling is excluded. Without tunneling, the fraction f(t) shows a much slower decay. 

 
4.4 Experimentally observable rate constants 

Rate constants for pseudo-first-order radical reactions are usually extracted from experiment 
by modeling the reaction as  
 d𝑛𝑛OH

d𝑡𝑡
= −𝑘𝑘exp 𝑛𝑛HCHO𝑛𝑛OH (28) 

with 𝑛𝑛HCHO constant. This yields  
 

𝑛𝑛OH(𝑡𝑡) = 𝑛𝑛OH(𝑡𝑡 = 0) exp(−𝑘𝑘exp𝑛𝑛HCHO𝑡𝑡) 
(Error! 

Bookmark 
not 

defined.29) 
where 𝑘𝑘exp  is usually taken as the “rate constant”, but actually it is not25. The next question to 
explore is: What is the relationship of 𝑘𝑘exp to the rate constants calculated from the master equation? 

We start with the phenomenological kinetic equations containing the four rate constants from 
solution of the master equation: 
 d𝑛𝑛OH

d𝑡𝑡
= −(𝑘𝑘R→RC + 𝑘𝑘R→P)𝑛𝑛HCHO𝑛𝑛OH + 𝑘𝑘RC→R𝑛𝑛RC (30) 

 d𝑛𝑛RC
d𝑡𝑡

= −(𝑘𝑘RC→R + 𝑘𝑘RC→P)𝑛𝑛RC + 𝑘𝑘R→RC𝑛𝑛HCHO𝑛𝑛OH (31) 

The next step depends on whether the reaction complex and the bimolecular reactant are merged. 
 
4.4.1 When R and RC are merged 

For temperatures above Tm, a merger has occurred, the concentration of RC no longer appears 
(it is merged into the concentration of R), and the eqns (31) and (30) degenerate to  
 d𝑛𝑛OH

d𝑡𝑡
= −𝑘𝑘R→P𝑛𝑛HCHO𝑛𝑛OH (32) 

Comparing this to eqn (28) then yields  
 

𝑘𝑘exp = 𝑘𝑘R→P  
(Error! 

Bookmark 
not 

defined.33) 
where 𝑘𝑘R→P is calculated by eqn (25). Figure 8 shows the rate constant 𝑘𝑘R→P at 𝑇𝑇 > 𝑇𝑇m. Figure 4 
confirms the pressure dependence of 𝑘𝑘R→P at low temperatures, while Figure 8 shows that pressure 
barely affects 𝑘𝑘R→P at 𝑇𝑇 > 𝑇𝑇m. The pressure independency at high T can be interpreted as a result 
of chemical equilibration of R with RC and thermal equilibration of the energy bins of RC. Our 
results match well with the experiments of Zabarnick et al.8, who studied T between 292 and 597 
K and p between 35 and 300 Torr and the experiments of Sivakumaran et al.9, who studied T 
between 202 and 399 K and p at 50 Torr and 100 Torr. However, for 𝑇𝑇 > 1000 K, our calculation 
gives larger rate constants than those of Vasudevan et al.10, who studied the reaction at a pressure 
of 1216 Torr, by a factor of 1.5 at 1000 K and 1.8 at 1670 K.  
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Figure 8. Comparison of theoretical rate constants calculated above the merger temperatures to the 
experimentally observed rate constants. Two pressures are shown for the theoretical rate constants; the 
lowest temperature for each pressure is the merger temperature for that pressure (using the P = 0.2 criterion), 
which is 250 K for 10 torr and 450 K for 107 Torr. Values of kR→P at all pressures from 10-2 to 107 Torr would 
agree within plotting accuracy at T > 1000 K. Rate constants for p < 10 Torr are omitted in this figure since 
they overlap with the curve for 10 Torr. Data for p = 102 Torr are not shown because they agree (within 
plotting accuracy) with the rate constants at 10 Torr all the way down to the merger temperature, which is 
300 K for 102 Torr. 
 
