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Abstract

Heat capacity (Cp) of polymers is an essential property for diverse applications,

such as energy storage systems, electronics thermal management, and thermal insula-

tion. In this study, we explore a transfer learning framework to predict polymer Cp,

where models are first pretrained on large datasets generated from molecular dynamics

(MD) simulations and group contribution (GC) calculations, and then fine-tuned us-

ing experimental data. We evaluate multiple machine learning (ML) models, including
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multilayer perceptrons and graph neural networks, using various molecular fingerprints

and structural descriptors. The trained models are applied to existing polymers and

virtual polymers to enable large-scale Cp prediction and screening. We analyze struc-

ture–property relationships to identify key molecular features influencing Cp and pro-

pose an updated GC model through a data-driven regression for quick Cp evaluation.

Using the predicted Cp, in combination with thermal conductivity and glass transi-

tion temperature, we search polymers for four functional categories relevant to thermal

applications: thermal interface materials, insulators, buffers, and heat spreaders. Rep-

resentative polymer candidates are identified for each category based on the combined

thermal property thresholds, demonstrating the practical relevance of predicted values

for real-world material selection. This integrated approach enables targeted selection

of polymer materials for specific thermal applications.

Introduction

Efficient thermal energy management is increasingly critical across various sectors, includ-

ing industry, electronics, and transportation, to enhance energy efficiency, reduce carbon

emissions, and ensure system reliability.1–4 A significant portion of industrial energy input

is typically lost as waste heat. Integrating waste heat recovery with thermal energy storage

technologies offers the potential to capture and repurpose this otherwise wasted energy, con-

tributing to more efficient energy practices.5 In electronics, overheating remains a primary

cause of component failures, underscoring the importance of implementing robust thermal

management strategies to maintain device performance and longevity.6 In electric vehicles,

battery performance and safety are susceptible to temperature control.7 Latent heat ther-

mal energy storage systems, which utilize phase change materials, offer an effective means

of storing and releasing thermal energy.8

For diverse applications, a comprehensive evaluation of thermal properties, particularly

thermal conductivity (TC) and specific heat capacity (Cp), is therefore vital. While ex-
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tensive research has focused on enhancing TC to improve heat transfer efficiency,9–13 Cp is

equally important because it governs a material’s ability to store thermal energy. Polymers

have emerged as desirable candidates for thermal energy storage and management because of

their unique combination of practical advantages, including low cost, lightweight, mechanical

flexibility, and ease of processing into various shapes for scalable manufacturing and integra-

tion, while also offering high corrosion resistance and inherent electrical insulation.14–19

Various approaches exist for determining polymer Cp, including experimental methods,

molecular dynamics (MD) simulations, group contribution (GC) techniques, and machine

learning (ML) models. Experimental techniques, such as differential scanning calorimetry

(DSC), provide direct and accurate measurements.20 However, they are time-consuming and

require significant sample preparation and calibration. MD simulations provide atomistic

insights and can handle a wide range of temperatures and polymer architectures,21 but

classical MD tends to overpredict Cp as quantum effects are not accounted for.22 GC methods

estimate Cp based on additive contributions of functional groups and are computationally

efficient and suitable for large datasets, but their accuracy diminishes for complex polymers

with intricate structures or interactions.23 Recently, ML models have shown great promise in

predicting Cp by learning from experimental and simulation data, offering rapid predictions

and the ability to generalize across diverse polymer chemistries.24 However, they require

large, high-quality datasets, and careful feature engineering to avoid overfitting. Overall,

integrating these methods may enable cross-validation and a balanced assessment of polymer

Cp.

Recent advances in polymer informatics have further expanded the potential of ML in

this field.25,26 For example, Bhowmik et al.24 applied Decision Tree (DT) and Principal

Component Analysis (PCA) models to predict room-temperature Cp values for 68 polymers

using experimentally derived molecular descriptors. Despite the limited dataset size, their

optimized DT model achieved testing R2 values up to 0.83 under 5-fold cross-validation,

demonstrating that physically meaningful polymer descriptors can capture key structure–Cp
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relationships. Their analysis further highlighted the dominant role of bonding, molecular-

type, and atom-type descriptors in governing polymer heat capacity, illustrating the potential

of ML for guiding polymer design even in data-scarce regimes. Building on this, Hayashi et

al.27 applied a transfer learning (TL) strategy to bridge discrepancies between MD-calculated

and experimental polymer properties, including Cp, linear expansion coefficient, and volume

expansion coefficient. Using MD-derived data as a source domain and fine-tuning neural

networks on limited experimental data from PoLyInfo, they substantially reduced system-

atic bias in Cp predictions. Specifically, while direct MD calculations exhibited large errors

(RMSE ≈ 1972 J/kg.K), transfer learning reduced the RMSE to approximately 279 J/kg.K,

corresponding to an error reduction of nearly 85% relative to raw MD predictions. These

results demonstrate the effectiveness of TL in correcting MD-induced biases and highlight its

utility for polymer thermophysical property prediction when experimental data are scarce.

Furthermore, Malashin et al.28 explored a wide range of ML approaches for predicting various

physical properties of polymers, including Cp. Utilizing a comprehensive polymer dataset,

they compared ensemble, tree-based, regularization, and distance-based regression models.

While their Random Forest models achieved R2 values up to 0.88 for certain thermal proper-

ties, the performance on Cp prediction was notably lower (R2 ≈ 0.13). This highlights both

the potential of ML to capture complex polymer behaviors and the challenges of accurately

modeling specific properties such as heat capacity, emphasizing the importance of careful

model selection and the need for improved feature representations.

In this study, we present a comprehensive TL framework for accurate and scalable pre-

dictions of Cp in polymers. The TL strategy integrates multiple data fidelities, including

(1) low-fidelity GC predictions derived from functional group analysis and MD simulations

and (2) high-fidelity experimental data. We first develop extensive GC and MD datasets

through automated workflows, including polymer system construction, equilibration, and

Cp calculation. ML models such as Multilayer Perceptrons (MLP) and Graph Neural Net-

works (GNNs) are pretrained on GC or MD data and subsequently fine-tuned with limited
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experimental data using TL, leading to improved performance compared to models trained

on experimental data alone. We also explore large language models (LLMs) with advanced

prompting strategies to complement structure-based ML approaches. By leveraging the pre-

dictive power of TL-enhanced models, we identify polymers suitable for various thermal

management applications by combining Cp predictions with thermal conductivity (TC) data

from our previous studies. Finally, we develop a data-driven GC model and analyze key

structural and physicochemical factors that govern Cp, providing both interpretability and

physical insights. The primary novelty of this work lies in the unified multi-fidelity TL

framework, large-scale Cp prediction across real and virtual polymer spaces, and system-

atic benchmarking of specialized ML and LLM-based approaches. The GC refitting and

application-oriented categorization are presented as complementary, enabling components

that enhance interpretability and demonstrate practical use of the predicted properties.

