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Data-driven algorithms for inverse design of polymers  6 

Kianoosh Sattari a, Yunchao Xie*a, Jian Lin*a, b 
7 

The ever-increasing demand for novel polymers with superior properties requires a deeper 8 

understanding and exploration of the chemical space. Recently, data-driven approaches to explore 9 

the chemical space for polymer design are emerging. Among them, inverse design strategies for 10 

designing polymers with specific properties have evolved to be a significant materials informatics 11 

platform via learning hidden knowledge from materials data as well as smartly navigating the 12 

chemical space in an optimized way. In this review, we first summarize the progress on the 13 

representation of polymers, a prerequisite step for the inverse design of polymers. Then, we 14 

systematically introduce three data-driven strategies implemented for the inverse design of 15 

polymers, i.e., high-throughput virtual screening, global optimization, and generative models. 16 

Finally, we discuss the challenges and opportunities of the data-driven strategies as well as 17 

optimization algorithms employed in the inverse design of polymers.  18 

Keywords: Machine learning, deep learning, inverse design, polymers, representation, generative 19 

models20 

1. Introduction 21 

Polymers have become deeply integrated into both human daily 22 

life and high technology due to a plethora of attractive physical, 23 

chemical, and electrical properties. These ubiquitous and highly 24 

tunable properties of polymers mainly arise from extraordinary 25 

diversity at both micro and macro scales.1-4  Though only 26 

containing few elements in the periodic table, polymers exhibit 27 

versatile functionality via finely tuning the atomic-level 28 

connectivity, chain packing, crystallinity, phases, and 29 

morphology. Benefitting from these properties, polymers have 30 

found widespread applications including biology, medicine, and 31 

engineering.5  32 

The design of novel polymer materials has been gone 33 

through three stages of development. In the first stage, 34 

scientists rely on experimentally-driven trial-and-error 35 

approaches to invent materials, such as penicillin, Vaseline, and 36 

Teflon.6 A trial-and-error approach involves significant domain 37 

knowledge. It starts from defining a problem or hypothesis 38 

followed by testing with a proposed solution, finally learning 39 

from failure for the next iteration.7 Using the domain 40 

knowledge, the scientists narrow down the design space to 41 

limited amount of candidates for validation. However, the 42 

involved strategy in this stage has limitations, such as by-chance 43 

discovery and preparation from common chemical compounds 44 

found in nature, thus limiting their potential for the next 45 

innovations. Moreover, they are extremely time-, labor-, and 46 

cost-consuming.8-11 In the second stage, researchers adopt 47 

high-throughput experiments or virtual screening to determine 48 

the relevant properties of enormous targets, and they choose 49 

the best ones for further optimization.12-15 Even though those 50 

approaches have been improved by high-throughput 51 

simulations16, high-performance computing (HPC)17, and GPU 52 

accelerated modules,18 such a research strategy still lags the 53 

pace of the ever-increasing demands on the polymers with 54 

superior properties. Even for small molecules, the number of 55 

structures is estimated to be on the order of 1060, making an 56 

efficient and thorough search impossible by traditional 57 

experiment and computation-based approaches.19Hence, it is 58 

urgent to solve these problems to accelerate the design of 59 

polymers to meet the ever-increasing demands. In the third 60 

stage, a research paradigm tackles the ‘materials-property’ 61 

problem in an ‘inverted’ manner, which approaches the ‘desired 62 

properties-to-appropriate materials’ procedure, or called 63 

“inverse design”, instead of a forward ‘structure-to-property’ 64 

procedure. With advances in machine learning (ML) and deep 65 

learning (DL), inverse design, a new research paradigm, has 66 

emerged as an efficient tool to navigate the design space. AI is 67 

being used for predicting properties of polymers, seeking a 68 

mapping function relating a structure to the property of 69 

choice.6, 20-28 Deep generative models seek to learn the 70 

underlying probability distribution of structures and their 71 

corresponding properties for connecting them in a nonlinear 72 

way.6 The DL algorithms can also act as the recommender 73 

systems for hypothesis generation about experimental 74 

conditions that are likely to produce polymers,29, 30 which, 75 

however, is not the focus of this review. 76 

For polymers, stochastic macromolecules, establishing the 77 

exact recipes of polymer chains especially those possessing 78 
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cross-links or network interpenetration is impractical. Indeed, 1 