4.4.2 When R and RC are not merged 

For temperatures below the merger, we have four rate constants, and we must consider how to 
compare to experimental results obtained by eqn (28). In order to get the experimentally observed 
rate constant, we need derive an approximate expression like eqn (28) from the phenomenological 
mechanistic eqns (30) and (31). We can do this in two possible ways: 

(a) Neglect the reverse reaction from RC. At the very first stage of reaction, the 
concentration of the reaction complex can be neglected, and we obtain 
 𝑘𝑘exp

f = 𝑘𝑘R→RC + 𝑘𝑘R→P (34) 

where the superscript “f” denotes that only forward reactions are considered here.  
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(b) Make the steady-state approximation (SSA) to RC. When the pressure is increased, the 
reverse reaction from RC to R become significant. The SSA provides a way to consider the 
reverse reaction. Applying the SSA to eqns (30) and (31) in the usual way67 yields 

 
 𝑘𝑘exp

SSA =
𝑘𝑘R→RC𝑘𝑘RC→P
𝑘𝑘RC→R + 𝑘𝑘RC→P

+ 𝑘𝑘R→P (35) 

The 𝑘𝑘R→P in eqn (34) and (35) is calculated from eqn (24). Both ways (methods (a) and (b)) 
to produce an experimentally observable rate constant for 𝑇𝑇 < 𝑇𝑇m are shown in Figure 9, where 
they are compared to experiments of Ocaña et al., who found no effect of pressure in their 
experiments at low temperatures 4. Pressures investigated in their work range from ~0.04 Torr to 
~2 Torr, which is consistent with our finding of no pressure effect in this pressure range. 
However, at higher pressures, both methods of extracting rate constants from the master equation 
for T < Tm show significant pressure dependence. Although we estimated the capture process for 
the bimolecular reactant by the simple hard-sphere model, the results show remarkably good 
agreement with experiments. In particular, on average the experimental data points in Figure 9 
agree with our calculated low-pressure limit within about 30%, which is comparable to the 
experimental scatter.  

 
Figure 9. The experimentally observed constants. Solid lines denote 𝑘𝑘exp

SSA and dashed lines denote 𝑘𝑘exp
f . 

Note 𝑘𝑘exp
f (𝑝𝑝 = 10 Torr) and 𝑘𝑘exp

SSA(𝑝𝑝 = 10 Torr) are overlapped. Data for p < 10 Torr for both methods 
are omitted from this figure since they overlap with the curves for 10 Torr.  
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Does either eqn (34) or (35) reproduce the decay curve of OH radical? To answer this 
question, Figure 10 compares the time-evolution of 𝑛𝑛HCHO at 100 K using the predicted 
experimentally observable constant 𝑘𝑘exp

f  or 𝑘𝑘exp
SSA in eqn (29) to results obtained directly from the 

pseudo-first order master equation by using eqn (11). We see that at the lowest pressure, both rate 
constants perfectly reproduce the master equation results. However, at 100 K and 107 Torr, 𝑘𝑘exp

f  
only matches well with the first-stage decay of the benchmark, during which RC does not 
accumulate significantly; 𝑘𝑘exp

f  fails to reproduce the long-time behavior of the concentration – at 
long times the predictions from rate constants deviate dramatically from eqn (11). Results 
obtained using 𝑘𝑘exp

SSA do not reproduce well the first stage of the decay but are relatively closer to 
the benchmark in the whole considered time period. At high pressures (e.g., 107 Torr), the 
concentration of OH radical obtained from the master equation shows biexponential decay. This 
implies that the exponential decay constant for the title reaction is a good approximation only for 
low pressures or after an induction period. 

