Dalton Transactions

Recent advances in cooperative activation of CO2 and N2O by bimetallic coordination complexes or binuclear reaction pathways

Journal:	Dalton Transactions		
Manuscript ID	DT-PER-01-2022-000210.R1		
Article Type:	Perspective		
Date Submitted by the Author:	21-Mar-2022		
Complete List of Authors:	Sinhababu, Soumen; University of Illinois at Chicago, Department of Chemistry Lakliang, Yutthana; University of Illinois at Chicago, Department of Chemistry Mankad, Neal; University of Illinois at Chicago, Department of Chemistry		

SCHOLARONE[™] Manuscripts

Recent advances in cooperative activation of CO₂ and N₂O by bimetallic coordination complexes or binuclear reaction pathways

Soumen Sinhababu^a, Yutthana Lakliang^a, and Neal P. Mankad^{a,*}

Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

Received 00th January 20xx,

The gaseous small molecules, CO_2 and N_2O , play important roles in climate change and ozone layer depletion, and they hold promise as underutilized reagents and chemical feedstocks. However, productive transformations of these heteroallenes are difficult to achieve because of their inertness. In nature, these gases are cycled through ecological systems by metalloenzymes featuring mutlimetallic active sites that employ cooperative mechanisms. Thus, cooperative bimetallic chemistry is an important strategy for synthetic systems, as well. In this Perspective, recent advances (since 2010) in cooperative activation of CO_2 and N_2O are reviewed, including examples involving *s*-block, *p*-block, *d*-block, and *f*-block metals and different combinations thereof.

Introduction

Carbon dioxide (CO₂) and nitrous oxide (N₂O) are two of the three most prominent anthropogenic greenhouse gases, with CO₂ having ~12x higher atmospheric abundance and N₂O having \sim 300x higher global warming potential.¹ Anthropogenic N₂O emissions are also a leading cause of ozone layer depletion.² Thus, it is important to gain fundamental understanding of how these gaseous small molecules can be efficiently captured and transformed. Notably, both molecules also hold great promise as synthetic reagents. The use of CO₂ as a C1 feedstock is an active area of research,^{3,4} in part due to the dramatically lower toxicity and flammability of CO₂ compared to more commonly used CO. Similarly, N₂O can be viewed as a green oxidant, producing benign N₂ as its only byproduct.⁵ Considering the activation of these gases together is also sensible because, as heteroallenes, CO₂ and N₂O are isoelectronic and isolobal to each other.

Several challenges need to be overcome in this area. First, both CO₂ and N₂O are relatively inert towards binding to many transition metal active sites. For example, Taube measured that displacement of N₂O from $[Ru(NH_3)_5(N_2O)]^{2+}$ by N₂ to form $[Ru(NH_3)(N_2)]^{2+}$ is actually favorable thermodynamically and facile kinetically.⁶ Second, transformations of CO₂ and N₂O to useful products often require catalytic architectures capable of multielectron redox cycling. For example, conversion of CO₂ to CH₃OH is a 4-electron redox reaction, and hypothetical oxidation of substrates by N₂O are 2-electron redox reactions. Thus, especially for non-precious metal systems, multinuclear assemblies are particularly promising since these metals often favor 1-electron redox chemistry. Indeed, natural systems

^{a.} Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, USA responsible for ecological carbon/nitrogen cycling employ multinuclear metalloenzyme active sites to transform these substrates. While building biomimetic clusters that are both structurally faithful to the natural systems and replicate their catalytic efficiency has been challenging,⁷ the cooperative behavior is more readily mimicked in structurally dissimilar systems that employ multimetallic active sites or binuclear reaction pathways for small molecule activation.

In the case of CO₂, bacterial and archaeal carbon monoxide dehydrogenase (CODH) enzymes catalyze two-electron redox interconversions of CO and CO₂. Aerobic and anaerobic variants feature Mo/Cu and Ni/Fe active sites, respectively.^{8,9} In both cases, activated μ_2 -1,2-CO₂ intermediates are thought to involve cooperative binding between two metal sites, one of which is Lewis acidic and the other of which is Lewis basic (Figure 1a). This bifunctional behavior was first mimicked synthetically by Floriani in 1978,¹⁰ using an anionic Co(I) salen in which a K⁺ counter cation was at an appropriate distance to stabilize a bimetallic [Co-C(=O)-O-K] unit (Figure 1b). Since that time, multiple related heterobimetallic CO₂ adducts have been characterized.^{11–14} More recently, such cooperative behavior has even been observed in metal-free frustrated Lewis pairs (FLPs, Figure 1c).¹⁵

^{*} npm@uic.edu

Figure 1. Cooperative CO_2 binding by Lewis acid/base pairs: (a) aerobic and anaerobic CODH active sites, (b) Co(I) salen with K⁺ counter cation, (c) intramolecular FLP.

Similarly, during bacterial denitrification, N₂O is converted to N₂ and H₂O by nitrous oxide reductase (N₂OR), featuring the tetranuclear Cu_z active site responsible for N₂O binding. Here, too, it is thought that cooperative activation of N₂O occurs along an edge of the Cuz cluster featuring two Cu centers with inhomogeneous electron density distribution (Figure 2a),16 although the computationally modeled $\mu_2\text{-}1,3\text{-}N_2O$ adduct has never been observed experimentally. In the earliest success at biomimicry, the Tolman group demonstrated that N₂O reduction by a fluxional multicopper assembly proceeds through a critical, binuclear transition state with μ -1,1,-O binding (Figure 2b).¹⁷ As with CO₂, FLPs are known to bind N₂O effectively.¹⁸ Strong parallels exist between these precedents and the heterogeneous catalyst, Cu-ZSM-5, known to mediate oxidation of methane to methanol using N_2O as an O-atom source. The Sels, Schoonheydt. and Solomon groups conducted combined experimental/computational studies of this system, ^{19,20} ultimately demonstrating that N_2O activation occurs at localized dicopper(I) pairs with ~4.2-Å spacing enforced by the zeolite support. Following N₂O binding by a µ-1,1-O coordination mode (Figure 2c), supported [Cu₂O]²⁺ sites are produced as reactive O-atom transfer intermediates.

In this Perspective, we review recent advances in cooperative activation of CO_2 and N_2O , either by binuclear metal complexes or by mononuclear metal complexes operating by binuclear mechanisms. Only reports since 2010 are included, corresponding to a timeframe in which cooperative small molecule activation has seen resurgence in the transition metal literature. Cooperative behavior of homobinuclear metalloid complexes and heterobinuclear metal/metalloid complexes are not discussed in detail despite recent important advances.^{21,22} Only examples of thermal chemistry are included, thus excluding exciting recent advances in the areas of electro-

Bimetallic CO₂ activation

and photochemistry.23-27

Early transition metal bimetallic complexes

In 2014, Cloke and co-workers reported the synthesis and characterization of a bimetallic titanium complex, $(\mu:\eta^5,\eta^5 Pn^{\dagger}_{2}Ti_{2}$ (1a) ($Pn^{\dagger} = [C_{8}H_{4}{Si'Pr^{3}-1,4}_{2}]^{2}$) with a very short Ti=Ti bond.²⁸ Complex **1a** reductively splits CO₂ to form a bis(oxo) bridged dimer $[(\eta^{8}-Pn^{\dagger})Ti(\mu-O)]_{2}$ (**1b**), in which the Ti=Ti bond has been cleaved, and the dicarbonyl complex (μ : η^5 , η^5 - $Pn^{\dagger}_{2}[Ti(CO)]_{2}$ (1c) in 1:1 ratio (Scheme 1). A mechanistic investigation was reported in 2015, in which key intermediates were identified using spectroscopic and computational techniques.²⁹ The reaction of **1a** with 1 equiv of CO_2 (or ¹³ CO_2) was carried out in methylcyclohexane- d_{14} (MeCy- d_{14}) at -78 °C (Scheme 1). A color change from deep red to dark green was observed, due to quantitative conversion of 1a to an intermediate species, 1d, that was detected by lowtemperature spectroscopic measurements (at -30 °C). Characteristic OCO vibrational frequencies of 1d showed a shift from 1678 and 1236 cm⁻¹ to 1637 and 1217 cm⁻¹, respectively, upon ¹³C isotopic labelling, allowing the authors to assign a bent OCO structure fo 1d in agreement with computational predictions. Upon warming 1d to ambient temperature under dynamic vacuum, the red mono(oxo) complex 1e was isolated. At room temperature, a C₆D₆ solution of **1e** slowly converted to green crystals of 1f. A reaction energy diagram for the transformation was provided by computational modeling.

Figure 2. Cooperative N_2O binding by Cu-containing active sites: (a) the Cu_Z site of N_2OR , (b) a synthetic model complex, and (c) the Cu-doped zeolite material, Cu-ZSM-5

Scheme 1. Stepwise reactions of CO₂ with Ti=Ti complex

CO₂ activation by a chromium-chromium quintuple bond was reported by Kempe group. The reaction of CO₂ with chromium dimer **2a** leads to C=O bond cleavage to give a CO bridged diamagnetic complex **2b** (Scheme 2) in 26% isolated yield. The solid state IR spectrum of complex **2b** shows strong absorption bands at 1924 and 1806 cm⁻¹ due to carbonyl ligands.³⁰ NMR experiments were carried out to examine the by-product resulting from the oxygen released. NMR spectra showed **2b** is the major product along with some broad peaks due to a paramagnetic compound, although the structural identity was unknown, and no further mechanistic study were carried out.