Methodology

Molecular Dynamics Simulations

To compute Cp of amorphous polymers, we employed a high-throughput MD pipeline con-

sisting of polymer model generation, equilibration, and Cp calculation using both equilib-

rium and non-equilibrium approaches. The polymer generation and equilibration stages

were adapted from our previous work.13,29 An overview of the MD workflow is illustrated

schematically in Figure 1. Polymer monomers were represented by simplified molecular in-

put line entry system (SMILES) strings.30 A Python-based pipeline built on PYSIMM31

was used to create the initial structure of amorphous polymers. This process involves gen-

erating a polymer chain for each constituent polymer through polymerization, with each

chain containing approximately 600 atoms. Force field parameters were assigned using the

General AMBER Force Field 2 (GAFF2),32 with partial atomic charges assigned using the

Gasteiger method. No quantum-chemical charge derivation (e.g., AM1-BCC or RESP) was
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performed, and charges were not refitted after polymerization; instead, Gasteiger charges

were assigned automatically and consistently to all polymerized structures to enable scalable

high-throughput simulations. GAFF2 is widely used for calculation of thermophysical prop-

erties in polymers due to its broad chemical coverage and established parameterization27,33,34

To assess the sensitivity of MD-derived Cp to force-field choice, a targeted comparison was

performed between GAFF2–GAFF and GAFF2–CHARMM using identical simulation proto-

cols. The GAFF2–GAFF comparison yields a mean absolute percentage deviation (MAPE)

of 4.8% (95% of deviations below 17.3%), while the GAFF2–CHARMM comparison exhibits

a MAPE of 14.5% (95% of deviations below ∼32.8%), indicating bounded but force-field-

dependent uncertainty. Parity plots illustrating these comparisons are shown in Fig. 2(a)

and Fig. 2(b). These results support the use of GAFF2-based MD data as a low-fidelity in-

put within the multi-fidelity learning framework rather than assuming force-field invariance.

Each polymer chain was duplicated to form a six-chain system, which was placed in a simula-

tion box with periodic boundary conditions in all spatial directions. Input scripts compatible

with large-scale atomic-molecular massively parallel simulator (LAMMPS)35 were generated

monomer polymer

polymerisation

annealing,
relaxing

amorphous
polymer

290K

310K

H
ea

tin
g

ch
ai
n

re
pl
ic
at
io
n

MOLECULAR DYNAMICS SIMULATION

GROUP CONTRIBUTION METHOD

TRANSFER LEARNING 

PRE-TRAINED MODEL FINE-TUNED      MODEL

Figure 1: Schematic workflow illustrating the process from polymer SMILES input to Cp

prediction via MD simulations and GC methods, followed by TL using experimental data.
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automatically by the python pipeline for subsequent simulations. After initialization, the

system undergoes multiple optimization steps, which are broadly classified into two stages:

initial relaxation and annealing.

Initial relaxation: Electrostatic interactions were turned off, and Lennard-Jones (LJ) in-

teractions were truncated at a cutoff distance of 0.3 nm to avoid large forces from long-range

interactions during the initial relaxation of the randomly packed system. The system was

(a)

(c) (d)

(b)

Figure 2: (a) Comparison between Cp calculated using GAFF2 and GAFF forcefields. (b)
Comparison between Cp calculated using GAFF2 and CHARMM forcefields. (c) Comparison
between EMD-predicted and experimental Cp values. (d) Comparison between NEMD-
predicted and experimental Cp values.
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first equilibrated under an NPT ensemble at 100 K for 2 ps using a 0.1 fs time step. This was

followed by heating from 100 K to 1000 K over 1 ns under the NVT ensemble. Subsequently,

the system was equilibrated at 1000 K and 0.1 atm for 50 ps in the NPT ensemble, and then

for 1 ns in the NPT ensemble while ramping the pressure from 0.1 atm to 500 atm using a

1 fs time step. SHAKE36 constraints were applied to maintain covalent bond lengths and

ensure numerical stability.

Annealing: During this stage, electrostatic interactions were re-enabled using the par-

ticle–particle–particle–mesh (PPPM)37 Ewald summation method, and the LJ cutoff was

increased to 0.800 nm. The system was equilibrated under an NPT ensemble at 1000 K and

1 atm for 2 ps with a 0.1 fs time step, then cooled to 300 K at a rate of 140 K/ns with

SHAKE constraints. A final NPT simulation was conducted at 300 K and 1 atm for 8 ns

using a 1 fs time step to achieve a stable amorphous configuration

Equilibrium MD (EMD): After equilibration, the system was simulated under NPT en-

semble at 300 K and 1 atm for 10 ns to ensure statistically meaningful sampling of thermody-

namic fluctuations. During this production run, the instantaneous enthalpy of the system was

recorded at regular time intervals. The Cp was calculated using the fluctuation-dissipation

theorem,38 which relates macroscopic thermodynamic response functions to microscopic en-

ergy fluctuations:

Cp =
⟨H2⟩ − ⟨H⟩2

kBT 2
, (1)

where H is the system enthalpy, T is the absolute temperature, and kB is Boltzmann’s

constant. The angle brackets represent ensemble averages. This approach assumes the

system is fully equilibrated and follows canonical ensemble statistics, and it has been widely

used to estimate Cp in liquids, solids, and polymeric materials.38,39

Non-equilibrium MD (NEMD): In addition to the fluctuation-based approach, we em-

ployed a direct method to estimate Cp based on the enthalpy–temperature relationship.

Initially, the system was equilibrated at 290 K and 1 atm for 2 ns. The equilibrated system

was gradually heated from 290 K to 310 K over 10 ns under NPT conditions to simulate a
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controlled temperature ramp. This range was centered around 300 K, the target temperature

for Cp evaluation. At regular intervals, the average enthalpy and temperature of the system

were computed and an enthalpy–temperature curve was plotted. Cp was then calculated as

the slope of a linear fit to the enthalpy–temperature curve:21

Cp =

(
dH

dT

)
P

. (2)

EMD vs. NEMD comparison: Both EMD- and NEMD-based approaches were evalu-

ated for estimating polymer Cp using the same set of representative systems. In both cases,

large deviations from experimental Cp were observed, consistent with the known limitations

of classical force fields in capturing quantum vibrational contributions. For EMD, the re-

sulting errors are RMSE ≈ 1950 J/kg·K and MAE ≈ 1876 J/kg·K, whereas NEMD yields

lower errors, with RMSE ≈ 1791 J/kg·K and MAE ≈ 1713 J/kg·K, indicating improved

numerical stability and reduced sensitivity to enthalpy fluctuation noise. Parity plots com-

paring EMD and NEMD predictions against experimental values are shown in Fig. 2(c) and

Fig. 2(d), respectively. Based on this comparison, NEMD was selected as the MD approach

used throughout this work to generate low-fidelity Cp data, which are treated strictly as

approximate inputs for subsequent TL analyses.