defining all the atoms in complex polymers is not practical since 2 

the input representations are computationally expensive. 3 

Instead of directly using all sequenced atoms in a polymer chain 4 

as the source of feature representations, alternatives, such as 5 

chemical compounds or functional groups, can be more 6 

efficient to represent polymers.29 Even for complicated 7 

polymers, one needs to start with designing monomers or 8 

building blocks since many characteristics of polymers are 9 

transferred by their building blocks. There exist several works 10 

on inverse molecule design using different architectures,31-35 as 11 

well as thorough reviews in this area.6, 36, 37 Polymer inverse 12 

design, however, is still in its infancy and will bring up increased 13 

attention like other complex materials such as crystalline 14 

porous materials in the future.38 Ferguson and Ranganathan 15 

reviewed improvements in data-driven protein design, one 16 

other member of macromolecules, which can be useful for 17 

polymer design studies.30 Sherman et. al. reviewed recent 18 

advances in inverse design of soft materials.39 They particularly 19 

addressed methodological limitations and computational 20 

challenges that constrain the size and complexity of materials 21 

that can be designed. 22 

A typical flowchart of inverse design of polymers using DL 23 

can be described as the following four steps. 1) Data 24 

preparation. In polymer research, it is still a challenge to find or 25 

generate a sufficient volume of data. Such data can be created 26 

from experiments. Or high throughput computations using first-27 

principle theory, density functional theory (DFT), classical MD, 28 

and coarse-grained (CG) modeling can be also used to generate 29 

polymer data.17, 40, 41 Webb et al. used CG modeling to simulate 30 

polymers to construct a database for developing machine 31 

learning models.41 Another source of data can be mined from 32 

scientific literature or publicly available patents.40 For instance, 33 

PoLyInfo, an open-source database, includes information of 34 

different polymers homopolymers, copolymers, and polymer 35 

blends.42 2) Polymer representations. Followed by data 36 

collection is the numerical representation of both structures 37 

and properties of polymers. Representations can use the 38 

approaches from a complex and expensive one such as 3D 39 

coordinates to a compact and cheap string-based one such as 40 

SMILES. 3) Development of the DL algorithms for inverse design. 41 

ML-based prediction models can be used in the inverse design 42 

process to direct the generator toward the best candidates. 4) 43 

Validation. Validation of the best candidates can be through 44 

either computation or experiment or both. Computational 45 

validations in different scales are faster and cost less compared 46 

to experimental evaluation. After validation with simulation, 47 

one can choose the best candidates for experimental 48 

evaluation.  49 

We will mainly focus on the state-of-the-art data-driven 50 

algorithms for inverse design of polymers, reviewing several 51 

promising case studies, and elaborating future opportunities in 52 

chemical, biomedical, and materials science fields. The review 53 

focuses on Steps 2 and 3 from the mentioned workflow. 54 

Although the importance of the predictors in the inverse design 55 

process cannot be overemphasized, in this review, we mainly 56 

focus on deep learning and optimization algorithms that can 57 

efficiently navigate the design space. Their correlation is 58 

schematically represented in Fig. 1. The schematic shows two 59 

different directions of forward and inverse design. One may 60 

transfer knowledge that is obtained from well-studied ML and 61 

DL algorithms for molecular property prediction and inverse 62 

molecular design to the polymer field. If successful, a new 63 

research paradigm for complex polymer design can be shifted 64 

from an intuitive one to an on-demand and determinative one.65 

 66 
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 1 

2. Search/design space 2 

As human researchers, we can operate in an unconstrained 3 

design space.43 The design space can be defined by discrete or 4 

continuous variables.43 To realize the goal of inverse material 5 

design, one needs to define the design space by deciding both 6 

the input representation (descriptors or features as defined in 7 

Section 3) and a model family (e.g. deep neural networks as 8 

discussed in Section 4). If all possible input parameters were 9 

considered, the design space would be massive, while, in most 10 

cases, the final model is only restricted to a defined space 11 

trained from random initialization. Thus, defining an 12 

appropriate design space would influence both the search 13 

process and results.44 Algorithms that can efficiently navigate 14 

the design space are very desired, especially for polymer design 15 

which involves massive possibilities, making the exhaustive 16 

testing not practical.43 In the following sections, we will explain 17 

how researchers define the design space for specific problems 18 

and discuss applications of data-driven algorithms in inverse 19 

polymer design. 20 

3. Representations and Fingerprints of Polymers  21 

The prerequisite for inverse design of polymers is to numerically 22 

represent the polymers to be read and processed by computers. 23 

These fingerprints or called descriptors should possess 24 

adequate chemo-structural information of the materials while 25 

satisfying computational rules with as small size as possible.45 26 

Since the total energy of a molecule is constant with rotations, 27 

translations, and symmetry operations such as mirror 28 

reflections of a molecule in a 3D space, a valid representation 29 

should be invariant to these operations. When chosen 30 

appropriately, representations can accurately correlate 31 

structures to properties.27 32 

Application of the representations developed for molecules 33 

to polymer or macromolecular systems is not straightforward 34 

because of the chemical, topological, and morphological 35 

complexities of the polymers.41 In two recently published 36 

works, Lengeling and Guzik6 and Elton et al.36 reviewed various 37 

molecular representations that can be used. Dong et al. created 38 

a freely available web-based platform, called ChemDes, to 39 

integrate multiple state-of-the-art packages (i.e., Pybel,46 CDK,47 40 

RDKit,48 BlueDesc,49 Chemopy,50 PaDEL,51 and 41 

jCompoundMapper52) for computing molecular descriptors and 42 

fingerprints.53 ChemDes provides a friendly web interface to 43 

relieve users from tedious programming work as well as offering 44 

three useful tools for format converting, MOPAC optimization, 45 

and fingerprint similarity calculation.53 Molecular Orbital 46 

PACkage (MOPAC) is a program of implementing semi-empirical 47 

quantum chemistry computation. MOPAC is mostly used with a 48 

graphical user interface.54 When 3D molecular descriptors are 49 

used in the calculations, MOPAC can optimize the chemical 50 

structures to obtain relaxed 3D coordinates.53 In a study of ML-51 

assisted design of high-performance organic photovoltaic 52 

materials, Sun et al. employed ChemDes to extract various 53 

descriptors and fingerprints for their ML models to identify the 54 

best choice of representation.24 The need for this kind of 55 

integrated web-based platform for polymers descriptor and 56 

fingerprint computation is much needed.  57 

This review focuses on representations that are specific to 58 

polymers and macromolecules. They have been used as input 59 

for DL models in inverse design and virtual high-throughput 60 

screening tasks. As emphasized by Chen et al, designing 61 

polymers fingerprints that convey both chemical and 62 

morphological information, as well as their synthesis 63 

information, is an open challenge.40 With the fast development 64 

of new chemistry, materials informatics, and data-driven 65 

algorithms, a universally applicable polymer representation 66 

system is becoming urgent.45  67 

3.1. String-based representations from 2D graphs 68 

A system of molecules with atoms and bonds can be considered 69 

as graphs with edges and vertices.36 Obviously, such graphs 70 

cannot transfer information about 3D conformations and bond 71 

angles and lengths. However, for most of the properties of the 72 

structures, such 3D information is not needed. Thus, most 73 

generative models have not employed 3D coordinates but 74 

instead worked with 2D graphs. After a polymer structure is 75 

designed, the most energetically favorable conformation can be 76 

extracted using classical forcefields or quantum mechanical 77 

approaches.36 There are several string-based methods to 78 

represent graphs for ML/DL-based models that will be reviewed 79 

in this review. 80 

Simplified molecular-input line-entry system (SMILES)55 is 81 

widely used to represent molecules and polymers.45, 56-58 After 82 

representing atoms and bonds by SMILES symbols, one needs 83 

to represent raw characters as one hot encode matrices to 84 

perform computation. The first step for that transformation is 85 

tokenization from natural language, dividing the whole string 86 

into characters. The second step is to use one-hot encoding to 87 

represent each character. After deciding the dataset, one needs 88 

to extract a pool of unique characters that are present in SMILES 89 

sequences, and then assign a numerical value to each character 90 

within a sequence. To make the SMILES representations 91 

compatible with ML models, one needs to encode the assigned 92 

values to one-hot vectors, although the one-hot encoded 93 

vectors are larger and increase the computational cost.24 As an 94 

example, if we assign 5 to “C” representing carbon and 6 to “O” 95 

representing oxygen, a machine learning model needs to assign 96 

a natural ordering between the characters. However, in case of 97 

the SMILES representations, there is no ordinal relationship 98 

between the characters, making one-hot encoding easier. 99 

Technically, all strings should be represented by the same 100 

length in ML models. For that, researchers add special 101 

characters at the end of the stings to have the same size for all 102 

the inputs.24 Atom and bond matrices can be extracted from 103 

SMILES representations.59 An atom matrix represents the atoms 104 

with their atomic numbers and can be one-hot encoded. A bond 105 

matrix is usually a 4th order tensor showing information of 106 

structures with no bond, single, double, or triple bonds between 107 

atoms. These matrices are sometimes named the adjacency 108 

matrices and contain the same information as represented by 109 

SMILES. 110 
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SMILES can be extended to polymers by representing the 1 