Cummins, Okuda, and Maron groups isolated the first dimetalloxycarbene complex **3a**, prepared through multistep synthetic route starting from TiX₃ (X = N-[^tBu](3,5-Me₂C₆H₃)). **3a** was found to be stabilized by fluxional coordination of the carbenic carbon atom to both metal centers.³¹ This complex **3a** reacts cleanly with CO₂ to generate the bridging oxalate complex [(TiX₃)₂(μ_2 -C₂O₄- κO : κO ")] (**3b**) (Scheme 3). The crystal structure of **3b** is centrosymmetric with an oxalato ligand

bridging two titanium atoms in a $\kappa^1:\kappa^1$ fashion. Theoretical calculations revealed rearrangement of the unsymmetrical bridging carbondioxo ligand to an intriguing μ - $\kappa^1:\kappa^1$ dimetalloxycarbene isomer (**3a**) which enables the aforementioned reduction of CO₂ to give oxalate.

Early/late transition metal bimetallic complexes

As opposed to homobimetallic systems, heterobimetallic systems have polar metal-metal bonds that are well suited to activate the polar C=O bond of CO₂. This effect is particularly strong for early/late heterobimetallic complexes. Since the seminal report of bifunctional CO₂ activation by Floriani in 1978,¹⁰ several examples of early/late heterobimetallic activation of CO₂ were reported prior to 2000.¹²⁻¹⁴ In all those cases CO₂ coordination occurs but C-O bond cleavage does not. The first C-O bond cleavage by an early/late heterobimetallic complex was reported by Thomas group.³² Reaction of **4a** with CO2 in THF at low temperature leads to formation of $(OC)Co({}^{i}Pr_{2}PNMes)_{2}-(\mu-O)Zr({}^{i}Pr_{2}PNMes)$ (4b), where one of the C=O double bonds of CO₂ has oxidatively added across the Zr-Co multiple bond in 4a (Scheme 4).³² 4b is a paramagnetic complex with a characteristic IR feature at 1926 cm⁻¹ for the carbonyl group. The authors hypothesized that hemilability of the phosphinoamide ligand is the crucial to this reactivity, as migration of one phosphine ligand from Co to Zr provides substrate access to the metal-metal bond.

Later Thomas and co-workers reported reactivity of $[(L)M][OZr(MesNPⁱPr_2)_3Co(CO)]$ (M = Li, L = 12-c-4, **5a**; M = K, L = 18-c-6, **5b**), derived from **4b**, toward 1 equiv of CO₂.³³ ¹H NMR spectroscopy revealed shifts in the paramagnetic peaks of the phosphinoamide ligand, and the structure was later assigned to be $[L(M)][(\mu-\kappa^{1},\kappa^{2}-CO_{3})]Zr(MesNPⁱPr_{2})_{3}Co(CO)]$ (M = Li, L = 12-c-4, **5c**; M = K, L = 18-c-6, **5d**) (Scheme 5). These Zr-carbonate

Journal Name

complexes (5c and 5d) were further found to incorporate isotopically labelled 13 C upon exposure to 13 CO₂ gas.

Late transition metal bimetallic complexes

Bownman and co-workers described a dinuclear copper(I) complex (**6a**) oxidized in air by CO_2 rather than O_2 .³⁴ The yellow-colored solution of dinuclear copper(I) complex turned greenish-blue upon exposure to air and tetranuclear copper(II) complex (**6b**) was isolated in 72% yield (Scheme 6). X-ray crystallography revealed the presence of bridging oxalate anions derived from CO_2 in the air. Further treatment of the tetranuclear copper(II) oxalate complex (**6b**) in acetonitrile with LiClO₄ (a soluble lithium salt) resulted in quantitative precipitation of lithium oxalate. Moreover, the authors found that dicopper(I) complex could be used as an electrocatalyst for the reductive coupling of CO_2 to oxalate.

Scheme 6. Reductive coupling of CO_2 to oxalate by a dicopper(I) complex.

Peters and co-workers revealed an interesting and unexpected role for the solvent medium in CO₂ activation reaction using reactive iron(I) complexes supported by tris(phosphino)borate ligands, [PhBP₃^R][−] ([PhBP₃^R]⁻ = $[PhB(CH_2PR_2)_3]^-$; R = CH₂Cy, Ph, ^{*i*}Pr, mter; mter = 3,5-metaterphenyl).³⁵ Exposure of a benzene solution of PPh₃-adduct 7a to 1 atm CO₂ resulted in a color change from dark orange to dark red, and both NMR and IR analysis showed a clean, though incomplete, conversion to the bridging oxalate product 7b over a period of 26 h (Scheme 7). In THF solvent, a similar selectivity was observed, although after 26 h only 30% conversion to 7b was observed. In contrast, when the reaction between 7a and CO₂ was carried out in MeCy, C=O cleavage product 7c was produced in low yield (10%) (Scheme 7). Similar results were obtained with PCy₃-adduct [PhBP₃^{CH2Cy}]FePCy₃.

Next the authors examined the role of the [PhBP₃^R]⁻ ligand systems in the reaction between iron(I) and CO₂ by in-situ reducing of [PhBP₃^R]FeCl derivatives with Na/Hg in the presence of CO₂ (R = ⁱPr, MeCy). When [PhBP₃CH2Cy]FeCl (8a) was used as the Fe source, μ -oxalate **7b** was isolated as the major species (50%) with no observation of 7c (Scheme 8).35 In contrast, the reduction of [PhBP3^{iPr}]FeCl (8b) under CO2 atmosphere leads to C=O cleavage selectively, and identified products were {[PhBP₃^{*i*Pr}]Fe}₂(μ -O) (**8c**) and [PhBP₃^{*i*Pr}]Fe(CO)₂ (**8d**) (Scheme 8). The *in situ* reduction of [PhBP₃^{Ph}]FeCl (8e) under an atmosphere of CO_2 resulted again C=O cleavage, generating ${[PhBP_3^{Ph}]Fe}_2(\mu-O)$ (8f), [PhBP₃^{Ph}]Fe(CO)₂ (8g), and{[PhBP3^{Ph}]Fe(CO)2}{Na(THF)5} (8h) (Scheme 8). Reduction of more bulky [PhBP3^{mter}]FeCl under CO2 atmosphere afforded no reaction. From these outcomes they suggested relative steric profiles dominates the CO₂ reduction product selectivity.³⁵ Although no intermediates were detected directly, from the collected observations it is assumed that a binuclear pathway is involved in oxalate formation, whereas decarbonylation may proceed by a mononuclear rate-determining step.

Suzuki and co-workers reported photochemical reaction of diruthenium tetrahydride-bridged complexes with $CO_{2.}^{36}$ Depending on cyclopentadienyl ligand systems two types of products, (i) a μ -formato complex and (ii) a μ -carbonyl- μ -oxo, complex were formed. UV irradiation of Cp*Ru(μ -H)₄RuCp* (9a) in THF under atmospheric CO₂ at 0 °C for 24 h afforded a bridging-formato complex, Cp*Ru(μ -OCHO)(μ -H)₃RuCp* (9b) (Scheme 9). In contrast, sterically demanding 1,2,4-tri-*tert*-butylcyclopentadienyl-ligated complex, Cp⁺Ru(μ -H)₄RuCp[±] (9c), reacted with 1 atm of CO₂ under UV condition in benzene at ambient temperature to form a μ -carbonyl- μ -oxo complex, Cp⁺Ru(μ -CO)(μ -O)RuCp[±] (9d), via cleavage of a C=O double bond (Scheme 9).³⁶ It was worth mentioning that thermal reactivity of these complexes with CO₂ was not observed irrespective of substituents on the Cp ring of the auxiliary ligands.

Sentence of the foreign of the state of the

Ozerov group reported reaction of CO_2 with a Pd(I)-Pd(I) dimer stabilized by bis(phosphino)amide pincer PNP ligands in the presence of Me₃SiCl and Me₃SiOTf, producing free CO.³⁷ Initial reaction of C₆D₆ solution of **10a** with 1 atm of CO₂ at ambient temperature or at 80 °C, or under UV light, did not produce any NMR-detectable products (Scheme 10). In contrast, reaction of **10a** with CS₂, a heavier analog of CO₂, resulted in clean insertion of CS₂ into the Pd-Pd bond. The authors hypothesized that a CO₂ insertion product (**10b**) may be kinetically accessible but thermodynamically unfavorable. They anticipated that CO₂ conversion may be possible by a subsequent favorable reaction of the presumed Pd–O bonded intermediate with a Me₃Si-X reagent. Therefore, they tested reaction of a C₆D₆ solution of **10a** with CO₂ (1 atm) in the presence of either Me₃SiCl or Me₃SiOTf. Heating of these two mixtures at 80 °C for 18 h resulted in complete utilization of **10a** and the formation of (FPNP)PdCl (**10c**) and (FPNP)PdOTf (**10e**) as major Pd products in 70% and 90% yield, respectively (Scheme 10). In both the reactions, (Me₃Si)₂O was detected by ¹H NMR spectroscopy. Formation of (Me₃Si)₂O and **10c** or **10e** suggests that CO may be the other major product.