Group Contribution Method

The GC method is a well-established approach for estimating thermophysical properties of

molecules by assuming that the total property is an additive function of the contributions

from individual structural groups.40 For Cp calculations, the property of a polymer repeat

unit is expressed as the weighted sum of predefined group contributions:

Cp =
N∑
i=1

ni ·Gi, (3)
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where ni is the number of occurrences of the i-th functional group in the repeat unit, Gi is

the specific heat contribution of that group, and N is the total number of functional groups

considered.

In this work, we used a set of 32 predefined functional groups, and their corresponding

Cp contribution values adopted from the literature.40 A Python-based workflow was devel-

oped using RDKit41 to parse each SMILES string, identify all matching functional groups

in the monomer, and count their occurrences. Once the group counts were determined, each

polymer’s Cp was calculated as a linear combination of the group contributions using Eq.(3).

This method provides a rapid, structure-based estimation of Cp and serves as a complemen-

tary baseline to MD simulations and ML models. An overview of the GC-based property

prediction workflow is illustrated in Figure 1.

Machine Learning Framework

Polymer Representation

To represent polymer structures for ML, SMILES strings were transformed into a set of com-

plementary molecular fingerprints capturing local chemistry, connectivity, and topological

features. Multiple fingerprinting schemes were employed to ensure robustness with respect

to molecular representation rather than reliance on a single descriptor type. Specifically,

we used circular Morgan fingerprints (radius = 2, 2048 bits) to encode local atomic envi-

ronments, MACCS keys (166 bits) to capture standardized functional group motifs, and

RDKit topological fingerprints (2048 bits, path lengths 1–6) to represent path-based con-

nectivity patterns. In addition, atom pair and topological torsion fingerprints (both 2048

bits) were included to encode long-range atom–atom relationships and torsional connectivity,

respectively. Finally, polymer embedding fingerprints were obtained from pretrained un-

supervised models trained on the PI1M dataset, yielding dense representations that capture

broader structural and physicochemical similarities among polymers.42
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Model Architectures and Training Strategy

We employed three classes of ML models to benchmark polymer Cp prediction: multi-

layer perceptrons (MLPs), graph neural networks (GNNs), and graph rationalization with

environment-based augmentations (GREA). Together, these models span fixed-length descriptor-

based learning, graph-based learning, and interpretable rationale-driven learning.

Multilayer Perceptron (MLP): MLP models were implemented using the Keras API

with a TensorFlow backend.43 The architecture consisted of two hidden layers with ReLU

activation and dropout regularization, followed by a linear output layer for Cp prediction.

Models were trained using the MSE loss and the Adam optimizer. Key architectural and

training hyperparameters, including hidden-layer size, dropout rate, and learning rate, were

optimized using the Optuna framework44 to ensure fair comparison across representations.

Graph Neural Networks (GNNs): Graph-based models were implemented using the

torch-molecule library.45 We evaluated two widely used architectures, Graph Isomorphism

Networks (GIN)46 and Graph Convolutional Networks (GCN),47 which differ in expressive

power and message-passing formulation. Hyperparameters related to network depth, em-

bedding dimension, normalization strategy, learning rate, and regularization were optimized

using Optuna. These choices were guided by dataset size and the requirements of the transfer-

learning framework.

Graph Rationalization with Environment-based Augmentations (GREA): The

GREA model was also implemented using torch-molecule.45 Unlike conventional GNNs,

GREA explicitly identifies graph rationales, i.e., subgraph structures most responsible for

property prediction, and augments training with environment-based perturbations. This

design improves interpretability and robustness by encouraging the model to focus on chem-

ically meaningful substructures. Hyperparameters governing the graph encoders, embedding

dimension, regularization, and rationale size were optimized using Optuna.
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Transfer Learning Strategy

To enhance the prediction accuracy of polymer Cp using limited experimental data, we em-

ployed a two-stage TL approach. The philosophy behind transfer learning is that models

pretrained on large proxy datasets (e.g., MD or GC results) can capture general structure–

property relationships that are also relevant to experimental Cp. These learned representa-

tions provide a strong starting point, such that fine-tuning on limited experimental data does

not begin from scratch. All polymers appearing in the experimental dataset are explicitly

excluded from the MD and GC datasets prior to pretraining and calibration, ensuring that no

experimental information is used during proxy-data training and eliminating any possibility

of data leakage. All TL models were evaluated using a nested cross-validation (nested CV)

framework. An outer cross-validation loop defines held-out experimental test folds, while

an inner cross-validation loop is used exclusively for hyperparameter optimization. In our

workflow, models such as MLP, GNN, and GREA were first pretrained on large MD or GC

datasets, then fine-tuned on experimental data. For each outer CV fold, pretraining is per-

formed on the proxy dataset after excluding any polymers that appear in the corresponding

experimental folds, ensuring strict separation between proxy and experimental data. The

pretrained model is then fine-tuned only on the experimental training data of the outer fold,

and final performance is evaluated on the held-out experimental test fold. Before fine-tuning,

we reset the final predictor layers with Xavier uniform initialization for weights and zero ini-

tialization for biases, helping mitigate overfitting and improve adaptation to experimental

data. During fine-tuning, the network architecture learned during pretraining is kept fixed,

while training-related hyperparameters, including learning rate, batch size, weight decay,

and early stopping criteria, are optimized within the inner CV loop. A reduced learning rate

is used during fine-tuning relative to pretraining to promote stable convergence while retain-

ing transferable representations. Hyperparameter tuning was conducted using the Optuna

framework, optimizing parameters such as learning rate, dropout ratio, hidden dimensions,

and training schedule parameters.
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Reproducibility Details

To enable full reproducibility, we explicitly specify preprocessing, training settings, and the

hyperparameter search used for all results in Table 1. Polymers are represented from repeat-

unit SMILES using RDKit fingerprints (Morgan radius 2, 2048 bits; MACCS 166 bits; RDKit

topological 2048 bits; atom-pair 2048 bits; topological-torsion 2048 bits) and optional seven