 

  
Figure 10. The concentration of OH as a function of time. The dashed lines are from 𝑘𝑘exp

SSA, the dash-dot 
lines are from 𝑘𝑘exp

f  , and the solid lines are from time evolution of pseudo-first order master equation. The 
initial conditions are 𝑛𝑛OH(𝑡𝑡 = 0) = 10-7 mol/L, 𝑛𝑛RC(𝑡𝑡 = 0) = 0 , and 𝑛𝑛HCHO≡10-5 mol/L. Note that at 10 
Torr, the dashed and dash–dot curves are hidden under the solid curve. 
 
4.4.3 The ambiguous zone 
 The predictions of CSE theory depend on whether the reaction complex is viewed as merged 
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with the reactant. The threshold value for the merger is ambiguous. Thus for a given (T, p), some 
researchers may use the merged eqn (33), while others use the unmerged eqn (34) or (35) to 
calculate the experimentally observable rate constant. In the present work, we define the 
ambiguous zone for a given pressure to be temperatures in the range where P is between 0.2 and 
0.6, that is, from 𝑇𝑇m|𝑃𝑃=0.2 to 𝑇𝑇m|𝑃𝑃=0.6. The ambiguous zones for p=10-2, 101, 104 and 107 Torr are 
200–300 K, 250–350 K, 300–450 K and 450–700 K, respectively. To examine the difference in 
rate constant predictions in the ambiguous zones, we list in Table 5 the ratios of experimentally 
observable rate constants estimated in the unmerged way to those calculated in the merged way. 
Results show that the choice of merger threshold barely affects the SSA rate constant but 
significantly affects the result if one estimates the experimentally observed rate constant by 𝑘𝑘expf . 
Comparing (33) with (34) or (35), we see that the rate constant for the unmerged way contains an 
additional term involving RC and also the expression used for 𝑘𝑘R→P is different, however, the 
difference between the merged and unmerged expressions for 𝑘𝑘R→P (compare eqns (24) and (25)) 
is negligible in the ambiguous zone.  

In the 𝑘𝑘expf  expression, the RC term is the rate constant 𝑘𝑘R→RC, and in the 𝑘𝑘expSSA expression, it 

is 𝑘𝑘R→RC𝑘𝑘RC→P
𝑘𝑘RC→R+𝑘𝑘RC→P

; both of these are negligible for for p ≤ 104 Torr because 𝑘𝑘R→RC is much less than 

𝑘𝑘R→P. At a pressure of 107 Torr, as can be seen in Figure 4, 𝑘𝑘R→RC is much larger than 𝑘𝑘R→P and 

the ratio 𝑘𝑘expf /𝑘𝑘exp is significantly larger than 1. In the SSA, 𝑘𝑘R→RC is multipled by 𝑘𝑘RC→P
𝑘𝑘RC→R+𝑘𝑘RC→P

 , 

and this makes the RC term negligible. 

The SSA is robust in the ambiguous zone and avoids the sharp decay in 𝑘𝑘expf  caused by the 

merger of R and RC (as the Figure S4 in the SI and Figure 3 of the ref. 25). We recommend using 
the SSA as the rate constant when comparing with experimental results for a bimolecular reaction 
proceeding to bimolecular products through a complex. 
 

Table 5 Comparison of merged and unmerged calculations of rate constantsa 
 𝑘𝑘expSSA/𝑘𝑘exp 𝑘𝑘expf /𝑘𝑘exp  
T(K)/p(Torr) 10-2 101 104 107 10-2 101 104 107 

250 1.00    1.00    
300 1.00 1.00   1.00 1.00   
350  1.00 1.01   1.00 1.03  
400   1.00    1.02  
450   1.00    1.01  
500    1.15    7.54 
600    1.09    5.75 
700    1.06    4.25 

a𝑘𝑘expSSA is from eqn (35) with rate constants 𝑘𝑘R→P from eqn (24); 𝑘𝑘exp is from eqn (33) with 𝑘𝑘R→P from 
eqn (25); 𝑘𝑘expf  is from eqn (34) with rate constants 𝑘𝑘R→P from eqn (24). 