repeat units of polymers and specifying the connecting points 2 

of those repeat units.21, 26 The transition from molecules to 3 

polymers representations can be challenging due largely to 4 

increased complexity. For degree-1 polymers (i.e., monomers), 5 

the regular SMILES representation can be used with small 6 

modifications. Unlike common SMILES strings for small 7 

molecules, these degree-1 polymer-SMILES strings contain 8 

distinct symbols of “ ” to indicate the polymerization points of 9 

monomers, which is used for wildcard atom in molecule 10 

representation.60 For relatively simple polymers such as linear 11 

chain polymers with two connecting points or ladder polymers 12 

with four connecting points in each repeat unit, Tran et al. used 13 

SMILES to represent these two groups of polymers.21  14 

The major challenge in using SMILES for DL-based inverse 15 

design algorithms is that a large fraction of string combinations 16 

does not correspond to valid representations. Invalidity can be 17 

syntactic or semantic.  In molecule representations, Guzik and 18 

colleagues represented a modified version of SMILES with a 19 

100% validity, a representation named SELFIES.61 Employing 20 

derivation rules, SELFIES uses different characters from the 21 

ones that are used in SMILES to show chains and branches in 22 

molecules. The derivation of a single symbol depends on the 23 

state of the derivation. They tried SELFIES in the molecule 24 

inverse design models.6, 62 All the generated SELFIES were valid. 25 

One sample molecule is shown in both SMILES and SELFIES in 26 

Fig. 2. Thiede et al. employed SELFIES representation in their 27 

curiosity algorithm powered by deep reinforcement learning for 28 

efficient exploration of chemical space to find new molecules.63 29 

Utilizing a predictor inside their framework, they use the error 30 

of the prediction to reward the generator to explore more 31 

unknown candidates. 32 

 33 

Proposed by O’Boyle and Dalke, DeepSMILES is another 34 

modification of SMILES in a way to improve the validity of the 35 

generated strings. Unlike SELFIES, DeepSMILES does not provide 36 

100% validity, but it improves a higher validity than original 37 

SMILES.64 There is an opportunity for future studies on string-38 

based polymer representations that are valid for any 39 

combinations.  40 

Ramprasad and co-workers employed modified SMILES for 41 

polymers, in which endpoints or connection points of repeat 42 

units were represented using special symbols.21, 26 As shown in 43 

Fig. 3, they used [*] to represent connecting points between the 44 

repeat units.21 Polymer chain, repeat unit, and SMILES of two 45 

polymers from linear and ladder groups are shown in Fig. 3. 46 

Although low-level representations such as SMILES can depict 47 

explicit polymer structures, the strings have large lengths and 48 

hard to parse. To represent polyurethane with a chain of length 49 

30 for example, one needs 600 characters that are 50 

computationally expensive.65 Thus, low-level SMILES-based 51 

representation is not suitable for large polymers.65 52 

 53 

 54 

Trying to modify the SMILES to fit polymers, Lin et al. 55 

introduced BigSMILES as a compact yet structurally robust 56 

identifier or a representation system.58 As shown in Fig. 4, 57 

BigSMILES can be used for different organic materials, including 58 

homopolymers, random copolymers, and block copolymers 59 

with various molecular connectivity, from linear and ring 60 

polymers to branched polymers.45 They used two kinds of 61 

bonding descriptors. The first type is AA type bonding that can 62 

happen between any two bonding moieties. The second type of 63 

bonding, AB bonding, like DNA rules, a bonding moiety cannot 64 

connect directly to another from the same group but can 65 

connect to one from a different conjugate group. This is the 66 

situation in monomers polymerized with condensation 67 

reactions.45 Besides using all the strings in SMILES, BigSMILES 68 

uses extra strings to handle the stochastic nature of polymers. 69 

There are many details about their descriptors, which can be 70 

referred in their paper.45 They proposed a descriptor system to 71 

represents many kinds of polymers, but they did not test it for 72 

developing ML/DL for materials design. Trying this 73 

representation in a DL-based inverse design is an opportunity 74 

for future research. However, as this representation approach 75 

relies on the predefined fragments extracted from a training 76 

dataset, the fragments of a generated structure is limited to the 77 

predefined ones. Although no implementation of SELFIES and 78 

DeepSMILES in representing polymers is reported, they can be 79 

modified in the same way as BigSMILES was modified from 80 

SMILES for polymer representations. Unlike low-level 81 

  

  

Fig. 2 String-based representation of a molecular graph. A small organic molecule 3,4-

Methyleintenedioxymethamphetamine is used as an example. (A) SMILES 

representation. The main line of atoms in green is completed with branches (opening 

and closing brackets) and rings (unique numbers after the atoms that are connected). 

If there is an open parenthesis without closing or only one number for a ring, that 

would be an invalid structure. (B) SELFIES representation. A set of rules that restrict any 

of the strings from avoiding chemical rules were used (refer to the original paper for 

details). Reproduced from Ref.61 published under the terms of Creative Commons 

Attribution 4.0 license. 

Fig. 3 Polymer chains, repeat units, and SMILES representations of linear polymer 

poly(isobutylene) and a ladder polymer poly(naphthalene-2,3:6,7-tetrayl-6,7-

dimethylene). The connection points are shown with “ ”. Reproduced from Ref.21 

with the permission from AIP publishing. 
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representations such as SMILES, high-level approaches such as 1 

Big SMILES are suitable for large polymers. However, they are 2 

so high-level that they cannot convey explicit information about 3 

the complete polymer structures.65 4 

 5 

 6 

Guo et al. recently reported PolyGrammar, a parametric 7 

context-sensitive grammar (CSG), to solve limitations of SMILES 8 

and BigSMILES for polymer representation.65 CSG is a formal 9 

grammar that defines how to build strings from a language’s 10 

alphabet obeying a set of production rules (see left side of Fig. 11 

5).65 PolyGrammar represents a molecular chain structure as a 12 

string of symbols, each of which refers to a particular molecular 13 

fragment in the polymer chain. The generation process begins 14 

with an initial symbol. At each iteration, each non-terminal 15 

symbol in the string is replaced by a successor whose 16 

predecessor matches the symbol until the string does not have 17 

any non-terminal symbols (see Fig. 5, center). The hypergraph 18 

is used to translate the resulting symbol string to a polymer 19 

chain (see right side of Fig. 5). In an ordinary hypergraph, nodes 20 

and edges between the nodes represent atoms and bonds, 21 

respectively.66 The hypergraph allows individual nodes to join 22 

any other nodes. An edge that connects a subset of the nodes 23 

in the hypergraph is called hyperedge.67 These production rules 24 

make them appropriate to represent many classes of polymers 25 

for valid structural generation. In their studies, polyurethane 26 

was tested as a proof-of-concept. Nevertheless, further studies 27 

are needed to make PolyGrammar generable to generate valid 28 

strings of more classes of polymers. 29 

 30 

 31 

All the mentioned string-based representations mainly 32 

considered element composition and simplified structures of 33 

the polymers. They quite ignore architectures, stochastic nature 34 

(PDI), and the processing history of the polymers. These are 35 

critical factors in determining their properties. Thermal 36 

conductivity, for example, can be significantly different in the 37 

same type of a polymer but processed into different forms, such 38 

as laminated films or spun fibers due to anisotropic molecular 39 

orientation.68 Wu et al. found that the thermal conductivity 40 

significantly depends on the processing history of the polymers. 41 

As such information has not been experimentally reported, they 42 

failed to derive a predictive model for thermal conductivity 43 

directly from the given data. Thus, they considered proxy 44 

properties—related to thermal conductivity—such as glass 45 

transition temperatures and melting temperatures as the 46 

alternative targets. 47 

3.2. 2D/3D information 48 

The Hohenberg-Kohn theorem of DFT proves that the electronic 49 

charge density of a system is a universal representation with the 50 

total of the information about the system.69  The material 51 

fingerprints can be chemo-structural descriptors or as 52 

fundamental as electronic charge density.28 Using electronic 53 

charge density is the most accurate way to represent a system 54 

but is not feasible for a large system such as polymers. Pilania 55 

et al. conducted a similarity-based machine learning model to 56 

extract fingerprints to replace the complicated and 57 

cumbersome rule based on Schrödinger’s or Kohn-Sham 58 

equation.28  59 

Using SMILES as input, polymers are either directly 60 

fingerprinted by employing hierarchical polymer fingerprints,21, 
61 

26 or represented by molecular fingerprints.68, 70 Usual kernels 62 

extract features of the molecules, hash those features, and 63 

utilize the hashed features to determine bits that should be set. 64 

Generally, kernels are functions that take two objects (data 65 

points, structures) as the input and assign a scalar output value 66 

to compare the similarity of the two objects.71 Typical 67 

fingerprint sizes are between 1K to 4K bits. Barnett et al. utilized 68 

a Daylight-like fingerprinting algorithm from the RDKit 69 

package48 in their ML-based framework to design exceptional 70 

polymer membranes for gas separation.70 Daylight is a software 71 

that delivers a state-of-the-art chemical information processing 72 

method. Daylight molecular fingerprints contain a) a pattern 73 

representing each atom and its closest neighbors and the bonds 74 

that connect them; b) a pattern corresponding to each group of 75 

atoms and bonds connected by paths up to seven bonds. Their 76 

topology-based approach analyzed the various fragments of a 77 

molecule consisting of a certain number of bonds and hashed 78 

each fragment to a binary fingerprint.70  They broke a polymer’s 79 

repeat unit down into fragments containing between 1 and 7 80 

units and the structure was hashed into a 2048 bits fingerprint 81 

to encode all the possible connectivity pathways of the 82 

monomer.70  83 

Another promising way named hierarchical fingerprints to 84 

represent polymers has been introduced by Kim et al. in an ML-85 

model for polymer property prediction.26 They introduced three 86 

levels of descriptors at different length scales (Fig. 6). At the 87 

atomic-scale level, the existence of a fixed set of atomic 88 

fragments or motifs is tracked. As an example, a triplet of “O1-89 

C3-C4” shows oxygen connects to one atom, a Carbon 90 

connected to three atoms, and another Carbon connected to 4 91 

Fig. 4 Schematic of BigSMILES. Curly brackets separate repeat units that include 

multiple monomers. Reproduced from Ref.58, Copyright 2019 American Chemical 

Society. 