Qu and co-workers studied CO₂ reactivity of the thiolatebridged dicobalt(II) complex $[Cp^*Co(\mu-SEt)_2CoCp^*]$ (11a).³⁸ Treating **11a** with 1 atmosphere of CO₂ at room temperature or elevated temperature gave no reaction. Remarkably, upon addition of 0.5 equiv. of O_2 into the reaction mixture, CO_2 was readily inserted by the two cobalt centres to form a thiolatebridged dicobalt carbonate complex $[Cp^*Co(\mu-SEt)_2(\mu-\eta^1:\eta^1-\mu^2)]$ CO₃)CoCp*] (11b) in excellent yield (90%) (Scheme 11). In the infrared (IR) spectrum, an absorbance at 1617 cm⁻¹ with a medium intensity can be assigned to the vibrational mode v(C=O) of the carbonate fragment, whereas two other strong absorption peaks at 1537 and 1444 cm⁻¹ are for v(C-O) of the carbonate moiety. They investigated the feasibility of CO2 functionalization in this thiolate-bridged dicobalt(II) system. Accordingly, in presence of 1 equiv of [FeCp₂][PF₆] as a oneelectron oxidant, treatment of complex 11a with stoichiometric primary alcohols ROH (R =Me, Et) in 1 atm CO₂ in CH₂Cl₂ from -78 °C to room temperature afforded the corresponding monoalkyl carbonate-bridged dicobalt complexes [Cp*Co(µ-SEt)₂(µ-η¹:η¹-O₂COR)CoCp^{*}][PF₆]: [**11c**][PF₆], R = Me; [**11d**][PF₆], R = Et) in excellent yields (Scheme 11). Further, they showed the reactivity of **11b** toward the protonation and methylation.³⁸

In 2018, our group reported the activation of CO₂ with a $[Cu_2(\mu-S)]$ complex previously synthesized by Hillhouse and coworkers.³⁹ Reaction of $[(IPr^*)Cu]_2(\mu-S)$ (**12a**) with 1 atm CO₂ at room temperature (Scheme 12) provided similar results to the N₂O reaction (*vide infra*). $[(IPr^*)Cu]_2(\mu-SO_4)]$ (**12b**) was isolated as a major product and IPr^{*}·CO₂ as a minor product along with three unidentified products in trace quantities.⁴⁰ In contrast to the N₂O case, addition of PPh₃ had no impact on reaction outcome. The initial intermediate of CO₂ activation, the bridging thiocarbonate species $[(IPr^*)Cu]_2(\mu-SCO_2)$, was modeled computationally but could not be observed experimentally. This intermediate was proposed to decarbonylate to form $[(IPr^*)Cu]_2(\mu-SO)$, which would subsequently undergo further oxidation by CO₂.

Scheme 12. Reaction of CO₂ with a bimetallic Cu(I) sulfide complex

In nature, CO dehydrogenase (CODH) enzymes catalyze interconversion of CO and CO₂: CO + H₂O \rightleftharpoons CO₂ + 2H⁺ + 2e⁻. Among CODHs, the Ni-based enzymes utilize a common active site, the C-cluster, to mediate this transformation (Figure 1a). The C-cluster includes a distorted $NiFe_3S_4\mbox{-}cubane$ that is coordinated via sulfide to an external iron site that plays a critical role in catalysis.⁹ Lu group described synthesis of an anionic Ni-Fe complex 13a, in which Ni is in the -1 oxidation state, and used **13a** convert CO_2 to CO_3^{2-} . They presumed that the anionic Ni-Fe species first bound CO₂ as the key intermediate in the overall process to reductively cleave CO₂ to form carbonate and Ni-bound carbonyl adduct 13b. To peruse the reactivity analogous to CODH they checked the reactivity of the reduced Ni-Fe complexes with CO2.41 Upon exposure of 13a and 2 equiv of benzo-15-crown-5 (B-15-C-5) in THF- d_8 to 1 atm CO₂ at ambient temperature, a new paramagnetic species was quantitatively formed (Scheme 13). This intermediate is stable for a few hours at room temperature. Further heating to 50 °C resulted in a final mixture of 13c (major), anionic Ni-Fe carbonyl complex **13b** (minor), and CO₃²⁻. In the absence of B-15-C-5, the same product mixture formed at 40 °C, but no intermediate was detected.

Scheme 13: Disproportionation of CO₂ by a Ni-refineterobinitetanic comple

Transition metal/main group bimetallic complexes

The concept of Z-type Lewis acids (LA) binding to transition metals (TM) as σ -acceptor ligands is now a well-known strategy to modulate a transition metal's properties. The reaction of the geminal PAI ligand [Mes₂PC(=CHPh)Al^tBu₂] with a Pt(0) source resulted the T-shape Pt-Al complex **14a** in 64% isolated yield.⁴² X-ray diffraction analysis and DFT calculations revealed significant Pt \rightarrow Al interaction in **14a**, despite the strained four-

membered metallacycle. The reaction of **14a** with CO₂ was carried out at room temperature. The reaction was completed after 17 h, and complex **14b** was isolated in 45% yield as a white solid (Scheme 14). DFT calculations found that the reaction of the masked Pt,Al-based FLP **14a** with CO₂ is exergonic by 5.5 kcal mol⁻¹ (Δ H = -11.3 kcal mol⁻¹). Nevertheless, **14b** was found to slowly decompose in vacuum as well as in solution into unidentified products. The molecular structure revealed CO₂ insertion into the Pt-Al bond, forming the first example of η^{1-1}

 $\rm CO_2$ coordination to a Group 10 metal (which otherwise tend to form η^2 -CO₂ adducts).

Lu group showed that a Ni complex supported by a Lewis acidic Ga(III) (15a) catalyzes direct CO₂ hydrogenation to formate at ambient temperature with high turnover numbers (3500) and high turnover frequency (9700 h⁻¹).⁴³ The anionic Ni(0) hydride, [VkdH][HNiGaL] (15a) (Vkd = 2,8,9-triisopropyl-2,5,8,9-tetraaza-1-phosphabicyclo[3.3.3]-undecane), was generated in situ by reacting a THF- d_8 solution of NiGaL (L = tris(phosphinoamido)amine ligand) with 3-5 equiv of Vkd and 1 atm of H_2 . Here the strong Ni \rightarrow Ga dative interaction helps to stabilize the electron-rich, anionic Ni-H moiety, which was found to be the most hydridic Ni-H complex ever reported $(\Delta G_{H^-}^{\circ} \approx 31 \text{ kcal/mol})$. The importance of the Lewis acidic Ga(III) support was further emphasized via comparison with NiLH₃, which was not reactive towards CO₂ hydrogenation. The formate species **15b** was generated *in situ* by exposure to 1 atm of CO₂ (Scheme 15). The solid-state structure of the resulting complex shows η^{1} -O formate ligand and Ni-Ga bond length is 2.3789(5) Å, which is essentially identical to that of 15a.

Scheme 15. Hydrogenation of CO_2 with a Ni-Ga bimetallic complex

Aldridge and Goicoechea group described the synthesis of heterobimetallic complex (NON)AlAuP^tBu₃ (NON = 4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene) featuring strongly polarized Au^{δ -}-Al^{δ +} bond.⁴⁴ They explored the

reactivity of this complex with heteroallenes such as CO_2 , in which the authors propose that the gold centre acts as a nucleophile. CO_2 (1 atm) was added to a toluene solution of **16a** at room temperature, leading to clean formation of the insertion product (NON)Al(O_2C)AuP^tBu₃ (**16d**) (Scheme 16). The structure was confirmed crystallographically and it shows single molecule of CO_2 reductively inserted into the Al–Au bond. A recent computational study disputes the characterization of the reaction pathway as involving nucleophilic gold and electrophilic aluminum, instead favoring reaction with CO_2 through an electronic state with metal-metal diradical character.⁴⁵

The same group also synthesized coinage metal aluminyl complexes (NON)AIMP^tBu₃ (M= Ag (16b), Ag (16c)), featuring M-Al covalent bonds.⁴⁶ The bimetallic complex (NON)AlAgP^tBu₃ (16b) readily reacts with CO₂, resulting insertion of CO₂ into the unsupported Ag-Al bond to give system containing a Ag(CO₂)Al bridging unit 16e (Scheme 16). Whereas (NON)Al(O₂C)AuP^tBu₃ is inert to further reaction with CO₂, the silver analogue reacts slowly with CO₂ at high temperature to give the corresponding carbonate complex 16f along with elimination of CO (Scheme 16). In case of copper aluminyl complex (NON)AlCuP^tBu₃ (16c) reaction with CO₂ resulted corresponding carbonate complex 16g and even at -78 °C with no observable intermediate. The authors proposed a mechanism for carbonate formation that proceeds via elimination of CO from (NON)Al(O2C)MPtBu3 (M= Cu, Ag) to give a reactive M-O-Al species that rapidly reacts further with CO₂.

Hill and McMullin groups recently reported two heterobimetallic Cu-Al complexes; LCuAl(SiN^{Dipp}) where L = N,N'-diisopropyl-4,5-dimethylimidazol-2-ylidene (NHC^{iPr}) (**17a**) or 1-(2,6-diisoprorpylphenyl)-3,3,5,5-tetramethyl-pyrrolidin-2ylidine (Me²CAAC) (**17b**), featuring reactivity toward CO₂.⁴⁷ Exposure to isotopically labelled ¹³CO₂ resulted in the rapid formation of the metallacarboxylate complexes, **17c** and **17d**, respectively (Scheme 17). The structure **17d** was confirmed by

X-ray diffraction analysis; however, the crystal structure of **17c** could not be obtained. The ¹³C NMR spectra for **17c** and **17d** suggested similar structures because the characteristics low-field resonances indicative of Cu-CO₂ bonding were located at comparable chemical shifts of 236.2 and 234.9 ppm, respectively.