RDKit descriptors (MolWt, TPSA, NumHDonors, NumHAcceptors, NumRotatableBonds,

RingCount, FractionCSP3). Duplicate SMILES in the experimental dataset are consolidated

by averaging the target value. Invalid SMILES and any rows with non-finite features/targets

are removed. When descriptors are included, input features are standardized using training-

set statistics only. All models are evaluated using nested cross-validation (outer: 5 folds;

inner: 3 folds). Hyperparameters are optimized exclusively in the inner loop using Optuna

(TPE sampler) with validation RMSE as the objective. MLPs are trained with MSE loss

using AdamW and early stopping on validation loss. The EXP-only search space includes:

number of layers (2–4), hidden width (128–1024) with shrink factor (0.55–0.95), dropout

(0–0.35), learning rate (10−5–5× 10−3), weight decay (10−8–10−2), batch size (16–128), max

epochs (80–300), and patience (10–30). For transfer learning, any polymer present in the

experimental outer folds is removed from the proxy dataset prior to pretraining. During

fine-tuning, architecture is fixed and only training hyperparameters are tuned (learning rate

10−6–5×10−4, weight decay 10−8–10−2, batch size 8–64, max epochs 80–300, patience 10–40);

all layers are trainable by default.

Large Language Model-Based Prediction

To qualitatively explore the limits of general-purpose language models for polymer property

prediction, we benchmarked several LLMs, including LLaMA 4, Qwen3, GPT-4o, Gem-

ini 2.0 Flash, and Mistral Large, under zero-shot and few-shot in-context learning (ICL)

settings. Unlike traditional ML models trained on structured molecular representations,

LLMs rely on pretrained linguistic knowledge and contextual examples provided at inference
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time and do not involve model training or parameter optimization in this study.

LLMs were prompted to predict polymer Cp values using different molecular represen-

tations, including SMILES strings, IUPAC names, and functional group counts. In the

zero-shot setting, predictions were generated without examples, whereas in the few-shot set-

ting, a small number of contextual examples with known Cp values were included in the

prompt.

Few-shot examples were selected using a similarity-based strategy. Each query polymer

was represented using a Morgan fingerprint, and Tanimoto similarity48 was used to identify

structurally similar polymers with available experimental Cp data. The most similar entries

were used as in-context examples. Standardized prompts were employed to ensure consistent

numerical outputs across models. Because LLMs do not involve training or hyperparameter

tuning, prediction accuracy was evaluated using standard 5-fold cross-validation, whereas

nested cross-validation was reserved for trainable ML models to control hyperparameter

optimization bias.

Datasets

We primarily make use of three types of datasets: experimental data, and data generated

from MD simulations and GC calculations. The high-fidelity experimental Cp dataset used

in this study was manually curated from the PolyInfo database and consists of approximately

120 unique amorphous polymers with Cp values reported near 300 ± 2 K. After removing

duplicate entries and averaging repeated measurements for identical polymers, this dataset

represents the full set of reliable experimental Cp data currently available under consistent

thermodynamic conditions. Due to the limited availability of experimental Cp measurements

for polymers, no larger or fully independent external experimental dataset exists at present.

The MD dataset includes over 850 polymers whose Cp values were computed through high-

throughput NEMD simulations conducted at 300 K. The details for system preparation,
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(b)(a)

Figure 3: Distribution and structural comparison of polymer datasets. (a) Violin plot show-
ing the distribution of Cp values for the experimental (N = 120), MD-simulated (N = 851),
and GC-derived (N = 10568) datasets. (b) t-SNE visualization of the corresponding chemi-
cal space based on Morgan fingerprints, illustrating the structural coverage of each dataset.

equilibration, and Cp extraction are provided in the methodology section. The GC dataset

consists of over 10,000 polymers for which Cp values were estimated using a GC method

based on the additive contributions of 32 functional groups, corresponding to 298.15 K.

The procedure for GC-based calculation is also explained in the methodology section. In

addition to these Cp datasets, we collected SMILES strings for approximately 13,000 real

polymers from PolyInfo database49 and 1 million virtual polymers from the PI1M database,42

which was generated using a recurrent neural network (RNN) trained on real polymers from

the PolyInfo database. These SMILES datasets provide a rich molecular representation of

chemical space for virtual screening and prediction tasks. To visualize and compare the Cp

distributions across the three datasets, we employed a violin plot (Figure 3a), which combines

a boxplot with a kernel density estimate to illustrate the full distribution of Cp values for

each data source. The width of each violin indicates the density of data points at different

Cp ranges, while central lines reflect the median and interquartile range. To understand

how the molecular structures from each dataset occupy chemical space, we applied t-SNE (t-
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distributed stochastic neighbor embedding) dimensionality reduction on Morgan fingerprints

derived from SMILES strings (Figure 3b). Each point represents a polymer, and proximity

in the 2D plot reflects structural similarity in the high-dimensional fingerprint space.

Results and Discussions

To assess the suitability of GAFF2 for large-scale polymer simulations, we performed an

explicit validation by comparing MD-predicted polymer densities with available experimental

values (Figure 4a). The MD densities show good agreement with experiment, with an R2 of

0.50 and low absolute errors, indicating that GAFF2 reasonably captures equilibrium packing

and structural properties across a chemically diverse polymer set. While this validation does

not imply quantitative accuracy for all thermophysical properties, it supports the use of

GAFF2 as a consistent and physically meaningful low-fidelity proxy within the proposed

multi-fidelity and TL framework. To evaluate the accuracy of the MD-calculated Cp values,

we compared them with the experimental dataset. Figure 4b presents the parity plot between

MD predictions and experimental values. The plot clearly shows that the MD-calculated

(NEMD method) Cp values are consistently overestimated, as indicated by a high positive

mean error (ME) of +1713.79 J/(kg·K). Similar overpredictions by classical MD methods

have been reported in previous studies.21,27 One fundamental reason for this overestimation

lies in the inherent limitations of classical MD simulations, which do not account for quantum

mechanical effects. Specifically, the vibrational energy in a classical harmonic oscillator

is higher than that in its quantum mechanical counterpart at the same frequency. For

high frequency vibrational modes, they are not fully excited at room temperature ( 300 K)

according to the Bose-Einstein distribution. However, in MD simulations, which follows the

classical Boltzmann distribution, all modes are fully excited despite the temperature. This

discrepancy can be quantitatively described using the expressions for quantum and classical

heat capacities.50 The quantum heat capacity for a harmonic oscillator is given by:
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(a) (b)

(c) (d)

Figure 4: Parity plots comparing MD and GC predictions with experimental data. (a)
Comparison between MD-calculated and experimental polymer densities. (b) Comparison
between MD-predicted and experimental Cp values. (c) Comparison between bias-corrected
MD-predicted and experimental Cp values. (d) Comparison between GC-predicted and ex-
perimental Cp values. Error bars represent the experimental uncertainty in Cp, quantified
as the standard deviation obtained from multiple independently reported experimental Cp

values for the same polymer, with the mean value used for comparison. All Cp values are
evaluated at 300 K.