 
4.4.4 The limiting cases  
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In the study of the methanol reaction with OH66, we evaluated the high-pressure and low-
pressure limits by using the canonical unified statistical (CUS) theory68. The reaction under study 
here is similar to that reaction in that both reactions have the complication of a reaction complex 
before a hydrogen-atom-transfer transition state. The CUS method predicts the experimentally 
observed reaction rate constants, but was originally designed to represent the low-pressure limit, 
i.e., the rate constant for reactions that are uninterrupted by third-body collisions. The rate 
constants we present above cover all pressure zones. Here we consider the relationship of CUS 
theory to the SSA, which was originally designed for situations where the reaction complex is a 
stabilized intermediate.  

In this article, we do not consider reactions where there is path from reactants to products that 
does not pass over the reaction complex well. Then, in the high-pressure limit, reactive fluxes are 
due to reaction of stabilized and thermalized reaction complexes, and in the low-pressure limit, 
they result from reaction complexes flowing directly from reactant to product. Therefore the rate 
constant 𝑘𝑘R→RC tends to the flux coefficients 𝑘𝑘�R→RC in the high-pressure limit and tends to 0 in 
the low-pressure limit; and the rate constant 𝑘𝑘R→P tends to 0 in the high-pressure limits25. As we 
illustrated above, the merger temperature 𝑇𝑇m increases with pressure, and the RC can always be 
viewed as merged with R in the low-pressure limit and as a separate intermediate in the high-
pressure limit. Based on these considerations, we can write down the low-pressure limit for the 
experimentally observable rate constant from eqn (33) as 
 𝑘𝑘exp(𝑝𝑝 → 0) = 𝑘𝑘R→P (36) 

and we can write down the high-pressure limit from eqns (34) and (35) as 
 𝑘𝑘expf (𝑝𝑝 → ∞) = 𝑘𝑘�R→RC (37) 

 
𝑘𝑘expSSA(𝑝𝑝 → ∞) =

𝑘𝑘�R→RC𝑘𝑘�RC→P

𝑘𝑘�RC→R + 𝑘𝑘�RC→P
 (38) 

Next we compare results of eqns (36), (37) and (38) with limiting cases of CUS theory.  
1) The high-pressure limits. We will use the CUS theory with the approximation that the 

RC well is very deep; this yields66 
 

𝑘𝑘CUS(𝑇𝑇) ≈ �
1

𝑘𝑘�R→RC(𝑇𝑇)
+

1
𝑘𝑘�RC→P(𝑇𝑇)KR→RC

�
−1

 
(39) 

where KR→RC is the equilibrium constant for R→RC (equals the partition function of RC over the 
partition function of R). By construction, one has  
 𝑘𝑘�RC→R(𝑇𝑇) = 𝑘𝑘�R→RC(𝑇𝑇)/KR→RC (40) 

Substituting eqn (40) into eqn (39) yields eqn (38), which shows that the SSA and CUS are 
consistent when the central well is very deep. 
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However, when the zero-point level of RC is lower than the zero-point level of R, as it is in 
the present case, both eqn (39) and eqn (40) implicitly assume the high-pressure limit because the 
calculation of 𝑘𝑘�RC→R and 𝑘𝑘�RC→P assumes that RC is equilibrated. In contrast, in the low-pressure 
limit, the appropriate ensemble for RC is a truncated canonical ensemble in which all energies 
below the zero-point level of R are removed from the RC ensemble because those energies of RC 
are inaccessible in the absence of stabilizing collisions. These missing energies are negative 
energies because in this whole article we place the zero of energy at the ground state of the 
reactant.  

The above discussion shows that CUS theory with the assumption of a very deep well is 
equivalent to the SSA in the high-pressure limit (HPL).  