ARTICLE

Camp and co-workers described a unique example where an alkylaluminum Lewis acid induced umpolung character to an iridium centre, switching iridium half-metallocenes into nucleophiles through the formation of polarized Ir⁵⁻-Al⁵⁺ pairs.⁴⁸ Reaction of diisobutyl(3,5-di-tert-butyl-4hydroxytoluene)aluminum [Al('Bu)₂(OAr)], with Cp*IrH₄ at room temperature resulted in the formation of the heterobimetallic complex [Cp*IrH₃Al(ⁱBu)(OAr)] (18) in 72% isolated yield. Complex 18 can form an adduct with pyridine resulting [Cp*IrH₃Al(ⁱBu)(OAr)(Py)] (18a) in 68% isolated yield. Next, they investigated the reactivity of these $Ir^{\delta-}-AI^{\delta+}$ derivatives toward CO₂. The reaction of **18** with CO₂ proceeds at room temperature and produces a complex mixture of species. From the mixture they identified Cp^{*}Ir(CO)H₂ and Cp^{*}IrH₄ among some unidentified products. Treatment of Lewis acid adduct 18a with CO₂ leads to the cooperative reductive cleavage of CO₂ (Scheme 18), affording the iridium carbonyl species Cp^{*}Ir(CO)H₂ (18b), iridium hydride Cp*IrH₄, and the aluminum-oxo complex $[(Bu)(OAr)Al(Py)]_2(\mu$ -O) (18c), which is isolated in 86% yield (Scheme 18). In these reactions, the Ir(III) center acts as a nucleophile, which behavior is unusual for a d⁶ Ir(III) complex. DFT calculations were consistent with cooperative CO₂ activation via concerted transition state.

Very recently our group reported cooperative activation of CO₂ by a heterobimetallic Al-Fe complex.⁴⁹ The complex, L(Me)Al-Fp (**19a**) (L = HC{(CMe)(2,6-'Pr₂C₆H₃N)}₂, Fp =FeCp(CO)₂), was found to react with CO₂ cleanly at room temperature and 1 atmosphere pressure. The CO₂ inserted product L(Me)Al(O₂C)Fp (**19b**) was isolated as a white solid in excellent yield (Scheme 19). Detailed kinetic and theoretical

studies on CO_2 insertion reaction indicate an unusual radical pair mechanism: the Al-Fe bond dissociates to generate [L(Me)AI]· and [Fp]· intermediates, followed by CO_2 coordination to Al and then radical rebound of [Fp]·.

Main group bimetallic complexes

There were no previous reports on the reduction of CO₂ to CO using well defined s-block element complexes until 2013, when the Jones group reported reactivity of dimeric magnesium(I) complexes towards CO₂. A dimeric magnesium(I) complex was found to react with CO₂ to give the Mg(II) carbonate complex and CO via a reductive disproportionation process.⁵⁰ Addition of two equivalents of CO₂ to a yellow toluene solution of [(LMg)₂] (20a) (L = HC{(CMe)(2,6- $(Pr_2C_6H_3N)$, at room temperature led to the rapid discoloration of the solution, and the formation of the carbonate bridged magnesium(II) compound, [{LMg}₂(μ - κ^2 : κ^2 -CO₃)] (20b) (Scheme 20). Formation of CO as a byproduct was confirmed by carrying out the reaction of [(LMg)₂] with ¹³CO₂. In ¹³C NMR spectroscopy, the most prominent signals appeared at δ 184.5 and 168.1 ppm, were assigned to ¹³CO and the ¹³C enriched carbonate ligand of 20b, respectively. It is worth to mentioning that the reaction of [(LMg)₂] with a large excess of CO2 led to an intractable mixture of many products at room temperature.

Since the reaction of **20a** with excess CO₂ was difficult to control, the authors hypothesized that the nucleophilic γ -backbone carbon center of the β -diketiminate ligand can attack the electrophilic CO₂ molecule, as has been found for other magnesium β -diketiminate complexes,⁵¹ to lead to ligand decomposition pathways. To prevent such secondary reactivity, they prepared a series of four-coordinate diimine–enolato magnesium(I) complexes by reacting β -diketiminate stabilized Mg(I) dimers with O=C=CPh₂.⁵² The reaction of one of the aforementioned complex with excesses CO₂ was readily controlled, and the nature of the products was shown to be temperature dependent. The reaction of diimine–enolato magnesium(I) dimer (**21a**) with excess CO₂ was carried out at room temperature. ¹H NMR spectrum analysis of reaction

mixture showed formation of magnesium carbonate and oxalate products, **21b** and **21c** respectively, in an approximately 60:40 ratio (Scheme 21). When the reaction was carried out at 60 °C, quantitatively the carbonate **21b** was formed. In contrast, when the reaction was carried out at -60 °C, quantitatively the oxalate complex **21c** was formed, and there was no evidence of CO formation. Interestingly, the temperature-dependent selectivity of the reaction of **21a** with excess CO_2 indicates that the carbonate complex **21b** is the thermodynamic product, whereas the oxalate complex **21b** is the kinetic product.

Recently Inoue group reported CO₂ fixation and catalytic reduction by silyl-substituted dialumene.53 Addition of CO₂ (1 atm) to the purple solution of dialumene (22a) at -78 °C, then warming the reaction mixture to -30 °C resulted in color change from deep purple to yellow. 22b was isolated as a yellow solid in quantitative yield (Scheme 22). XRD analysis revealed that CO₂ fixation had occurred via [2+2] cycloaddition to the Al=Al double bond. 22b was found to be relatively stable in the solid state and can be stored in an inert atmosphere at room temperature for a month without any signs of decomposition. In C₆D₆ or [D₈]THF solution at room temperature, further color change to a dark orange was observed after 18 h. NMR spectra showed the formation of a new species, with a downfield signal in the ¹³C NMR spectrum at δ 276.0 ppm. Heating the solution of 22b at 50 °C for 1h resulted in a dark red solution, and after crystallization 22c was isolated in 20% yield (Scheme 22). XRD analysis revealed that 22c consists of bridging carbonyl and oxo units between the two Al centres. Surprisingly, when a C₆D₆ solution of 22b was heated at 50 °C under an atmosphere of CO₂, initially 22c formed but then converted to a colorless solution, rather than the expected red solution for the formation of 22c (Scheme 22). The ¹³C NMR spectrum of the colorless product revealed new signals at δ 154.4 ppm and 184.4 ppm, indicating formation of carbonate and CO, respectively. XRD analysis showed that compound 22d consists of a sixmembered ring containing a bridging carbonate group and a bridging oxygen atom between the two aluminum centers.

By replacing silyl substituents by aryl groups in the dialumene, the same group observed enhanced reactivity due to **23a** being supported by higher flexibility as well as enhanced polarization of the dialuminium bond. Reaction of CO₂ with **23a** resulted in immediate color change from black to colorless. Examining the ¹³C NMR spectrum disclosed the presence of CO (δ 184.4 ppm) and CO₃ (δ 159.12 ppm), suggesting the formation of the carbonate complex **23b**.⁵⁴ Here attempt to isolate a [2+2] cycloaddition product was unsuccessful as it rapidly converted to compound **23b** (Scheme 23). Both the silyland aryl-substituted complexes with oxo bridges (**23d** and **23e**) also react with CO₂, resulting in carbonate complexes.⁵⁴

Next, the Inoue group attempted catalytic reduction of CO_2 with pinacolborane mediated by dialumene complexes. Silylsubstituted complex **22a** was found to catalyze the reduction of CO_2 with HBpin (HBpin = pinacolborane) selectively to the formic acid equivalent (**24a**, Scheme 24) in 86% yield.⁵³ Although this reaction proceeds at room temperature, it required up to 1 week and 10 mol% of **22a**. On the contrary, 5 mol% of catalyst **23a** was used for hydroboration of CO_2 at room

temperature. ¹H and ¹¹B NMR spectra showed the consumption of HBpin in less than 3 days along with the formation of new B-O containing species. The ¹H NMR spectrum of reaction mixture showed the formation of further reduced species (**24b**, **24c**, **24d**, Scheme 24), suggesting that **23a** is not only more catalytically active but also proceeds through a different mechanism.⁵⁴

Bimetallic f-element complexes

ARTICLE

In 2010, Meyer's group reported carbonate formation from CO₂ via reductive processes using U(III) complexes.⁵⁵ They also demonstrated the mechanism for this reductive process. For their study they used an U(III) complex with a new tripodal ligand system [((tBuArO)3mes)U] (25a) and another one with a single nitrogen anchor [((AdArO)₃N)U] (25b). Accordingly, reacting a deep purple solution of 25a in toluene with excess CO2 (1 atm) at room temperature resulted in formation of a pale-yellow solution within 10 min. The yellow solid was isolated and characterized as the dinuclear U(IV)/U(IV) bridging carbonate complex $[{((^{tBu}ArO)_3mes)U}_2(\mu-\kappa^2:\kappa^2-CO_3)]$ (25e) (Scheme 25).55 Similarly, a brown suspension of 25b in DME was reacted with an excess of CO₂ (1 atm), and immediately a green product was formed. The green solids were characterized as the U(IV)/U(IV) bridging carbonate complex with different coordination mode: $[\{((^{Ad}ArO)_3N)U\}_2(\mu-\eta^1:\kappa^2-CO_3)]$ (25f) (Scheme 25). For mechanistic studies, reactions of 25a and 25b with 1 atm of N_2O were carried out, and bridging oxo species $[\{((^{Hu}ArO)_3mes)U\}_2(\mu-O)]$ (25c) and $[\{((^{Ad}ArO)_3N)U\}_2(\mu-O)]$ (25d) were formed (Scheme 25, Path B). Later, reactions of 25c and 25d with 1 atm CO₂ resulted in the uranium bridging carbonate complexes 25e and 25f, respectively (Scheme 25). These observations are consistent with bridging oxo species 25c and 25d being initially formed from CO₂ with simultaneous release of CO, followed by nucleophilic attack at CO₂ by the bridging oxo ligand (Scheme 25, Path A).