Cquantum = 3NkB

(
ℏω
kBT

)2
e

ℏω
kBT(

e
ℏω

kBT − 1
)2 , (4)
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while the classical value is:

Cclassical = 3NkB. (5)

From Eqs. (4) and (5), the ratio of the quantum to classical heat capacities can be expressed

as:

Cquantum

Cclassical
=

(
ℏω
kBT

)2
e

ℏω
kBT(

e
ℏω

kBT − 1
)2 . (6)

This ratio decreases monotonically with increasing vibrational frequency ω, which explains

the systematic overestimation of Cp in classical MD simulations, particularly for polymers

with stiff bonds. Previous studies have demonstrated that classical MD systematically over-

estimates thermophysical properties due to its neglect of quantum effects,51 and that the

deviation between MD-predicted and experimental Cp values increases with the average

bond-stretching and -bending force constants.27 Despite this systematic bias, the strong

correlation between MD and experimental results suggests that the discrepancy may be

addressed using data-driven correction strategies, such as TL or multi-fidelity modeling.

We examined differences between MD-predicted and experimental Cp values across different

polymer classes and structural motifs. However, only a small number of experimental poly-

mers are available within most individual polymer families. This limited coverage prevents

statistically reliable class-wise comparisons. Therefore, we focus on global trends and overall

model behavior rather than drawing conclusions about family-specific MD discrepancies.

Motivated by the systematic and largely global overestimation observed in MD-calculated

Cp values, we examined a simple empirical bias-correction as a diagnostic analysis. Specifi-

cally, MD-predicted Cp values were linearly mapped onto the experimental scale using poly-

mers common to both datasets according to

CExp
p = aCMD

p + b, (7)
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where the coefficients a and b were obtained from a least-squares fit to the overlapping

MD–experimental subset. This linear mapping primarily removes the dominant mean shift

associated with missing quantum suppression of high-frequency vibrational modes in classical

MD simulations. The resulting bias-corrected MD values illustrate that the systematic offset

in MD-calculated Cp can be reduced in principle by a simple linear correction, as shown in

Figure 4c. Importantly, this bias-correction is included only as a representative, post hoc

diagnostic to demonstrate the nature and correctability of the MD bias. Bias-corrected

MD values are not used to generate training labels, to pretrain models, or to fine-tune or

evaluate the transfer-learning framework. All reported transfer-learning results are obtained

by pretraining on raw low-fidelity labels (MD or GC) and subsequently fine-tuning using

experimental data only.

Similarly, the accuracy of the Cp values estimated using the GC method was evaluated

by comparing them with experimental data. Figure 4d presents the parity plot between GC

predictions and experimental values. The GC method yields a moderately accurate esti-

mation, with a coefficient of determination (R2) of 0.416. In contrast to the MD results,

the GC predictions tend to slightly underestimate Cp, as indicated by a negative ME of

–132.01 J/(kg·K). This underestimation is likely due to the simplified additive nature of

the GC method, which neglects long-range intermolecular interactions, conformational flex-

ibility, and cooperative effects that are inherently present in experimental systems.52 These

phenomena can contribute to enhanced heat capacity values, but are not captured in the

GC framework. Despite these limitations, a notable advantage of the GC approach is its

computational efficiency. It does not require expensive molecular simulations and allows

for rapid estimation of Cp values directly from SMILES representations. This makes GC

attractive for generating large-scale datasets for data-driven modeling.

To evaluate the utility of simulation-generated data, we employed a TL strategy using

multiple ML models trained on MD- and GC-derived Cp values. In this work, experimentally

measured Cp values are treated as the highest-fidelity data and serve as the sole reference for
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model evaluation and fine-tuning. Both MD-derived and GC-derived Cp values are used as

lower-fidelity proxy data; however, they do not form a strict linear fidelity hierarchy. Instead,

they represent distinct approximation pathways with different bias and noise characteristics.

The models tested include MLP, vanilla GNN (GIN and GCN), and GREA. Figure 1 illus-

trates the TL workflow, where models are first pretrained on either MD- or GC-derived Cp

data and then fine-tuned using the experimental dataset. The detailed implementation of

the TL framework is described in the Methodology section. A nested cross-validation scheme

with 5 outer folds and 3 inner folds was employed to obtain an unbiased estimate of model

performance while optimizing hyperparameters. In each outer iteration, one fold was held

out for testing, while the remaining data were used in a 3-fold inner loop to tune MLP hy-

perparameters based on validation loss with early stopping. Final performance metrics were

computed by pooling predictions from all outer test folds, with fold-wise mean and standard

deviation reported to quantify variability across splits. Table 1 summarizes the performance

of different TL models after pretraining on either MD or GC datasets and fine-tuning on

experimental data. Multiple molecular fingerprints were used to represent polymer struc-

tures for MLP models, while graph-based models were trained on molecular graphs with

or without fingerprint augmentation. The results in Table 1 correspond exclusively to TL

models. Performance metrics are reported as mean ± standard deviation across the 5 folds.

Initially, we evaluated MLP models using six different molecular fingerprinting methods:

Atom Pair, RDKit, Morgan, Polymer Embedding (PE), Topological Torsion, and MACCS

fingerprints. In addition to the fingerprint vectors, a set of eight molecular descriptors was

appended to the input features to improve model accuracy. These descriptors include Molec-

ular Weight (MolWt), Topological Polar Surface Area (TPSA), Number of Hydrogen Bond

Donors (NumHDonors), Number of Hydrogen Bond Acceptors (NumHAcceptors), Number

of Rotatable Bonds, Ring Count, and Fraction of sp3 Carbon Atoms (FractionCSP3). We

observed that the impact of incorporating molecular descriptors was fingerprint-dependent,

with some representations improving model performance while others led to marginal degra-
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Table 1: Performance comparison of different models and molecular fingerprints within the
TL framework, using MD- and GC-derived datasets for pretraining followed by fine-tuning
on experimental data. The results correspond exclusively to TL models. Metrics are reported
as mean ± standard deviation across 5-fold nested cross-validation.