 

                                                                                     

                                                                                           

                                                                                      

                                                                                                

                                                                                             

                                                                                             

              

                                                                                      

                                                                                     

                                                                                            

                                                                                        

                                

                                                                             

                                                                                          

                

           

 

             

 
          

          

Fig. 5 Schematic of chemistry design model, PolyGrammar. In centre, molecular chain 

structure as a string of symbols is shown. PolyGrammar has a set of production rules 

shown on the left. The generation process begins with an initial symbol χ and 

substitutes each non-terminal symbol (h, s or χ) at each iteration by the successor of a 

production rule whose predecessor matches the symbol. The process stops when there 

is no non-terminal symbol. Reproduced from Ref65 with permission. 
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atoms in the same order. They extracted 108 such components 1 

from the dataset they used.26 Next, in a larger level from an 2 

RDKit Python library,48 they used van der Waals surface area,72 3 

the topological polar surface area (TPSA),73 the ratio of atoms in 4 

rings to the total atoms, and the fraction of rotatable bonds.26 5 

Each of the mentioned descriptors in QSPR is crucial for 6 

accurately predicting properties. For example, TPSA is the sum 7 

of surfaces of polar atoms in the molecule that is a key 8 

descriptor for Tg and density. Lastly, “morphological 9 

descriptor”, the highest length-scale descriptor, includes 10 

descriptors such as the shortest topological distance between 11 

rings, and the length of the largest side-chain.26 They also 12 

considered a recursive feature elimination (RFE) algorithm to 13 

remove the least important features. Lightstone et al. utilized 14 

this hierarchical fingerprint system to build an ML model for 15 

predicting the Refractive index of polymers.22 This hierarchical 16 

fingerprint system can also be used in generative models. Very 17 

recently, Kuenneth et al. modified this approach to represent 18 

copolymers, an attempt to extend the polymer informatics 19 

beyond monopolymer.74 To do that, first, fingerprints of the 20 

repetitive units of a copolymer were extracted. After that, these 21 

fingerprints were weighed according to the ratio of the 22 

monomers in the copolymer. For instance, C1 and C2 are the 23 

ratios of each monomer (unit) in a two-monomer copolymer. If 24 

one of the ratios is zero, it indicates a homopolymer74. 25 

 26 

 27 

In another recently published work, Ramprasad and co-28 

workers introduced a general atomic neighborhood fingerprint 29 

method to represent polymers.75 They incorporated basic 30 

components, rotational invariants, and structural features in 31 

the representation system. To represent basic components, 32 

they employed grid-based representation for the local atomic 33 

environment, which includes a hierarchy of features capturing 34 

various aspects of the atomic neighborhood (semi-local). To 35 

fingerprint rotationally invariant components, they considered 36 

some transformation of basic components to make them 37 

rotationally invariant to cover cases involving directionless 38 

quantities.75 Finally, they conducted structural fingerprints from 39 

predefined components. Based on the application, one can 40 

increase the sophistication of the proposed fingerprint to obtain 41 

a desired level of accuracy. As an example, Huan et al. 42 

investigated the use of just the vector components from basic 43 

component category to develop force fields for elemental Al, 44 

Cu, C, and more.76 45 

After fingerprinting polymers, one can define a suitable 46 

measure of chemical distance to quantify the degree of 47 

(dis)similarity between two defined fingerprints for developing 48 

an ML model with high accuracy, which was demonstrated in 49 

Pilania et al.’s work.28 For example, Kernel Ridge Regression 50 

(KRR) is a non-linear regression model that can determine of 51 

similarity of input objects.77 KRR combines ridge regression and 52 

classification with kernel machines.78 The Kernel machines are 53 

a class of models originally developed for pattern analysis. They 54 

require a user-defined kernel and a similarity function to 55 

perform tasks of clustering, rankings, and regression.79 Using 56 

the hierarchical fingerprint system for developing ML-based 57 

models for polymer property prediction is quite successful.21, 26 58 

However, introduction of the fingerprints needs extraction of a 59 

pool of components that make the distinguished fragments of 60 

polymers. This process requires pre-processing of training 61 

datasets. Disadvantage of this method is that one needs to 62 

define the pool for each dataset, which make it not generable 63 

and cannot be used for generating new polymers consisting of 64 

the fragments outside the existing pool. 65 

3.3. Group contribution 66 

A group contribution approach was demonstrated by Van 67 

Krevelen and co-workers, where a polymer is broken down into 68 

its fragments (groups). From these fragments, the property of 69 

the polymer can be predicted.80 The group contribution 70 

methods assume any property is a sum of contributions from 71 

building blocks that are independent of each other. This is 72 

referred to as quantitative structure-property relationship 73 

(QSPR).80 10, 27 The group of representations are fast and easy to 74 

be interpreted.27 However, since this approach relies on the 75 

available fragment library, for truly novel polymers (outside the 76 

predefined library) that are generated by inverse design, group 77 

contribution techniques are powerless.40 Thus, the group 78 

contribution methods may not be optimal for new materials 79 

discovery but can be useful for feature extraction and property 80 

prediction of many polymers.10 They can be also used to 81 

generate low-fidelity data, which although noisy, can be 82 

combined with high-fidelity data by multi-fidelity information 83 

fusion schemes such as multi-fidelity co-kriging.81 84 

By the group contribution techniques, researchers 85 

fingerprint the predefined building blocks of polymers.38 Webb 86 

et al. employed a hybrid approach, by which all polymers are 87 

constructed from four possible coarse-grained (CG) beads (α, β, 88 

δ, and γ). α and β were used to form the backbone of the 89 

polymers, while δ and γ were used to form pendant groups that 90 

adorn the backbone.41 They defined 10 different building blocks 91 

out of these beads. Within this defined chemical space, they 92 

defined three different classes of polymers. Class (I) includes 93 

regular polymers with up to four building blocks. Class (II) 94 

includes random copolymers with up to four unique building 95 

blocks in the polymer sequence. Class (III) is similar to Class (I) 96 

but with up to eight building blocks.41 All the bead types and 97 

topologies of polymers are represented in Fig. 7A. They 98 

considered three classes of polymers created from these 99 

building blocks (Fig. 7B). They then used one-hot encoding 100 

(OHE) and property coloring that reflects polymer compositions 101 

Fig. 6 A hierarchical fingerprint system. This classifies descriptors according to the 

physical scale and chemical characteristics and RFE process to remove unnecessary 

features. Reproduced from Ref.26 with permission. Copyright 2018, American 

Chemical Society. 
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to extract feature vectors. These vectors were later fed to a 1 