DFT analysis indicated that, while the reaction between **25a** and CO₂ to form **25e** is thermodynamically favourable and kinetically accessible,⁵⁶ a hypothetical competing pathway to form a μ -oxalate complex is prohibited due to the high activation barrier. Later, the same group achieved access to uranium oxalate complex [{((^{nP,Me}ArO)₃tacn)₃U^{IV}}₂(μ - κ ²: κ ²-C₂O₄) (**26b**) through CO₂ activation by trivalent uranium complex [((^{nP,Me}ArO)₃tacn)₃U^{III}] (**26a**) in the presence of KC₈ (Scheme 26).⁵⁷ Use of THF solvent was found to be critical to formation of **26b**, possibly due to slow KC₈ reduction in this medium. Besides **26b**, a similar carbonate complex to **25e** was obtained as a minor product.

Later, Meyer's group also reported the synthesis of a dinuclear U^{IV} complex from the reaction between mononuclear [(Neop,MeArO)₃tacnU^{III}] (**27a**) and one equivalent of CO₂.⁵⁸ Similar to their prior work,⁵⁵ the dinuclear U^{IV} complex [{((Neop,MeArO)₃tacnU}₂(μ -O)] (**27b**) could also be obtained from exposure of **27a** to N₂O atmosphere. In the presence of excess CO₂, complex **27b** accordingly formed carbonate complex [{((Neop,MeArO)₃tacnU}₂(μ -CO₃)] (**27c**) which was further reduced by KC₈ to complex **27a** (Scheme 27). Thus, a closed synthetic cycle for CO₂ reduction was achieved.

Evans and co-workers reported a Sc²⁺ analogue was found to react rapidly with CO₂.⁵⁹ Addition of 1 atm of CO₂ to *in-situ* prepared [K(18-c-6)][(R₂N)₃Sc] (**28a**) resulted in immediate color change to colorless (R = SiMe₃). The IR spectrum of the crude product indicated the presence of two CO₂-derived products. One was the colorless bridging oxalate complex, [K₂(18-c-6)₃}{[(R₂N)₃Sc]₂(μ -C₂O₄- κ ¹O: κ ¹O'')] (**28c**). Subsequent crystallization revealed the other product to be [(R₂N)₃Sc(μ -OCO- κ ¹O: κ ¹O')K(18-c-6)]_n (**28b**) (Scheme 28). XRD analysis revealed that the latter complex is polymeric with the repeating units connected by a [K(18-c-6)]⁺ unit and a methyl group of the NR₂⁻ ligand. The assignment of a linear Sc-O=C=O-K unit is surprising considering that CO₂ bending should occur upon electron transfer from Sc(II) into the π * manifold, and so further investigation is warranted.

In 2012, Mazzanti and co-workers studied a siloxidesupported trivalent uranium complex, [{U(OSi(O^tBu)₃)₂(μ -OSi(O^tBu)₃)₂] (**29a**), and its reactivity towards CO₂.⁶⁰ The formation of dinuclear U^{IV} carbonate complex [{U(OSi(O^tBu)₃)₃}₂{ μ - κ^1 : κ^2 -CO₃}] (**29b**) was obtained when the solution of **29a** in hexane was exposed to CO₂ for 6 h (Scheme 29). Byproduct CO was detected by ¹³C NMR spectroscopy and chemically trapped by vanadocene. During the reaction, minor U^{IV} complex [U(OSi(O^tBu)₃)₄] (**29c**) was identified ¹H NMR spectroscopy and X-ray crystallography. The ratio between **29b** and **29c** was 2.5:1 after the reaction was complete. Complex **29b** was decomposed to yield **29c** over extended time periods, indicating slow ligand re-distribution of complex **29b** to form **29c**. Gibbs free energy calculations indicated that the concerted one-electron reduction of two molecules of CO_2 was kinetically favourable (14.5 kcal mol⁻¹) compared to the formation of the oxo intermediate (23.8 kcal mol⁻¹). Another possibility involving formation of a six-membered ring intermediate that spontaneously releases CO to form **29c** could not be ruled out.

Then, they described multimetallic cooperative effect in the reduction of CO₂.⁶¹ They used potassium and uranium bimetallic systems for reduction of CO2. The reaction of $[U(OSi(O^tBu)_3)_4K]$ (30a) with 1 atm of CO₂ in toluene at room temperature afforded cleanly the terminal oxo pentavalent uranium complex [UO(OSi(O^tBu)₃)₄K] (**30b**) in 77% yield with CO as a byproduct (Scheme 30; left). This was the first example of a uranium(V) terminal oxo complex to be obtained from the twoelectron reductive cleavage of CO2. To investigate whether the presence of potassium plays any important role in the reaction, they studied the reaction of the analogous ion-paired system $[K(18-c-6)][U(OSi(O^tBu)_3)_4]$ **30c** with 1 atm of CO₂. The reaction occurred instantly at room temperature and evolution of CO was observed. Crystallization of the reaction mixture in toluene formed pale pink single crystals of [K(18-c-6)][KU(μ - κ^{1} : κ^{2} -CO₃)(OSi(O^tBu)₃)₄] (30d) (Scheme 30; right). The observation of gaseous CO and the isolation of the carbonate complex (30d) confirmed [K(18-c-6)][U(OSi(O^tBu)₃)₄] facilitates the disproportionation of CO₂. Thus, this study showed that CO₂ reduction selectivity can be controlled by the presence or absence of a coordinated alkali-metal ion bound near the U(III) center. The DFT-optimized structure of $30a \cdot CO_2$ indicated that negative charge on the reduced CO2 moiety is stabilized by coordination to both the uranium and the potassium centers, thus supporting the presence of cooperative effect of the two metal centres in the conversion of CO₂.

Neif, Evans, and Maron groups investigated the mechanism of CO₂ activation by the binuclear complex, $[Cp^*_2Sm]_2(\mu-O)$ (**31a**). The oxide complex **31a** reacted with CO₂ for 1 h in benzene, and subsequent addition of THF resulted in $[{(C_5Me_5)_2Sm(THF)}_2(\mu-\kappa^1:\kappa^2-CO_3)]$, **31b** (Scheme 31). Three different possible pathways were explored computationally and revealed that a common initial intermediate was a binuclear Sm^{III} complex, $[{(C_5Me_5)_2Sm}_2(\mu-\eta^2:\eta^{1-CO_2})].^{62}$

Scheme 31. Activation of CO_2 by a bimetallic Sm complex

Nocton and coworkers reported the reductive disproportion of CO₂ using bulky divalent samarium complexes. Accordingly, the reaction of both Cp^{tt}₂Sm (Cp^{tt} = 1,3-(^tBu)₂(C₅H₃); **32a**) and Cp^{ttt}₂Sm ((Cp^{ttt} = 1,2,4-(^tBu)₃(C₅H₂); **32c**)) with CO₂ (1 atm) were performed at low temperature in deuterated toluene.⁶³ Both reactions resulted immediate color changes, and structural analysis showed bridging carbonate (CO₃²⁻) ligands between the two samarocene fragments in both cases, [Cp^{tt}₂Sm]₂(μ -CO₃) (**32b**) and [Cp^{ttt}₂Sm]₂(μ -CO₃) (**32d**) (Scheme 32). The coordination modes of the bridging carbonate ligands were found to be different when comparing structures of **32b** and **32d**. A combination of experimental and computational investigations was unable to distinguish between multiple possible mechanisms with roughly isoenergetic activation energies.

Scheme 32. Activation of CO2 by a Sm complex

In 2016, Mills and Maron groups reported the first case of CO₂ reactivity by a thorium complex. Reaction of [Th(Cp")₃] (33a, $Cp''=\{C_5H_3(SiMe_3)_2-1,3\})$ with CO₂ afforded the mixed oxalate/carboxylate dithorium(IV) complex $[{Th(Cp'')_2[\kappa^2-O_2C\{C_5H_3-C_5H_3$ $3,3'-(SiMe_3)_2$]]₂(μ - κ^2 : κ^2 - C_2O_4)] (**33b**) in 65% yield (Scheme 33).⁶⁴ The authors hypothesized that **33b** forms via $[{Th(Cp'')_3}(\mu-CO_2)]$ intermediate and further proposed that the bulky Cp" ligands hinder the elimination of CO to form [{Th(Cp'')}_32(μ -O)], thus allowing a second CO₂ molecule to be incorporated to form oxalate. Reactions of 33a with 1 or 2 equivalents of CO_2 or ${}^{13}CO_2$ at -78 °C were performed, and **33b** or **33b**-13C were the only products identified by ¹H and ¹³C NMR spectroscopy with no detected intermediates.

In 2017, Cloke group performed the reaction of CO₂ with U(III) complex [U(Cp*)(p-Me₂bp)] (**34a**, Cp* = C₅Me₅; bp = bisphenol) at various conditions. When the reaction was carried out with supercritical CO₂ at high pressure and room temperature, a dinuclear uranium carbonate complex, {U(Cp*)(p-Me₂bp)}₂(μ -n¹:n²-CO₃) (**34b**) formed cleanly and selectively (Scheme 34).⁶⁵ On the other hand when the reaction was carried out in conventional solvents using lower pressures of CO₂, a rare U(IV) oxalate complex {U(Cp*)(p-Me₂bp)}₂(μ -κ²:κ²-C₂O₂) (**34c**) was isolated along with **34b** (Scheme 34). The relative ratio of the two products is temperature dependent:

Journal Name

at low temperatures (–78 °C) oxalate formation is favoured, whereas at room temperature the carbonate is the major product.