Model Fingerprint MD GC
R2 RMSE MAE R2 RMSE MAE

MLP

AtomPair 0.12 ± 0.37 310.17 ± 26.93 230.56 ± 19.21 0.60 ± 0.18 215.01 ± 54.70 160.64 ± 29.31
MACCS 0.55 ± 0.12 235.04 ± 65.27 172.66 ± 41.10 0.50 ± 0.09 246.44 ± 64.87 177.73 ± 36.46
Morgan 0.30 ± 0.10 290.90 ± 62.26 214.14 ± 44.42 0.54 ± 0.18 235.50 ± 80.50 177.30 ± 43.51
PE 0.55 ± 0.09 236.75 ± 71.41 184.00 ± 42.65 0.56 ± 0.11 234.08 ± 72.59 183.25 ± 37.32
RDKit 0.21 ± 0.28 298.53 ± 43.91 207.48 ± 35.73 0.57 ± 0.19 224.24 ± 73.76 164.34 ± 49.64
Topological Torsion 0.27 ± 0.36 289.03 ± 107.65 214.99 ± 72.13 0.46 ± 0.20 250.92 ± 80.41 183.30 ± 61.41

MLP+Desc

AtomPair 0.29 ± 0.45 272.26 ± 47.93 222.03 ± 29.20 0.35 ± 0.39 262.28 ± 46.64 208.12 ± 30.26
MACCS 0.56 ± 0.09 233.29 ± 69.87 180.30 ± 46.80 0.52 ± 0.13 237.90 ± 54.74 179.61 ± 39.20
Morgan 0.31 ± 0.19 288.05 ± 81.28 216.93 ± 53.45 0.39 ± 0.31 259.55 ± 53.00 183.91 ± 28.21
PE 0.59 ± 0.17 222.39 ± 56.23 167.70 ± 31.74 0.60 ± 0.18 220.59 ± 87.10 159.85 ± 48.93
RDKit 0.46 ± 0.22 258.29 ± 98.34 186.01 ± 52.88 0.53 ± 0.16 237.34 ± 67.53 170.17 ± 32.48
Topological Torsion 0.32 ± 0.11 284.02 ± 51.26 208.90 ± 40.43 0.43 ± 0.10 264.64 ± 75.43 184.42 ± 47.60

Polymer-Family Split MLP(PE) 0.47 ± 0.25 264.50 ± 57.84 207.60 ± 32.43 0.45 ± 0.29 269.42 ± 56.14 199.93 ± 34.16

GREA

None 0.36 ± 0.25 276.46 ± 60.37 199.08 ± 37.83 0.43 ± 0.16 280.52 ± 63.99 199.04 ± 26.70
MACCS 0.43 ± 0.15 267.75 ± 68.19 187.78 ± 40.93 0.40 ± 0.23 289.81 ± 97.46 188.82 ± 58.65
Morgan 0.40 ± 0.13 274.88 ± 65.27 190.25 ± 42.92 0.39 ± 0.22 299.39 ± 77.13 208.49 ± 45.83
MACCS+Morgan 0.36 ± 0.30 280.74 ± 78.37 192.48 ± 47.25 0.37 ± 0.19 275.89 ± 69.63 194.27 ± 42.57

GNN

None 0.41 ± 0.22 284.32 ± 72.31 193.21 ± 33.40 0.32 ± 0.26 289.65 ± 71.84 187.17 ± 37.74
MACCS 0.44 ± 0.08 268.28 ± 69.56 187.09 ± 42.27 0.47 ± 0.22 271.54 ± 79.38 190.51 ± 37.52
Morgan 0.41 ± 0.24 284.00 ± 79.09 192.69 ± 36.79 0.42 ± 0.23 284.16 ± 88.74 192.63 ± 37.19
MACCS+Morgan 0.37 ± 0.19 282.84 ± 79.39 205.65 ± 53.59 0.43 ± 0.20 268.12 ± 84.31 191.60 ± 57.22

Combined (MD+GC)

Combined Average 0.65 ± 0.18 202.1 ± 61.9 147.4 ± 38.4
Best 0.74 ± 0.08 184.28 ± 60.3 119.09 ± 46.4

dation. Each fingerprint was tested independently, and the results are shown in Table 1. In

parallel, we also developed graph-based models, specifically GNN and GREA, which were

trained directly on molecular graph representations of the polymers. In addition to the

intrinsic graph features, we augmented the input with pre-computed molecular fingerprints

such as Morgan and MACCS, as well as their combined representation. This approach allows

the models to exploit not only the atom- and bond-level information captured by the molec-

ular graph, but also complementary global descriptors that encode connectivity patterns and

functional group presence.

To establish a fair benchmark, we trained the same model architectures directly on the

limited experimental dataset without any pretraining. As shown in Figure 5a, these direct-

training models exhibited lower performance and higher variance, likely due to overfitting

caused by the small sample size. In contrast, TL models pretrained on either MD or GC data

and fine-tuned with experimental data demonstrated significantly improved performance. TL

models pretrained on either MD or GC data and fine-tuned with experimental data demon-
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(d)(c)

(b)(a)

(e)

Figure 5: Evaluation of model performance using experimental data alone and with transfer
learning (TL). (a) Parity plot of predicted vs. experimental Cp for the model trained only
on experimental data. (b) TL model fine-tuned on experimental data after pretraining on
the MD dataset (MLP+PE). (c) TL model fine-tuned on experimental data after pretraining
on the GC dataset (MLP+AtomPair). (d) Parity plot for the averaged GC–MD ensemble,
where predicted Cp values are obtained by simple arithmetic averaging. (e) Comparison of
MAE across different model architectures and TL strategies.
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strated clear performance gains. Based on reductions in mean absolute error (MAE), the

MD-based TL model reduced prediction error by 20.5% relative to the experimental-only

model, while the GC-based TL model achieved a larger reduction of 23.8%. Additionally,

the variance across five folds was noticeably reduced, indicating improved model robustness.

The parity plots for the best-performing TL models using MD and GC data are shown in

Figures 5b and 5c, respectively. Although the experimental dataset spans diverse polymer

families, the number of samples per family is small and uneven, and several polymers be-

long to multiple classes. This limits the statistical reliability of family-resolved comparisons

and prevents robust conclusions about class-specific advantages of MD- versus GC-based

TL. Accordingly, this study focuses on global trends and model-level behavior rather than

family-specific claims. Within this scope, neither proxy is universally superior: GC-based

pretraining offers broader chemical coverage and lower noise, whereas MD-based pretraining

incorporates richer physical information but exhibits systematic bias that must be corrected

during fine-tuning.