deep neural network (DNN) model. To extract property 2 

features, the polymer was encoded as an image with each bead 3 

of the polymer represented by a pixel (Fig. 7C). The coloring of 4 

the markers represents the polymer composition. In this way, 5 

the application of the data-driven models was extended from 6 

homopolymers to copolymers. 7 

 8 

 9 

4. Strategies for Inverse Design of Materials  10 

The traditional materials research paradigm heavily relies on a 11 

forward design principle where the properties of materials are 12 

predicted from given structures. However, this process is time- 13 

and labor-intensive and cannot meet the ever-increasing 14 

demands of developing novel materials cost-effectively and 15 

speedily. Inverse design, on the other hand, inverts this 16 

paradigm via receiving desired functionality or properties as 17 

inputs for generating the desired structures.6 This process can 18 

be done in two different ways. The first way is called the high 19 

throughput virtual screening (HTVS), one of the earliest efforts 20 

in inverse design.7 HTVS can narrow the hypothesized chemical 21 

space to find the best candidates possessing targeted 22 

properties.7  The second way includes smart searching 23 

algorithms, i.e., global optimization (GO) to navigate the 24 

chemical space and DL-based generative models (GMs) to learn 25 

hidden knowledge from the training data.  26 

4.1. High throughput virtual screening (HTVS) 27 

By high throughput virtual screening approaches, one needs to 28 

narrow the chemical space by defining specific building blocks 29 

and bonding rules. The model can then make hypothesized 30 

candidates, and those candidates can be tested with the help of 31 

an ML-based predictor or high-throughput simulation, such as 32 

DFT and MD.82 Here, the user defines the inputs and ensures 33 

that any combination of these inputs (fragments or building 34 

blocks of polymers) is valid. Although HTVS seems like a version 35 

of the direct approach for material design, its core philosophy is 36 

different.7, 13 First, it focuses on the data-driven discovery that 37 

includes automation and time-critical performance.7 Second, 38 

HTVS possesses a computational funnel with promising 39 

candidates assessed by more expensive methodologies.7 40 

Feedback between theory and experiment is a crucial 41 

ingredient. It is true that the validity of the generated structures 42 

by HTVS is higher than that of the ones generated from GM, but 43 

the generation is limited to the hypothesized chemical space.14, 
44 

82  45 

To generate novel polyimides (PIs) with exceptional 46 

refractive index (RI), Afzal et al. defined 29 building blocks for 47 

PIs’ core structures.82 Definition of 29 building blocks (see Fig. 48 

8B) and their bonding rules are shown in Fig. 8A. They initially 49 

generated 6.6 billion compounds. To restrict the search among 50 

a more manageable number of candidates, they chose only the 51 

most promising 100 R1 and 100 R2 with high RI values, resulting 52 

in 10,000 PI candidates. R1 and R2 are arranged in the polyimide 53 

structures (Fig. 8A). The possible molecular building blocks used 54 

to create R1 and R2 are represented in Fig. 8B. R1, represented 55 

by green shapes, are linkers and can be chosen from 6 possible 56 

linkers in the polyimide structure. R2, shown by blue shapes, are 57 

moieties and can be chosen from 23 possible hetero-aromatic 58 

moieties in the polyimide structures. Also, R in molecular 59 

building blocks (in Fig. 8B) defines allowed sites for linking. 60 

Finally, they utilized the HTVS approach to screen them for the 61 

best candidates with the highest IR.  62 

 63 

 64 

Moreover, we can employ simulation results to provide 65 

feedback for chosen candidates. Accordingly, with guidance 66 

from a high throughput hierarchal modeling scheme that is 67 

involved combinatorial exploration based on DFT followed by 68 

successive screening, Treich et al. synthesized novel dielectric 69 

materials with high energy density for film capacitors. They 70 

considered the organic polymers that were formed by linear 71 

combinations of seven basic chemical building blocks.83  72 

When experienced chemists have hypotheses that can 73 

define a narrowed screening space, they employ HTVS to exploit 74 

the space.84 Manually performing a HTVS is computationally 75 

expensive and even impossible for many cases as it requires 76 

computational capabilities that allow a large number of 77 

   

  

  

Fig. 7 Schematic of CG polymer presentation and property coloring featurization. (A) 

Bead types and topologies of polymers. α and β are backbone while γ and δ are pendant 

beads that can form 10 different building blocks (BBs). (B) Three classes of polymers. 

Class I represent regular copolymer with four BBs. Class II shows random polymers with 

four BBs. Class III are regular polymers with a repeat pattern of eight BBs. (C) Filters are 

used to produce a convolved image that is then flattered to a feature vector. 

Reproduced from Ref.41 with permission, Copyright 2020, AAAS. 
  

  

Fig. 8 Genral Polyimide structure and molecular building blocks. (A) A Polyimide (PI) 

core structure with residues R1 and R2. (B) Molecular building blocks used for R1 and 

R2. R in building blocks shows allowed sites for linking. (B1-B6) are linkers marked in 

green, and blue ones. B7-B29 are hetero-aromatic moieties. Reproduced from Ref.82 

with permission. Copyright 2019, American Chemical Society. 
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calculations to run parallelly.13 Going beyond the existing 1 

hypotheses and broadening the search space need more 2 

intelligent approaches. As proposed by Knapp et al., automation 3 

is a potential solution.13 In the next section, we review some 4 

advanced algorithms, i.e., GO and GMs, for the inverse design 5 

of polymers. They can catch hidden information from a 6 

structure-property-paired database for generating novel 7 

structures that do not exist in the database.  8 

4.2. Global optimization (GO) 9 

GO, including but not limited to Bayesian optimization (BO), 10 

particle swarm optimization (PSO), and genetic algorithm (GA), 11 

finds optimal solution of the target objective function and can 12 

be employed in the inverse design of polymers.84 Multi-13 

objective optimization needs a fitness function to consider how 14 

the global objective is created by the individual objectives. The 15 

evaluation of polymer candidates to check whether they meet 16 

the desired property objectives, i.e., computation of fitness 17 

function, is a crucial component of GO-based algorithms.85 One 18 

consideration when defining a fitness function is to normalize 19 

the objectives to minimize their differences.  20 

4.2.1. Bayesian optimization (BO) 21 

Bayesian optimization (BO) is a sequential design strategy 22 

without assumption of any functional forms. Many material 23 

tasks can be considered as the optimization problems where 24 

controllable parameters must be updated to reach desired 25 

objectives. A proper optimization algorithm should be noise-26 

tolerant, global, and convergent with as few inputs as possible. 27 

Satisfying these requirements, BO is a systematic approach to 28 

find a global optimum of an unknown function f which is 29 

expensive to be evaluated.86 87-89 30 

BO is constructed by Bayes’ theorem where a joint 31 

distribution can be decomposed hierarchically into product of 32 

conditional and marginal distributions in the following formula:  33 

 𝑃𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝑆|𝑌 ∈ 𝑈) ∝ 𝑃𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝑌 ∈ 𝑈|𝑆)𝑃𝑝𝑟𝑖𝑜𝑟(𝑆) (1) 

Where Pposterior(S|Y) is the posterior probability of a model, 34 

hypothesis, or theory S given input data (observations) Y. It is 35 

proportional to the likelihood of Y given S multiplied by the prior 36 

probability of S.90 When specifically applied to the polymer 37 

design, S can be a polymer structure for which the polymeric 38 

properties Y lie in a desired region U.68 With a desired region U 39 

given Y, it affords 𝑃𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝑌 ∈ 𝑈|𝑆) , the probability that 40 