Scheme 34. Activation of CO₂ by a U(III) complex

Recently, Mazzanti group synthesized dinuclear homoleptic lanthanide(II) complexes supported by polydentate tris(tertbutoxy) siloxide ligand: [Yb₂L₄] (**35a**), and [Sm₂L₄] (**36a**) $L = (O^t Bu)_3SiO^-)$). Complexes **35a** and **36a** reduced CO₂ under ambient conditions, resulting in carbonate and oxalate formation. When ¹³CO₂ was added to a C₆D₁₂ solution of **35a** an immediate colour change was seen from brown to yellow. The ¹³C NMR spectrum revealed the formation of carbonate ($\delta = 167.62$ ppm) and oxalate ($\delta = 179.72$ ppm) in a ratio of 50:1 with 94% total yield (Scheme 35). Similarly, when ¹³CO₂ (~5 equivalents) was added to a THF-d₈ solution of **35a**, an immediate colour change was observed from orange to yellow. The ¹³C NMR spectrum of the reaction mixture showed the presence of free ¹³CO and ¹³CO₂ as well as a signal at $\delta = 169.95$ ppm that was assigned to the bound carbonate product (Scheme 35).⁶⁶

To assess the influence of the lanthanide ion on the reactivity they also investigated the reactivity of **36a**. The reaction of $[Sm_2L_4]$ (**36a**) with ¹³CO₂ in C₆D₁₂ afforded a slow colour change from dark brown to light brown. The ¹³C NMR spectrum showed the presence

of excess ${}^{13}CO_2$ and free ${}^{13}CO$ as well as the presence of additional signals assigned to Sm-carbonate products (Scheme 36). When the same reaction was carried out in THF-d₈, an immediate colour change from dark brown to colourless was observed. The ${}^{13}C$ NMR spectrum

showed the presence of carbonate (**36b**) and oxalate (**36c**) in a 104:1 ratio and in 90% total yield (Scheme 36).⁶⁶ Computational studies confirmed that the formation of oxalate is preferred with respect to carbonate formation in the reaction of the dimeric lanthanide complexes with CO_2 .

Bimetallic N₂O activation

ARTICLE

Biomimetic multicopper complexes

Since N₂O is proposed to undergo cooperative activation at the Cu_z site of N₂OR during bacterial denitrification (see Figure 2a), there has been great interest in designing synthetic multicopper platforms for N₂O activation.^{67–69} In 2014, Torelli and coworkers reported the preparation and characterization of a dinuclear complex **37a** containing a mixed-valent [Cu₂(μ -SR)] core and studied its reactivity towards N₂O reduction (Scheme 37).⁷⁰ This thiolate-bridged dicopper(I,II) cluster was

found to reduce N₂O to N₂, resulting in fully oxidized Cu(II) metal centers with a double bridged $[Cu^{\parallel}_2(\mu-SR)(\mu-OH)]$ core (**37b**). Mechanistic investigations revealed that, as expected for the two-electron reduction of N₂O, the reaction is second order with respect to the dicopper complex. Therefore, it was proposed that one dicopper complex is responsible for N₂O activation, while the other acts as a sacrificial redox reagent and proton donor. It is notable that a similar paradigm is proposed for Cu_Z : two Cu centers for N_2O binding and two Cu centers for electron transfer, i.e. Cu:N₂O ratio of 4:1. An intermediate N₂O adduct was characterized experimentally by UV-Vis spectrometry and ¹⁹F NMR spectroscopy. DFT modeling indicated two possible coordination modes of approximately equal energy with either η^1 -N or η^1 -O N₂O binding, although the η^{1} -O isomer (37c) is more likely the reactive species that evolves N₂. Upon releasing N₂, a hypothetical $[Cu_2(\mu-SR)(\mu-O)]^{2+}$ intermediate (37d) was proposed to form. Reaction of 37d with a sacrificial equivalent of 37a then produces two equivalents of 37b by proton/electron transfers.

Scheme 37. Kinetic studies and theoretically proposed reaction pathway for N2O reduction by a biomimetic dicopper(I,II) µ-thiolate complex.

In 2015-2016, our group reported a structurally faithful [Cu₄(μ_4 -S)] model for Cu_z supported by formamidinate ligands and characterized it in its two-hole **38a** (formally 2Cu¹:2Cu^{II}) and one-hole **38b** (formally 3Cu¹:1Cu^{II}) redox states.^{71,72} Exposure of **38b** to N₂O (1 atm) **38a** quantitatively, thus completing a

synthetic cycle for N_2O reduction (Scheme 38).⁷² The stoichiometric byproducts were proposed to be N_2 , which was detected directly, and K_2O , which was trapped *ex situ* with electrophiles. In 2020, further experimental and computational studies of this system were reported.⁷³ By measuring the

reaction stoichiometry, it was determined that the overall twoelectron reduction of N₂O required two equivalents of **38b**. Thus, it was proposed that one equivalent of the cluster is responsible for activating N₂O and the other for acting as an electron donor. Computational modeling of the reaction intermediates (Scheme 38) indicated an unexpected binding mode for N₂O across a Cu-S bond, rather than between multiple Cu sites as initially expected by analogy to Cu_z. Consistent with direct participation of the μ_4 -S²⁻ ligand in the redox transformation, XAS analysis of **38a** and **38b** indicated that the sulfur center contributes significantly to the redox-active molecular orbital. This data represented the first spectroscopic interrogation of multiple redox levels of a conserved [4Cu:1S] cluster. Furthermore, the direct interaction of N₂O with the μ_4 -S in this Cu_z model showed that both metal/metal and metal/ligand cooperation should be considered for complex cluster systems. Later, N₂O reduction was also observed by a related phosphine-ligated [Cu₄S] cluster in the 4Cu¹ state,⁷⁴ but in that case the mode of N₂O activation has not clearly been elucidated.

Scheme 38. Synthetic cycle and proposed mechanism for N_2O reduction by a biomimetic $\text{Cu}_4(\mu_4\text{-S})$ cluster.

In 2018, we reported the study of a $[Cu_2(\mu-S)]$ complex **12a** for its reactivity toward N₂O (as well as CO₂, see Scheme 12).⁴⁰ The complex $[(IPr^*)Cu_2(\mu-S)]$ was previously synthesized by Hillhouse and explored for its reactivity towards organic molecules.³⁹ Here, the $[Cu_2(\mu-S)]$ complex was exposed to atmospheric N₂O at room temperature (Scheme 28). The primary product from reaction mixtures was $[(IPr^*)Cu_2(\mu-SO_4)$ (**12b**), just as with CO₂. However, unlike CO₂, conducting the N₂O reaction in the presence of PPh₃ produced a mixture of **12b** and $[(IPr^*)Cu]_2(\mu-O)$ (**39**) in approximately equimolar ratio. The byproduct Ph₃P=S was observed by ³¹P NMR analysis, indicating the possibility of elemental sulfur elimination. It was proposed that initial oxidation of the $[Cu_2(\mu-S)]$ complex produces $[(IPr^*)Cu]_2(\mu-SO)$, which either undergoes further oxidation to

form the fully oxidized $[(IPr^*)Cu]_2(\mu-SO_4)$ or eliminates elemental sulfur (which is trapped by PPh₃) to form $[(IPr^*)Cu]_2(\mu-O)$. In this example, despite the presence of two reduced Cu(I) centers, all the redox chemistry occurs at the bridging sulfur rather than at copper. The $[Cu_2(\mu-S)]$ motif can be viewed as a model for the dicopper edge of Cu_z responsible for N₂O activation. Thus, in the absence of additional copper centers bound to the sulfide ligand, the Cu_z site would be unstable towards sulfide oxidation and/or sulfur-atom extrusion. These observations point to a possible role of the third and fourth Cu centers in Cu_z beyond mediating electron transfer: protecting the critical Cu-S-Cu unit from irreversible decomposition in the presence of N₂O. Indeed, in the same

ARTICLE

study, trinuclear [(IPr)Cu(μ_3 -S)]⁺ was found to be unreactive towards N₂O under the same conditions used for **12a**.

Scheme 39. Reactivity of $[Cu_2(\mu-S)]$ towards N_2O

Other bimetallic complexes

In 2012, Severin and coworkers studied the N₂O reactivity of dinuclear ruthenium complexes, (arene)Ru(μ- $Cl)_{3}RuCl(C_{2}H_{4})(PCy_{3})$ (arene = *p*-cymene (**40a**) or 1,3,5-C₆H₃*i*Pr (40b) complexes).⁷⁵ Exposure of these compounds to N₂O (1 atm) produced trinuclear ruthenium products (40c or 40d) (Scheme 40). In addition, an intermediate (40e or 40f) identified by NMR spectroscopy showed an initial loss of ethylene ligand along with O=PCy₃ production. This intermediate was shown to react with another N₂O equivalent to afford the final, trinuclear product. On the other hand, activation of N_2O by a dinuclear ruthenium complex supported by an N-heterocyclic carbene (NHC) ligand (40g) produced a bimetallic species featuring an oxidized IMes ligand (IMes = 1,3-dimesitylimidazole-2-ylidene) (40h) remaining bound to Ru (Scheme 40). NMR and X-ray crystallography data indicated a mixed-valence Ru(II)/Ru(III) assignment for this μ -alkoxide product.

Scheme 40. N₂O activation chemistry of diruthenium complexes.