To assess generalization beyond random splits, we performed an additional stress test

using a polymer-family holdout strategy. The experimental dataset was grouped into five

coarse classes based on backbone chemistry: (i) polyacrylics and polyvinyls, (ii) polyesters

and thioesters, (iii) polyoxides, ethers, and acetals, (iv) polyamides, imides, imines, and

urethane-based polymers, and (v) hydrocarbon and specialty polymers, including polyolefins,

halogenated, sulfur-containing, and siloxane systems. Each group was held out in turn as an

unseen test set, while the remaining groups were used for training and validation, with hy-

perparameters selected using a three-fold inner cross-validation loop. The resulting metrics,

reported in Table 1, correspond exclusively to TL models pretrained on low-fidelity MD or

GC data and fine-tuned on experimental data. Performance under polymer-family holdout

is slightly lower than that obtained with random nested cross-validation, as expected for a

chemically structured split, but remains stable across all folds. This indicates that the TL

framework can generalize across distinct polymer families within the available experimental
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domain, while acknowledging that the evaluation remains within-domain rather than fully

external.

To utilize the complementary strengths of the GC-based and MD-based predictive models,

we examined simple ensemble strategies that combine their respective predictions. When

evaluated individually, the GC-TL and MD-TL models exhibit comparable performance,

with cross-validated R2 values of approximately 0.59 and 0.60, respectively. This indicates

that neither model provides uniformly superior Cp predictions across the polymer chemical

space. For each polymer in the experimental dataset, two independent Cp predictions were

obtained, one from the GC-based model and one from the MD-based model. We then

considered a simple arithmetic averaging of these predictions. Despite its simplicity, this

ensemble approach consistently outperformed both individual models, achieving a pooled

cross-validated R2 of 0.65. The observed improvement suggests that the GC and MD models

capture partially complementary information and that averaging effectively mitigates model-

specific bias and variance. The parity plot corresponding to the averaged GC and MD

predictions is shown in Fig. 5d, where improved agreement with experimental Cp values is

evident relative to the individual models. A comparison of prediction errors based on MAE

for the experiment-only model, GC-TL, MD-TL, and the averaged ensemble is provided in

Fig. 5e. For completeness, we also evaluated an idealized upper bound in which, for each

polymer, the prediction closer to the experimental Cp value was selected between the GC

and MD models. This oracle selection yields a higher R2 of 0.74, indicating that significant

complementarity exists between the two models. While this approach is not deployable in

practice due to its reliance on experimental values, it provides a useful reference for the

maximum achievable performance attainable through optimal model combination.

Having established the performance of domain-specific ML models under the multi-fidelity

TL framework, we next examine the applicability of recent general-purpose LLMs to poly-

mer Cp prediction. This analysis is not intended to position LLMs as competitive quantita-

tive predictors, but rather to assess their current limitations for numerical regression tasks
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Table 2: Comparison of different LLM models for polymer Cp prediction using various iden-
tifiers and shot settings. Metrics are reported as mean ± standard deviation. Best results
in each column are highlighted in bold.

Model # Shots Identifier R2 RMSE MAE
Llama 4 5 SMILES 0.244 ± 0.240 346.44 ± 96.49 237.28 ± 68.99
Qwen3 5 SMILES 0.296 ± 0.23 322.09 ± 7.43 206.36 ± 13.12
GPT-4o 5 SMILES -0.07 ± 0.353 399.11 ± 44.76 269.15 ± 28.59
Gemini 2.0 Flash 5 SMILES 0.264 ± 0.24 339.66 ± 80.08 241.95 ± 53.24
Mistral Large 5 SMILES 0.111 ± 0.23 372.83 ± 77.36 267.24 ± 50.76

0 SMILES -0.622 ± 0.72 484.01 ± 109.79 396.47 ± 113.80
Qwen3 5 SMILES 0.296 ± 0.23 322.09 ± 7.43 206.36 ± 13.12

10 SMILES 0.348 ± 0.15 321.99 ± 72.45 223.52 ± 49.86
15 SMILES 0.397 ± 0.15 308.36 ± 64.69 204.99 ± 39.63
5 SMILES 0.296 ± 0.23 322.09 ± 7.43 206.36 ± 13.12

Qwen3 5 SMILES+names 0.337 ± 0.16 315.99 ± 24.75 207.87 ± 18.68
5 SMILES+group 0.327 ± 0.13 321.24 ± 38.62 223.34 ± 36.08

in polymer science without task-specific training. The models evaluated include Llama 4,

Qwen 3, GPT-4o, Gemini 2.0 Flash, and Mistral Large. These LLMs were used in an

inference-only setting and were not fine-tuned on molecular property data, allowing us to

probe whether implicit chemical knowledge alone is sufficient for quantitative prediction. A

cross-validation–based data partitioning scheme was employed in which the experimental

dataset was split into multiple folds. Few-shot prompts were constructed exclusively from

polymers in the training portion of each split, while predictions were evaluated on the corre-

sponding held-out data, preventing target information leakage and enabling fair comparison

across models and prompting strategies. We examined multiple prompting configurations

under both zero-shot and few-shot settings using 0, 5, 10, and 15 ICL examples, as well

as different input representations, including SMILES strings, polymer IUPAC names, func-

tional group descriptors, and their combinations. As summarized in Table 2, all tested

LLM configurations perform substantially worse than traditional ML models, with several

yielding negative R2 values. These results indicate that current LLM-based approaches lack

the numerical accuracy required for quantitative polymer property prediction and should be

interpreted strictly as exploratory or qualitative baselines.

Among the LLMs tested, Qwen3 produced the most accurate predictions. Notably, the
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inclusion of few-shot examples in the prompt improved model performance compared to

zero-shot settings, and accuracy generally increased with the number of examples provided.

Furthermore, supplementing the SMILES input with corresponding IUPAC names consis-

tently enhanced predictive performance. Across all evaluated LLMs and prompting settings,

SMILES-only prompts consistently yielded lower predictive accuracy than prompts com-

bining SMILES with IUPAC names, indicating that the absence of name-based contextual

information degrades LLM performance.