defines goodness of fit of S with respect to the property 41 

requirement. Pprior(S) can be used to reduce the occurrence of 42 

chemically unfavorable or unrealistic structures and then assign 43 

lower probability to them. 44 

Wang et al. proposed an ML-assisted coarse-grained 45 

molecular dynamic (CGMD) model to design highly conductive 46 

polymer electrolytes.88 They created a continuous high-47 

dimensional design space from a discrete chemical space by 48 

coarse-graining the chemical species (Step 1 and Step 2 shown 49 

in Fig. 9). They then employed a BO algorithm to efficiently 50 

explore this space via autonomous CGMD simulations to predict 51 

the relationships between the transport properties and the 52 

associated CG parameters (Step 2 and Step 3 shown in Fig. 9). 53 

The constructed design space and the corresponding material 54 

properties served as the input and output of the model, 55 

respectively. They then employed a BO algorithm to efficiently 56 

explore this space via autonomous CGMD simulations to predict 57 

the relationships between the transport properties and the 58 

associated CG parameters (from 2 to 3 in Fig. 9). The 59 

constructed design space is input, and the target material 60 

property is the output of the model.  61 

The procedure of running the BO algorithm includes the 62 

following steps: (1) select a prior for the possible space of 63 

function f; (2) estimate the posterior given the prior and current 64 

simulation data; (3) employ the posterior to decide the next 65 

calculation to evaluate according to an acquisition function; (4) 66 

obtain the new data from the simulation. They iterated 2-4 67 

steps to explore the CG design space until convergence.  68 

 69 

 70 

Accessing large high-quality data in polymer research is still a 71 

big challenge, sometimes making it difficult to simply use just 72 

one GO for inverse polymer design. To tackle this challenge, Wu 73 

et al. employed a combination of BO and a sequential Monte 74 

Carlo (SMC) method for the discovery of polymers with high 75 

thermal conductivity.68 Their model creates a chemical space 𝑆 76 

(encoded by SMILES symbols) consisting of polymer repeat units 77 

(monomers), for which nth polymeric properties 𝒀 = (𝑌1, … , 𝑌𝑛) 78 

lie in a desired region U. They then employed Bayes’ law to 79 

invert the forward model (𝑆 → 𝒀) to obtain a backward model 80 

𝑝(𝑆|𝒀 ∈ 𝑈)(𝒀 → 𝑆). They. then used a sequential Monte Carlo 81 

(SMC) method to draw random samples represented by the 82 

SMILES strings (S) from high-probability regions of the backward 83 

model. Since the experimental thermal conductivity data was 84 

limited, when constructing the BO model, they considered 85 

proxy properties of glass temperature (Tg) and melting 86 

temperature (Tm) which are in correlation with the thermal 87 

conductivity as the alternative targets. In addition, they use 88 

extended connectivity fingerprints of the SMILES as the input of 89 

their prediction model. They designed the monomers but with 90 

smaller training datasets compared to other molecular 91 

generative models using standard SMILES representation.31, 35, 
92 

91  93 

4.2.2. Particle swarm optimization (PSO) 94 

In PSO, a bunch of optimizers (particles or agents) moves in a D-95 

dimensional search space. Each agent is composed of four 96 

vectors, namely position, velocity, the best position found by 97 

itself based on the objective function, and the best position 98 

found by its neighbors.  99 

Multiblock polymers are a class of soft materials with 100 

spontaneous self-assembly into a variety of ordered 101 

mesophases at the nanoscale.92 Khadilkar et al. employed PSO 102 

Fig. 9 Illustration of a CGMD-BO framework. A coarse-graining process transforms the 

chemical space to a continuous space composed of CG parameters (from 1 to 2). BO 

algorithm explores the space to predict the properties with given CG parameters (from 

2 to 3). Reproduced form Ref.88 Copyright 2020, American Chemical Society. 
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as a global optimizer combined with a forward prediction 1 

engine to the inverse design of polymers that have target bulk 2 

morphologies.92 The relevant variables are the polymer 3 

architecture parameters, namely chain block fractions, blend 4 

fractions, and interaction strength. They employed PSO in 5 

multicomponent search spaces. They used PSO for 6 

homopolymers and diblock copolymers. The 4-dimensional 7 

search space is restricted to only the block fraction of the 8 

diblocks. One can refer to their paper for the details on the 9 

optimization approach and parameter selection. One way to 10 

broaden the use of PSO is by directly targeting properties 11 

instead of through structures that were conducted in their 12 

research. Kumar et al. conducted high-accuracy tunning of 13 

poly(2-oxazoline) cloud point via machine learning techniques. 14 

They defined a design space of four repeating units and a range 15 

of molecular masses. 93 They performed inverse design via PSO 16 

with design selection using a group of neural networks, 17 

designing, and synthesizing 17 polymers at 4 target cloud points 18 

from 37 to 80 °C.  19 

4.2.3. Genetic algorithm (GA) 20 

Genetic algorithm (GA) is an evolution-based search algorithm 21 

that can tackle the problem of inverse polymer design. It uses 22 

the idea of natural selection with steps of crossover, mutation, 23 

and selection. GA is a type of evolutionary algorithm that 24 

mimics the “survival of the fittest” to design or optimize a 25 

desired structure with target properties.94 Meenakshisundaram 26 

et al. conducted a GA to design sequence-specific copolymers 27 

from data generated by molecular dynamic (MD) simulations.94 28 

The copolymers consist of 20 repetitive units of two types of 29 

monomers, which are represented by 0 and 1 binary numbers. 30 

The GA determined the fitness of each candidate by analyzing 31 

the results calculated from the MD simulations. 32 

Kim et al. combined GA with ML-based predictive models to 33 

design polymers possessing useful property criteria.85 To do 34 

that, first, they used hierarchical polymer fingerprinting 35 

(explained in the representation part) to represent the 36 

polymers followed by a Gaussian process regression to map the 37 

structures to properties.87 They then use GA to evolve 38 

generations of polymer candidates toward targeted objectives. 39 

To design polymers with target properties of glass transition 40 

temperature (Tg) of > 500 K and bandgap (Eg) of > 6 ev, Tg and Eg 41 

are included in the fitness function. Later, the ML-based 42 

predictive models can check the candidates from this fitness 43 

function. The GA process follows three steps.  44 

1. Beginning with a randomly generated polymer candidates, 45 

they used crossover and mutation to produce new polymer 46 

candidates by changing the chemical building blocks and their 47 

sequence (Fig. 10A). They extracted 3,045 building blocks with 48 

1 to 4 endpoints from ~ 12,000 reference polymers (Fig. 10B). 49 

Endpoints represented by “ ” act as a connection between 50 

chemical building blocks.85 For example, one homopolymer has 51 

a monomer with two endpoints. They initiated 100 polymers 52 

consisting of 8 building blocks in their repeat units. During 53 

crossover, offspring were generated from two parent polymers 54 

with one random segment. The mutation was also utilized to 55 

diversify the “gene pool”. During the evolution, offspring 56 

polymers that do not follow chemical rules or polymer 57 

assembling rules were removed. 58 

2. The ML models were used to predict the properties of the 59 

generated candidates and evaluate their fitness outcome from 60 

the proposed fitness function. 61 

3. The best candidates as parent polymers in each generation 62 

were kept for the next-iteration evolution.  63 

The mentioned steps were iterated until enough polymer 64 

candidates with desired properties were generated. They used 65 

two properties Tg and Eg for evaluation purposes (shown in Fig. 66 

10C). 67 

GA starts with a randomly generated initial population with 68 

no prior knowledge, while they can improve the generated 69 

candidates with the feedback from ML-based prediction 70 

models.85 Obviously, the prediction models need labeled data 71 

to learn how to map the structures to specific properties. To 72 

accelerate the optimizations and evolutions, one can bias the 73 

initial population towards the favorable building blocks with the 74 

assistance of prior knowledge to narrow the searching space.85 75 

Although GAs are general-purpose, stochastic, evolutionary 76 

search and optimize strategies, there is no guarantee of their 77 

convergence.95 Moreover, their performance depends on the 78 

internal parameters that need trial and error to be tuned.96 79 

 80 

 81 

      

   

Fig. 10 A GA framework for polymer design. (A) Iterative evolution of polymer 

generation (B) demonstration of polymers with four chemical building blocks 

(fragments) through crossover and mutation. (C) improvement of generated polymers 

possessing higher combination of Eg and Tg. 10 of the best offspring polymers kept as 

parents for the next iteration. Reproduced from Ref.85 with permission. Copyright 

2020, Elsevier. 
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4.3. Generative models (GMs) 1 