In 2013, our group reported the syntheses of (IMes)CuFp (41a) and (IPr)CuFp (41b) (IMes = N.N'-bis(2.4.6trimethylphenyl)imidazole-2-ylidene; IPr N,N'-bis(2,6diisopropylphenyl)imidazole-2-ylidene; $Fp = Fe(Cp)(CO)_2$).⁷⁶ Later, we published the reactivity of these Cu-Fe heterobimetallic complexes and their Cp* analogues, $(NHC)CuFp^*$ (Fp^{*} = FeCp^{*}(CO)₂), toward N₂O.⁷⁷ Reaction between (IMes)CuFp and N₂O (1 atm) showed an unidentified solid precipitating from the reaction mixtures. According to Xray energy dispersive spectrum analysis, this insoluble material contained Fe, C, and O as major elemental components. Analysis of headspace above the reaction by GC-MS revealed stoichiometric formation of N2 without evidence of releasing either CO or CO₂. However, analysis of the soluble fraction by NMR spectroscopy indicated the formation of (IMes)CuCp (41c) (Scheme 41). Similarly, (IPr)CuFp produced (IPr)CuCp (41d) after N₂O exposure. For the bulkier Cp* derivatives, both Cu-Fe complexes behaved the same way but with much slower reaction rates. Further, the reaction of (IMes)CuFp and N₂O in the presence of PPh₃ resulted in the formation of OPPh₃ (Scheme 30). This product was not observed when PPh₃ was added to the reaction mixture after (IMes)CuFp had been exposed to N₂O. These observations are consistent with the (NHC)CuFp derivatives reacting with N₂O to form a highly reactive, electrophilic oxidizing intermediate that can be intercepted by PPh₃ prior to decomposition to (NHC)CuCp and the insoluble solid.

Next, to explore derivatives lacking Cp groups that could migrate from Fe to Cu, in 2020 we reported N₂O activation by $[(IPr)Cu]_2Fe(CO)_4$ (**42a**) (Scheme 42).⁷⁸ Exposure of a **42a** to N₂O produced the carbonate complex, $[(IPr)Cu]_2(\mu$ -CO₃) (**42b**), which was characterized crystallographically. An insoluble species also formed in these reactions, which is expected to be 1/n $[Fe(CO)_3]_n$ based on reaction stoichiometry. Consistent with this hypothesis, further study of N₂O activation in the presence of PPh₃ produced *trans*-Fe(CO)₃(PPh₃)₂ (**42c**). In this case, when no Cp group is present, the Fe-bound CO groups apparently become vulnerable to oxidation by N₂O.

Recently, LaPierre and Maron group reported the activation of N₂O using homobimetallic Fe(II) and Co(II) complexes supported by the tris(dialkylamido)imidophosphorane, NP(pip)₃.⁷⁹ The reaction between $[Fe_2(\mu_2 NP(pip)_{3}_{2}(NP(pip)_{3})_{2}$] (43a) in diethyl ether and an atmospheric N₂O resulted in a µ-oxodiiron complex (43b). DFT calculations indicated an initial binding of N_2O to one iron center followed by N-O cleavage upon O-coordination to the second iron center (Scheme 43). In this case, the Fe-Fe bond is synergistically reactive toward two-electron reduction of N₂O by undergoing one-electron oxidation at each metal center. The related Co(II) derivative showed no reactivity towards N₂O under the same condition.

Conclusions

As seen in nature, cooperative bimetallic chemistry is an effective way to activate the kinetically inert molecules, CO_2 and N_2O . Metals from all over the periodic table are now known to participate in cooperative CO_2 activation, including *s*-block, *p*-block, *d*-block, and *f*-block metals and different combinations

ARTICLE

thereof. Many examples involve cooperative binding of CO₂ to 9 form metallacarboxylate species, though other identified pathways include reductive disproportionation to CO and CO32-, reductive dimerization to $C_2O_4^{2-}$, and oxidative addition to CO and O^{2-} . For N_2O , cooperative bimetallic chemistry is less developed, with most examples involving Cu due to the connection to Cu_z. Despite the large and growing literature of cooperative bimetallic chemistry for both substrates, it is notable that so few catalytic transformations have emerged.^{34,43,53} The difficulty in turning over catalytic cycles derives from the prevailing use of high-energy metal complexes synthesized from alkali metal reduction (or equivalently harsh methods), thus causing the systems to fall into thermodynamic wells with strong M–O bonds installed after CO_2/N_2O activation. A remaining challenge is to develop systems with smaller excess potential built in capable of cooperative bimetallic CO₂/N₂O activation, such that the overall energy landscape for a catalytic process is reasonable to navigate.

Author Contributions

All authors contributed conceptualization, writing, reviewing, and editing of the manuscript.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This material is based upon work supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), under Award Number DE-SC0021055.

Notes and references

- 1 J. Hansen and M. Sato, *Proceedings of the National Academy of Sciences*, 2004, **101**, 16109–16114.
- 2 A. R. Ravishankara, J. S. Daniel and R. W. Portmann, *Science*, 2009, **326**, 123–5.
- 3 Q. Liu, L. Wu, R. Jackstell and M. Beller, *Nature Communications*, 2015, **6**, 1–15.
- 4 J. Bao, G. Yang, Y. Yoneyama and N. Tsubaki, *ACS Catalysis*, 2019, **9**, 3026–3053.
- 5 K. Severin, *Chemical Society Reviews*, 2015, **44**, 6375–6386.
- 6 J. N. Armor and H. Taube, *Journal of the American Chemical Society*, 1969, **91**, 6874–6876.
- A. M. Appel, J. E. Bercaw, A. B. Bocarsly, H. Dobbek, D. L. DuBois, M. Dupuis, J. G. Ferry, E. Fujita, R. Hille, P. J. A. Kenis, C. A. Kerfeld, R. H. Morris, C. H. F. Peden, A. R. Portis, S. W. Ragsdale, T. B. Rauchfuss, J. N. H. Reek, L. C. Seefeldt, R. K. Thauer and G. L. Waldrop, *Chemical Reviews*, 2013, **113**, 6621–6658.
- H. Dobbek, L. Gremer, R. Kiefersauer, R. Huber and O.
 Meyer, Proceedings of the National Academy of Sciences of 31 the United States of America, 2002, 99, 15971–15976.

- J.-H. Jeoung and H. Dobbek, *Science*, 2007, **318**, 1461– 1464.
- 10 G. Fachinetti, C. Floriani and P. F. Zanazzi, *Journal of the American Chemical Society*, 1978, **100**, 7405–7407.
- 11 S. Gambarotta, F. Arena, C. Floriani and P. F. Zanazzi, Journal of the American Chemical Society, 1982, **104**, 5082– 5092.
- 12 J. R. Pinkes, B. D. Steffey, J. C. Vites and A. R. Cutler, Organometallics, 1994, **13**, 21–23.
- 13 T. A. Hanna, A. M. Baranger and R. G. Bergman, *Journal of the American Chemical Society*, 1995, **117**, 11363–11364.
- 14 L. H. Gade, Angewandte Chemie-International Edition in English, 2000, **39**, 2658–2678.
- C. M. Mömming, E. Otten, G. Kehr, R. Fröhlich, S. Grimme,
 D. W. Stephan and G. Erker, *Angewandte Chemie -International Edition*, 2009, **48**, 6643–6646.
- 16 E. M. Johnston, C. Carreira, S. Dell'Acqua, S. G. Dey, S. R. Pauleta, I. Moura and E. I. Solomon, *Journal of the American Chemical Society*, 2017, **139**, 4462–4476.
- 17 I. Bar-Nahum, A. K. Gupta, S. M. Huber, M. Z. Ertem, C. J. Cramer and W. B. Tolman, *Journal of the American Chemical Society*, 2009, **131**, 2812–2814.
- 18 E. Otten, R. C. Neu and D. W. Stephan, *Journal of the American Chemical Society*, 2009, **131**, 9918–9919.
- J. S. Woertink, P. J. Smeets, M. H. Groothaert, M. A. Vance,
 B. F. Sels, R. A. Schoonheydt and E. I. Solomon, *Proceedings* of the National Academy of Sciences of the United States of America, 2009, **106**, 18908–18913.
- 20 M.-L. L. Tsai, R. G. Hadt, P. Vanelderen, B. F. Sels, R. A. Schoonheydt and E. I. Solomon, *Journal of the American Chemical Society*, 2014, **136**, 3522–3529.
- 21 D. Gau, R. Rodriguez, T. Kato, N. Saffon-Merceron, A. de Cózar, F. P. Cossío and A. Baceiredo, *Angewandte Chemie International Edition*, 2011, **50**, 1092–1096.
- 22 X. Chen, H. Wang, S. Du, M. Driess and Z. Mo, *Angewandte Chemie International Edition*, 2022, **61**, e202114598.
- 23 T. Ouyang, H.-J. Wang, H.-H. Huang, J.-W. Wang, S. Guo, W.-J. Liu, D.-C. Zhong and T.-B. Lu, *Angewandte Chemie International Edition*, 2018, **57**, 16480–16485.
- Z. Guo, G. Chen, C. Cometto, B. Ma, H. Zhao, T. Groizard, L.
 Chen, H. Fan, W.-L. Man, S.-M. Yiu, K.-C. Lau, T.-C. Lau and M. Robert, *Nature Catalysis*, 2019, 2, 801–808.
- 25 M. Cheng, Y. Yu, X. Zhou, Y. Luo and M. Wang, *ACS Catalysis*, 2019, **9**, 768–774.
- 26 M. E. Ahmed, S. Adam, D. Saha, J. Fize, V. Artero, A. Dey and C. Duboc, *ACS Energy Letters*, 2020, **5**, 3837–3842.
- H. Chen, L. Chen, G. Chen, M. Robert and T. C. Lau, ChemPhysChem, 2021, 22, 1835–1843.
- 28 A. F. R. Kilpatrick and F. G. N. Cloke, *Chemical Communications*, 2014, **50**, 2769–2771.
- 29 A. F. R. Kilpatrick, J. C. Green and F. G. N. Cloke, *Organometallics*, 2015, **34**, 4816–4829.
 - A. Noor, S. Qayyum, T. Bauer, S. Schwarz, B. Weber and R. Kempe, *Chemical Communications*, 2014, **50**, 13127–13130.
 - A. Paparo, J. S. Silvia, C. E. Kefalidis, T. P. Spaniol, L. Maron, J. Okuda and C. C. Cummins, *Angewandte Chemie*