2) The low-pressure limits. In low-pressure limit, we have25  
 𝑘𝑘exp(𝑝𝑝 → 0) = 𝑘𝑘R→P

=
1

ℎΦR
rel �

⎝

⎜
⎛ 1
𝑘𝑘�R→RC(𝐸𝐸)

+
1

𝜌𝜌RC(𝐸𝐸)
𝜌𝜌R(𝐸𝐸) 𝑘𝑘�RC→P(𝐸𝐸)

⎠

⎟
⎞

−1

𝜌𝜌RC(𝐸𝐸)𝑒𝑒−𝛽𝛽𝐸𝐸d𝐸𝐸
+∞

0
 

(41) 

which is analogous to eqn (10b) of ref. 22. Here, the lower limit of integration is set at the zero-
point level of the bimolecular reactant. Thus, as we have pointed out previously,66,69 we do not 
include RC→P tunneling in the low-pressure limit for energies lower than the ground state of R.  

Similarly, when we ignore the tunneling contribution in the low-pressure limit of CUS 
theory66, we obtain  
 

𝑘𝑘CUS(𝑇𝑇) ≈ �
1

𝑘𝑘�R→RC(𝑇𝑇)
+

1
𝑘𝑘�RC→P

QC (𝑇𝑇)KR→RC
�
−1

 (42) 

where the superscript ‘QC’ denotes “quasiclassical” which means tunneling is excluded in this 
flux coefficient (whereas when we do not mark a flux coefficient with superscript QC, it does 
include tunneling). As in previous articles38,70,71,72,73,74 we label the result without tunneling as 
quasiclassical rather than classical because we still include quantum effects in the partition 
functions. Equation (41) and (42) are consistent except that the former is derived from 
microcanonical ensemble, and the latter is from the canonical ensemble. 

We plotted results for the limiting cases, eqns (36), (37), (38), (39) and (42), in Figure 11. 
We observe that the low-pressure limit for CUS theory is slightly larger than high-pressure limits 

at high temperatures, which is due to the 𝑘𝑘�RC→P
QC (𝑇𝑇) being slightly larger than 𝑘𝑘�RC→P(𝑇𝑇). (The 

former is calculated by CVT theory while the latter by CVT/SCT theory. The tunneling 
transmission coefficient [which accounts for both nonclassical transmission (i.e., tunneling) and 
nonclassical reflection (a diffraction effect)] is less than 1 in the CVT/SCT calculation because 
the effect of nonclassical reflection exceeds the effect of quantum mechanical tunneling, an effect 
that is sometimes observed for low-barrier or negative-barrier reactions.75 
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Figure 12. The limiting cases. HPL-CUS is calculated by eqn (39) and LPL-CUS is calculated by eqn 
(42).The curves for HPL-CUS and for 𝑘𝑘expSSA(𝑝𝑝 → ∞) are overlapped.  
 
5. Concluding remarks 

The hydrogen abstraction reaction of HCHO by OH radical is a bimolecular reaction with a 
reverse reaction from a reaction complex. Pressure effects are often neglected in this kind of 
reaction. However, we find that the reaction complex RC formed by hydrogen-bonding 
interaction introduces a pressure effect on this reaction at low temperatures. Our study used a 
new version of our recently developed master equation program, TUMME, to solve the energy-
resolved master equation. Phenomenological rate constants are extracted based on CSE theory. 
We use a pseudo-first order master equation in order to calculate the time evolutions of the 
concentrations. Both pressure activation and tunneling from the reaction complex to product can 
decrease the fraction of OH radical converted to the stabilized RC. Tunneling from the complex 
to the products affects the phenomenological reaction rate constants differently at high and low 
pressures and leads to a significant pressure effect. 

To directly compare results with experiments, we defined two kinds of exponential decay 
constants: one neglects the reverse reactions, and the other one uses the steady-state 
approximation. Comparison of the decay curves of 𝑛𝑛OH estimated using the two exponential 
decay constants with those from the direct master equation calculations show that exponential 
decay constant can reproduce the time-evolution of 𝑛𝑛OH at low pressures but not at high 
pressures because 𝑛𝑛OH decays in a biexponential way at high pressures. 
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