Recent advances in ML have introduced powerful probabilistic 2 

generative models (GMs) capable of generating realistic 3 

synthetic samples after being trained on real samples.6 From a 4 

statistical point of view, with an observable variable X and a 5 

target variable Y, a GM estimates a joint probability distribution 6 

of X and Y, P(X, Y). P(X, Y) can later be used to generate new data 7 

similar to the existing data.97 GMs can encode the high-8 

dimensional chemical space into the continuous latent space 9 

with a lower dimensionality, from which the new data is 10 

generated.6 In this section, we summarize the state-of-the-art 11 

deep learning approaches that have been used for inversely 12 

designing polymers with targeted properties. Fig. 11 represents 13 

schemes of four DL-based GMs, namely recurrent neural networks 14 

(RNNs), variational autoencoder (VAE), reinforcement learning (RL), 15 

and generative adversarial networks (GAN). 16 

 17 

 18 

4.3.1. Recurrent Neural Network (RNN) 19 

Recurrent neural network (RNN) is designed to predict the 20 

future event based on the current and past information, as 21 

shown in Fig. 11.98 Unlike other feed-forward networks that 22 

need static input data, RNN can handle arbitrary input 23 

sequences.99 The current input vector, x(t), and the past 24 

knowledge, h(t-1), are concatenated to a complete input vector 25 

at the time step t. Learning the information from the previous 26 

iterations makes RNN suitable for generating sequential data, 27 

where the information about the future is highly conditioned on 28 

the past information and current input.60 100, 101 RNNs have been 29 

widely and successfully employed in molecular drug design.100, 
30 

102-105  31 

One challenge of applying RNNs to the polymer design is the 32 

large size of the polymer sequence. Polymers have long, 33 

complex structures. For a generative model, it should enable 34 

capturing the long-term temporal dependencies during the 35 

generation procedure. RNNs can remember previous 36 

information, such as previous characters if polymer chains are 37 

represented by SMILES, to learn dynamic behavior for the 38 

future generation steps. The original vanilla RNNs (Fig. 10), 39 

however, suffer from issues of vanishing and exploding 40 

gradients, limiting their ability in learning long-term temporal 41 

dependencies.106 The gradients include information used to 42 

update the parameters of the RNNs. Vanishing gradients 43 

happen when the updates are insignificant, resulting in no real 44 

learning. Exploding gradients, on the other hand, happen when 45 

the updated parameters are too large, making the model 46 

unstable. 47 

By applying a gradient clipping technique, one can limit the 48 

magnitude of gradients to prevent exploding gradients, while 49 

the vanishing gradients can be addressed by several gating 50 

mechanisms.106 These mechanisms are implemented in two 51 

well-known variants of RNNs: long short-term memory 52 

(LSTM)107 and a gated recurrent unit (GRU)103.102 An LSTM 53 

network has three gates to regulate the flow of information, 54 

namely forget gate, input gate, and output gate.107 Given the 55 

new information, the forget gate decides what information the 56 

cell state should forget. The input gate determines the newly 57 

encoded information from the new inputs. Finally, the output 58 

controls what information should be sent to the next step.107 59 

The cell state derivative prevents the LSTM gradients from 60 

being vanished. GRU has a similar mechanism as the LSTM but 61 

with only two gates: the update gate and the reset gate.99 These 62 

two gates decide which hidden state information should be 63 

updated. In both LSTM and GRU, the networks learn to skip 64 

irrelevant temporary information. Cheng et al. provided in-65 

depth discussion of LSTM and GRU by empirically comparing 66 

their performance.103 67 

LSTM and GRU have been used to predict protein functions 68 

with given sequences as well as the aqueous solubility of drug-69 

like compounds.106 Popova et al. employed a Stack-RNN with a 70 

newly defined cell structure added to the regular GRU cell to 71 

learn long-term interdependencies with a target of designing 72 

new molecules.108 With the development of LSTM and GRU, 73 

RNNs have shown increased power for polymer design. Ma and 74 

Luo employed an RNN for the generation of 1-degree polymers 75 

(i.e., monomers) using SMILES representations.60 As shown in 76 

Fig. 12, the future output (o-cell) is the result of the hidden state 77 

(h-state) using the previous step (memory about the past) and 78 

the current step (present input).60 They repeat the loop for 79 

many iterations, and the performance of RNN in each iteration 80 

is assessed by the ratio of the valid samples. However, their 81 

work has two limitations. First, it can only be used for 82 

Fig. 11 DL-based algorithms for GMs. From top to bottom: Recurrent Neural Network 

(RNN), Variational Autoencoder (VAE), Reinforcement Learning (RL), and Generative 

Adversarial Network (GAN). 
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generating simple polymers (i.e., monomers). Second, their 1 

generation process is not considered inverse design since they 2 

did not target any property in advance. 3 

 4 

 5 

4.3.2. Variational Autoencoder (VAE) 6 

A variational autoencoder (VAE) proposed by Kingma et al.109 7 

employs a variational inference framework to estimate the 8 

input data distribution p(x) and can be trained with gradient-9 

based methods.98 It uses an encoder-decoder architecture to 10 

reconstruct the input features (or material representations) x 11 

and the output �̂� in a two-step process (Fig. 11).6 The encoder 12 

constructs a continuous vector in the latent space from the 13 

input features, while the decoder converts these continuous 14 

vectors back to the input features. A continuous representation 15 

allows better usage of powerful gradient-based optimization 16 

models to decode random vectors and interpolate structures. 17 

Then novel and valid chemical structures can be generated by 18 

simple operations in the latent space, such as interpolating 19 

between the sampled random vectors of the chemical 20 

structures.6 Furthermore, a continuous representation allows 21 

the usage of powerful gradient-based optimization approaches 22 

to decode random vectors and interpolate structures more 23 

smartly.6 Bombarelli et al. employed the VAE framework to 24 

ensure that samples in the latent space correspond to valid and 25 

novel molecular structures.6 26 

VAEs can be utilized for the inverse design of materials as they 27 

bridge the gap between neural networks and probability 28 

models for a large and complicated dataset.106 Jørgensen et al. 29 

proposed a grammar variational autoencoder (GrammarVAE) 30 

for inverse design of a class of donor-acceptor polymers.110 They 31 

used SMILES representations combined with grammar rules to 32 

increase the validity of the generated SMILES. The grammar 33 

rules are changed by the decoder so that it can only generate 34 

syntactically valid strings. 35 

Batra et al. utilized a syntax-directed VAE combined with 36 

Gaussian process regression (GPR) predictive models to 37 

discover polymers with targeted properties. In this work, they 38 

introduced crucial modifications in SMILES grammar and 39 

polymer-specific semantics to increase the validity of the 40 

generated structures.111 To do that, they first converted the 41 

SMILES strings to parse trees. They then utilized context-free-42 

grammar parse trees as input for the encoder to convert them 43 

to continuous latent vectors. The derived latent vectors 44 

containing chemical and structural information help to build 45 

accurate predictive models for property predictions. To design 46 

innovative polymers possessing targeted properties, they 47 

employed simple enumeration followed by a generative 48 

interpolation approach. 49 

4.3.3. Reinforcement learning (RL) 50 

Reinforcement learning (RL), designed to tackle dynamic 51 

decision challenges,108 includes analysis of possible actions and 52 

approximation of the statistical relationship between the 53 

actions and possible outcomes. They are reinforced by the 54 

determination of a treatment regime that is optimized towards 55 

the most desirable outcomes.112 Very recently, RL achieved 56 

better performance than humans in the game of Go,113 which 57 

has the complexity of 10140 possibilities.114 It is analogous to the 58 

complexity of chemical space, which makes RL-based networks 59 

suitable to be applied to the inverse design of materials.108   60 

As an example of the most successful works in RL for 61 

materials design,63, 115, 116 Popova et al. proposed a deep RL 62 

(DRL) for generating chemical compounds with desired physical, 63 

chemical, and activity properties (see Fig. 13).108 They combined 64 

two deep neural networks (a generative model (G) and a 65 

predictive model (P)) in the DRL framework. Playing the role of 66 

an agent, G generates novel molecules. Playing the role of a 67 

critic, P outputs the properties of the novel structures and 68 

assigns a numerical reward/penalty to the candidates. G learns 69 

to maximize the reward by improving the generated structures 70 

with properties close to desired ones. 71 

 72 

 73 

4.3.4. Generative adversarial networks 74 

A generative adversarial network (GAN) includes two 75 

competing networks of a generator and a discriminator.117 The 76 

generator generates sample data from random noise, while the 77 

discriminator examines the data to judge whether it is 78 

synthesized (fake) or sampled from the training dataset 79 

(real).117 Competition of the generator and the discriminator 80 

Fig. 12 An RNN architecture for the generation of homopolymers. In an RNN, O-cell 

generates future output, while h-cell (hidden state) is memory about the past, and X-

cell is present input, where U, V, and W are parameters. Reproduced from Ref.60 with 

permission, Copyright 2020, American Chemical Society.