30

- International Edition, 2015, 54, 9115–9119.
 J. P. Krogman, B. M. Foxman and C. M. Thomas, Journal of the American Chemical Society, 2011, 133, 14582–14585.
- 33 J. P. Krogman, M. W. Bezpalko, B. M. Foxman and C. M. Thomas, *Inorganic Chemistry*, 2013, **52**, 3022–3031.
- 34 R. Angamuthu, P. Byers, M. Lutz, A. L. Spek and E. Bouwman, *Science*, 2010, **327**, 313–315.
- 35 C. T. Saouma, M. W. Day and J. C. Peters, *Chemical Science*,
 2013, 4, 4042–4051.
- 36 R. Shimogawa, T. Takao, G. I. Konishi and H. Suzuki, Organometallics, 2014, **33**, 5066–5069.
- 37 C. M. Palit, D. J. Graham, C. H. Chen, B. M. Foxman and O.
 V. Ozerov, *Chemical Communications*, 2014, **50**, 12840– 12842.
- 38 H. Wu, J. Li, D. Yang, P. Tong, J. Zhao, B. Wang and J. Qu, Inorganic Chemistry Frontiers, 2019, **6**, 2185–2193.
- 39 J. Zhai, A. S. Filatov, G. L. Hillhouse and M. D. Hopkins, *Chem Sci*, 2016, **7**, 589–595.
- 40 S. Bagherzadeh and N. P. Mankad, *Chemical Communications*, 2018, **54**, 1097–1100.
- 41 J. R. Prat, C. A. Gaggioli, R. C. Cammarota, E. Bill, L. Gagliardi and C. C. Lu, *Inorganic Chemistry*, 2020, **59**, 14251–14262.
- 42 M. Devillard, R. Declercq, E. Nicolas, A. W. Ehlers, J. Backs, N. Saffon-Merceron, G. Bouhadir, J. C. Slootweg, W. Uhl and D. Bourissou, *Journal of the American Chemical Society*, 2016, **138**, 4917–4926.
- R. C. Cammarota, M. V. Vollmer, J. Xie, J. Ye, J. C. Linehan,
 S. A. Burgess, A. M. Appel, L. Gagliardi and C. C. Lu, *Journal* of the American Chemical Society, 2017, 139, 14244–14250.
- 44 J. Hicks, A. Mansikkamäki, P. Vasko, J. M. Goicoechea and S. Aldridge, *Nature Chemistry*, 2019, **11**, 237–241.
- 45 D. Sorbelli, L. Belpassi and P. Belanzoni, *Journal of the American Chemical Society*, 2021, **143**, 14433–14437.
- C. McManus, J. Hicks, X. Cui, L. Zhao, G. Frenking, J. M.
 Goicoechea and S. Aldridge, *Chemical Science*, 2021, 12, 13458–13468.
- H. Liu, R. J. Schwamm, M. S. Hill, M. F. Mahon, C. L.
 McMullin and N. A. Rajabi, *Angewandte Chemie International Edition*, 2021, **60**, 14390–14393.
- 48 L. Escomel, I. Del Rosal, L. Maron, E. Jeanneau, L. Veyre, C. Thieuleux and C. Camp, *Journal of the American Chemical Society*, 2021, **143**, 4844–4856.
- 49 S. Sinhababu, M. Radzhabov and N. P. Mankad, *ChemRxiv*, , DOI:10.33774/chemrxiv-2021-xt242.
- 50 R. Lalrempuia, A. Stasch, A. Stasch and C. Jones, *Chemical Science*, 2013, **4**, 4383–4388.
- 51 M. D. Anker, M. Arrowsmith, P. Bellham, M. S. Hill, G. Kociok-Köhn, D. J. Liptrot, M. F. Mahon and C. Weetman, *Chemical Science*, 2014, **5**, 2826–2830.
- 52 A. J. Boutland, I. Pernik, A. Stasch and C. Jones, *Chemistry A European Journal*, 2015, **21**, 15749–15758.
- 53 C. Weetman, P. Bag, T. Szilvási, C. Jandl and S. Inoue, Angewandte Chemie, 2019, **131**, 11077–11081.
- 54 C. Weetman, A. Porzelt, P. Bag, F. Hanusch and S. Inoue, Chemical Science, 2020, **11**, 4817–4827.

- O. P. Lam, S. C. Bart, H. Kameo, F. W. Heinemann and K.
 Meyer, *Chemical Communications*, 2010, 46, 3137–3139.
- 56 L. Castro, O. P. Lam, S. C. Bart, K. Meyer and L. Maron, *Organometallics*, 2010, **29**, 5504–5510.
- A. Schmidt, F. W. Heinemann, C. E. Kefalidis, L. Maron, P.
 W. Roesky and K. Meyer, *Chemistry A European Journal*, 2014, **20**, 13501–13506.
- A.-C. Schmidt, A. V. Nizovtsev, A. Scheurer, F. W.
 Heinemann and K. Meyer, *Chemical Communications*, 2012, 48, 8634.
- 59 D. H. Woen, G. P. Chen, J. W. Ziller, T. J. Boyle, F. Furche and W. J. Evans, *Angewandte Chemie - International Edition*, 2017, **56**, 2050–2053.
- 60 V. Mougel, C. Camp, J. Pécaut, C. Copéret, L. Maron, C. E. Kefalidis and M. Mazzanti, *Angewandte Chemie International Edition*, 2012, **51**, 12280–12284.
- 61 O. Cooper, C. Camp, J. Pécaut, C. E. Kefalidis, L. Maron, S. Gambarelli and M. Mazzanti, *Journal of the American Chemical Society*, 2014, **136**, 6716–6723.
- L. Castro, S. Labouille, D. R. Kindra, J. W. Ziller, F. Nief, W. J. Evans and L. Maron, *Chemistry A European Journal*, 2012, 18, 7886–7895.
- M. Xémard, V. Goudy, A. Braun, M. Tricoire, M. Cordier, L. Ricard, L. Castro, E. Louyriac, C. E. Kefalidis, C. Clavaguéra, L. Maron and G. Nocton, *Organometallics*, 2017, 36, 4660–4668.
- A. Formanuik, F. Ortu, C. J. Inman, A. Kerridge, L. Castro, L. Maron and D. P. Mills, *Chemistry A European Journal*, 2016, 22, 17976–17979.
- 65 C. J. Inman, A. S. P. Frey, A. F. R. Kilpatrick, F. G. N. Cloke and S. M. Roe, *Organometallics*, 2017, **36**, 4539–4545.
- A. R. Willauer, D. Toniolo, F. Fadaei-Tirani, Y. Yang, M.
 Laurent and M. Mazzanti, *Dalton Transactions*, 2019, 48, 6100–6110.
- 67 S. C. Rathnayaka and N. P. Mankad, *Coordination Chemistry Reviews*, 2021, **429**, 213718.
- P. Chen, S. I. Gorelsky, S. Ghosh and E. I. Solomon,
 Angewandte Chemie International Edition, 2004, 43, 4132–
 4140.
- 69 W. B. Tolman, *Angewandte Chemie International Edition*, 2010, **49**, 1018–1024.
- C. Esmieu, M. Orio, S. Torelli, L. Le Pape, J. Pécaut, C.
 Lebrun and S. Ménage, *Chem. Sci.*, 2014, 5, 4774–4784.
- B. J. Johnson, W. E. Antholine, S. V. Lindeman and N. P.
 Mankad, *Chem Commun*, 2015, **51**, 11860–11863.
- 72 B. J. Johnson, W. E. Antholine, S. V. Lindeman, M. J. Graham and N. P. Mankad, *Journal of the American Chemical Society*, 2016, **138**, 13107–13110.
- S. C. Rathnayaka, C. W. Hsu, B. J. Johnson, S. J. Iniguez and
 N. P. Mankad, *Inorganic Chemistry*, 2020, 59, 6496–6507.
- 74 C.-W. W. Hsu, S. C. Rathnayaka, S. M. Islam, S. N. MacMillan and N. P. Mankad, *Angewandte Chemie -International Edition*, 2020, **59**, 627–631.
- 75 A. G. Tskhovrebov, E. Solari, R. Scopelliti and K. Severin, Organometallics, 2012, **31**, 7235–7240.
- U. Jayarathne, T. J. Mazzacano, S. Bagherzadeh and N. P.
 Mankad, Organometallics, 2013, 32, 3986–3992.

Journal Name

- 77 U. Jayarathne, S. R. Parmelee and N. P. Mankad, *Inorganic chemistry*, 2014, **53**, 7730–7737.
- 78 Y. Lakliang and N. P. Mankad, *Organometallics*, 2020, **39**, 2043–2046.
- L. M. Aguirre Quintana, Y. Yang, A. Ramanathan, N. Jiang, J. Bacsa, L. Maron and H. S. La Pierre, *Chemical Communications*, 2021, 57, 6664–6667.