Fig. 13 A workflow of an RL algorithm for a compound generation. Reproduced with 

permission from Ref.108, AAAS. 
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improves both networks in such a way that the generator can 1 

generate so real data that the discriminator cannot distinguish 2 

them.98 GANs are well known for their ability to learn complex 3 

high dimensional data and reproduce them by following similar 4 

distributions.62 Among various DL algorithms, GANs bring in a 5 

breakthrough for materials discovery.118 GANs can utilize 6 

different architectures such as CNNs,34 AEs, and RNNs to 7 

implement the algorithms.62 Meanwhile, GANs also suffer from 8 

a serious issue of mode collapse. Among various solutions, 9 

minibatch discrimination and feature mapping have been 10 

introduced to solve this issue.119 Another way to avoid mode 11 

collapse is to penalize the model if it generates repetitive (non-12 

unique) sequences.62 Although fully-connected networks have 13 

been used for the original GAN model,117 recent studies have 14 

utilized different architectures such as CNNs,34 AEs, and RNNs.62  15 

To enable on-demand data generation, the unsupervised 16 

GAN model can be modified by adding labeled information as 17 

the input condition, which is named the conditional GAN 18 

(CGAN).120 Following CGAN, auxiliary classifier GAN (ACGAN) 19 

adopted discrete and qualitative labels in the objective function 20 

for training the ACGAN, which makes the model suitable for 21 

discrete and qualitative labels.121 Improving ACGAN, a semi-22 

supervised reg-GAN was developed for generating images from 23 

quantitative labels. However, the reg-GAN distinguishes the 24 

synthesized data from the real data by predicting the label first, 25 

then compares the difference between the predicted and the 26 

desired ones. To do that, a pre-set range of numbers is needed, 27 

which requires human intervention. Since their birth, GANs 28 

have transformed various fields ranging from image, speech, to 29 

materials science.122 Nevertheless, these aforementioned GANs 30 

do not meet the criteria for generating material structures with 31 

explicitly given properties (represented by continuous labels) 32 

due to the lack of a mechanism of generating data in a 33 

regressional and conditional manner. In a study proposed by 34 

Dong et al,34 to overcome the limitations in the previous GANs, 35 

they demonstrated a regressional and conditional GAN 36 

(RCGAN), which meets two criteria for inverse design of 37 

materials: 1) it generates distinguished structures from the real 38 

structures used for training; 2) it can accurately perform a 39 

generation task based on input quantitative labels. RCGAN can 40 

be potentially used for inversely designing molecules and 41 

polymers. As RCGAN uses a convolutional neural network (CNN) 42 

architecture, the generator generates all structures at once. But 43 

in an RNN architecture that has been employed in most GANs 44 

for the molecular inverse design, the generator generates a 45 

single character of a SMILES string at once. CNN-based GANs are 46 

more suitable for bigger systems such as polymers. Although 47 

RNN-based models may generate structures with higher 48 

validity, they are much more expensive for computing 49 

polymeric systems.  50 

4.3.5. Hybrid architectures 51 

Some hybrid architectures that combine GANs with other 52 

algorithms, e.g., RL, to tackle the challenge of inverse design of 53 

polymers have been proposed. Although GANs have been 54 

widely employed in drug and molecule inverses design, their 55 

application in polymers design faces grand obstacles.26 First, 56 

even with a properly defined polymer representation, the input 57 

data is larger and more computationally expensive than that of 58 

molecules. Second, one needs to consider the polymer 59 

architecture that defines the way of branching or networking of 60 

the polymer chains.123 With a longer sequence of data, one 61 

needs to modify the architecture of a generator to handle this 62 

challenge.95, 96 For a GAN model, for example, it is more difficult 63 

for the generator to mimic the real data in a way that the 64 

discriminator cannot distinguish them from the real 65 

structures.98 RLs, on the other hand, can be used to tune the 66 

properties of the generated samples toward desired values. 67 

Researchers combined various GANs structures with RL 68 

components in a way to direct the generator to generate 69 

molecules with targeted properties (see ORGANIC framework in 70 

Fig. 14).35, 62, 124 The RL components add a reward to the 71 

discriminator to bias the employed RNN generator to create 72 

structures with a single or a set of target properties. The focus 73 

of this kind of hybrid model (combination of GANs and RL) is to 74 

generate a bunch of samples that follow a targeted range of 75 

properties (a proper distribution). So far, mentioned hybrid 76 

models were conducted for molecule design. It is envisioned 77 

that such hybrid architectures will emerge for inverse polymer 78 

design.  79 

 80 

5. Conclusion 81 

Within this review, we have systematically surveyed the recent 82 

progress on the inverse design of polymers. First, the 83 

prerequisite, i.e., numerical representations of polymers that 84 

save as much as structural and topological information, was 85 

summarized. Then, three mainstream data-driven algorithms 86 

including HTVS, GO, and GMs for inverse design were outlined 87 

and their advantages and disadvantages were discussed. 88 

Although the inverse design has been advanced in the past 89 

decade, many challenges remain to be addressed. Two main 90 

ones as follows are considered as the most interesting and 91 

pressing.  92 

5.1. From homopolymers to complex polymers 93 

Polymer informatics tools have been recently growing for 94 

efficiently designing new polymers possessing targeted 95 

properties. However, as we discussed in the previous sections, 96 

most of the data-driven algorithms focus on molecules or 97 

homopolymers.74 With simple modifications, molecular 98 

representations, such as SMILES, can be used to represent 99 

Fig. 14 Schematic of hybrid architecture of ORGANIC, with three fundamental 

components: a generator, a discriminator, and a reinforcement metric.  Reproduced 

from Ref.35
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homopolymers.105, 125, 126 However, for more complex polymers 1 

such as copolymers, polymer blends, and polymers with 2 

additives, the simple extension may not be applicable.40 Very 3 

recently, Kuenneth et al. attempted to address the issue by 4 

developing new representations for predicting properties of 5 

copolymers, which opens a new route to developing state-of-6 

art deep learning algorithms for copolymers design.  7 

Most of the computational data for polymers are based on 8 

DFT calculations of their monomers or small oligomeric 9 

species.4, 14 Polymers as macromolecules, however, contain 10 

more structural and conformational information. Direct first-11 

principle calculations of the whole macromolecule chains are 12 

not possible. Webb et al. proposed a targeted sequence design 13 

for copolymers in an attempt to use coarse-grained (CG) 14 

classical modeling for data generation.41 They predefined 15 

building blocks and employed feature extraction approaches to 16 

build the input representations for their deep learning model, 17 

which afforded quite impressive results.  18 

5.2. Architectures of polymers 19 

Defining design space of polymers is critical for polymer design. 20 

In most works of inverse polymer design, researchers consider 21 

a simplified and restricted design space while ignoring the 22 

structural complexity of polymers such as their architectures.123 23 

Architectural features such as branches, stars, and 24 

bottlebrushes of the polymers can largely affect their physical 25 

properties, including solubility in different solvents, glass 26 

transition temperature. They can be even crucial for some 27 

biopolymers such as DNA polymerized from four different 28 

monomers. Srinivasan et al. employed a genetic algorithm (GA) 29 

to design DNA-grafted particles that self-assemble into desired 30 

crystalline structures.95 The employed GA framework initiates 31 

the DNA-grafted particle population for predicting 32 

superstructures formed using these building blocks.  33 

5.3. Active learning 34 

One significant challenge of applying data-driven algorithms of 35 

inverse materials design is the lack of sufficient high-quality and 36 

labeled data. To tackle this challenge, one can employ active 37 

learning, a paradigm in which the ML models direct the learning 38 

procedure themselves through dynamic suggestions for the 39 

next iteration of operation.127, 128 Kim et al. employed active 40 

learning for the discovery of polymers with high glass transition 41 

temperatures (Tg). Starting with an initial small dataset of 42 

polymers, they use an ML-based predictive model in 43 

conjunction with an active-learning framework to iteratively 44 

add the new candidates. The active learning model decides the 45 

range of exploitation and exploration for selecting the next 46 

experiment. In this design, having an accurate predictive model 47 

is important. In addition, employing a suitable representation 48 

system for the polymers is crucial. Active learning for inverse 49 

design of polymers begins with utilizing hybrid GMs, elaborated 50 

in previous sections, to generate candidates possessing 51 

targeted properties. Then an active learning architecture can be 52 

used to provide feedback to guide the model to generate 53 

innovative structures with properties outside the range of the 54 

training dataset. This can be a method of doing extrapolation.  55 
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