Despite these relative improvements, the accuracy of LLM-based predictions remains

substantially lower than that of the specialized ML models considered in this work. In several

cases, certain LLMs (e.g., GPT-4o) yield negative R2 values, indicating performance worse

than a simple mean predictor. Accordingly, LLMs are not intended to serve as competitive

predictors of polymer Cp, but are included as an exploratory baseline to assess whether

general-purpose language models can extract coarse structure–property signals directly from

polymer representations. The limited performance of LLMs in this setting can be attributed

to the possibility of lack of chemical inductive bias, the absence of explicit exposure to

thermophysical property data such as Cp during pretraining, and their reliance on syntactic

molecular encodings (e.g., SMILES) rather than physically informed molecular descriptors

or graphs. As a result, their utility in the present context is qualitative and comparative

rather than predictive. Overall, these results highlight the current limitations of LLMs

for quantitative polymer property prediction and clarify their appropriate role relative to

domain-specific ML models.

The next step in our study involved predicting Cp of polymers using the trained ML

models. We predicted Cp values of 13,000 real polymer from PolyInfo database. The distri-

bution of these predictions is shown in Figure 6a. The predicted Cp values range from 298.17

to 2048.61 J/(kg·K), with the majority of polymers exhibiting values clustered within the

1000–1200 J/(kg·K) range.

To expand the chemical space, we further applied the ML models to the PI1M database,
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(b)(a)

Figure 6: Histogram of ML-predicted Cp values for polymers in two datasets. (a) Predicted
Cp distribution for over 13,000 polymers from the PolyInfo database. (b) Predicted Cp

distribution for 1 million virtual polymers from the PI1M dataset.

which contains 1 million virtual polymer SMILES. The distribution of the predicted Cp

values for this dataset is shown in Figure 6b. The predicted values range from 106.89 to

3245.39 J/(kg·K), with the majority of polymers clustered within the 1200–1500 J/(kg·K)

range. Notably, the PI1M predictions span a broader Cp range compared to those from

PolyInfo, suggesting the presence of novel structural motifs with potentially extreme ther-

mal behaviors not captured in existing experimental databases. These large-scale predictions

demonstrate the feasibility of using ML models to rapidly screen polymer candidates for de-

sirable thermal properties, significantly accelerating the materials discovery process without

the need for costly simulations or experimental measurements.

To better understand how molecular structure influences Cp in polymers, we analyzed

the correlation between predicted Cp values and a set of structural and physicochemical

descriptors. The descriptors considered include molecular weight, number of rotatable bonds,

topological polar surface area, fraction of sp3 hybridized carbons (as a proxy for backbone

flexibility), heavy atom count, molar refractivity, ring count, and the number of hydrogen

bond acceptors. The scatter plots of Cp versus each descriptor, along with their respective

Pearson correlation coefficients, are shown in Figure 7a–h.
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Figure 7: Correlation between predicted Cp values and various molecular descriptors for the
PolyInfo dataset (N ≈ 13,000 polymers): (a) molecular weight, (b) number of rotatable
bonds, (c) topological polar surface area, (d) fraction of sp3 carbons, (e) heavy atom count,
(f) molar refractivity, (g) ring count, and (h) number of hydrogen bond acceptors. Each
scatter plot includes the corresponding Pearson correlation coefficient.

The Debye model provides a theoretical basis for estimating the volumetric heat capacity

at constant volume:53

Cv(T ) = 9nkB

(
T

ΘD

)3 ∫ ΘD/T

0

x4ex

(ex − 1)2
dx, (8)

where n is the atomic number density, kB is the Boltzmann constant, ΘD is the Debye

temperature, and T is the absolute temperature. At temperatures much higher than ΘD,

this expression approaches the classical limit:

Cv ≈ 3nkB, (9)

which represents three thermally accessible vibrational degrees of freedom per atom. In

polymers, many high-frequency bond vibrations, especially those involving C–H or C=O

stretching, are not excited at room temperature. The effective number of thermally active

modes feff is therefore smaller than the classical limit of 3n.
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For condensed polymer solids, the difference between Cp and Cv is negligible because

Cp−Cv = α2BV T ≪ Cp, where α is the thermal expansion coefficient, B the bulk modulus,

V the molar volume, and T the temperature.53 Xie et al.54 proposed a modified form of

the Debye expression for amorphous polymers by reducing the effective atomic density to

exclude hydrogen atoms that contribute only to high-frequency modes:

Cp ≈ 3nCkB = 2(n− nH)kB, (10)

where nH is the number density of hydrogen atoms and nC is the adjusted density of ther-

mally active atoms. This model reproduces experimental Cp values of amorphous polymers

with approximately 20% accuracy and emphasizes that the main contribution to Cp at 298

K arises from low-frequency torsional, skeletal, and conformational vibrations.55

Among all descriptors, the fraction of sp3 carbons shows the strongest positive correla-

tion with Cp (r = +0.82), confirming that flexible single-bonded carbon frameworks enhance

the density of low-frequency modes.56 The number of rotatable bonds also shows a positive

correlation (r = +0.36), indicating that torsional flexibility contributes to higher Cp through

low-frequency modes, whereas ring count exhibits a negative correlation (r = −0.52) because

cyclic and aromatic structures restrict conformational motion and increase local stiffness.57

Other descriptors, such as molecular weight, TPSA, heavy atom count, molar refractivity,

and hydrogen bond acceptors, show weaker negative correlations (r = −0.25 to −0.30).

Although heavier atoms tend to lower individual bond vibrational frequencies, their incor-

poration is often accompanied by bulkier or more rigid substituents that suppress accessible

low-frequency modes.57 Similarly, higher TPSA and larger numbers of hydrogen bond ac-

ceptors correspond to polar groups that form strong intermolecular interactions and further

limit structural flexibility.57 These effects collectively reduce the number of thermally active

degrees of freedom feff, leading to lower Cp. Therefore, polymers with greater conformational

flexibility exhibit higher Cp values, whereas rigid frameworks have lower heat capacities due
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Table 3: Comparison of original and refitted GC parameters for Cp at 298.15 K. GC param-
eters are defined in molar units (J/mol.K) following the Satoh formulation as compiled by
van Krevelen and te Nijenhuis.40

Functional Group COrig
p CRefit

p Functional Group COrig
p CRefit

p Functional Group COrig
p CRefit

p

–CH3 30.90 35.54 –O– 16.80 25.98 –F 21.40 32.81
–CH2 25.35 25.35 –CO– 23.05 30.71 –Cl 27.10 27.10
>CH– 15.60 15.50 –COO– 46.00 53.37 –Br 26.30 78.24
>C< 6.20 6.20 –COOH 50.00 50.00 –I 22.40 140.45
=CH2 22.60 22.60 –OH 17.00 26.41 –CN 25.00 25.00
=CH– 18.65 27.70 –NO2 41.90 41.90 –CONH– 46.00 54.00
= C< 10.50 10.50 –NH2 20.95 20.94 –SO2– 50.00 49.72
–NH– 14.25 14.24 >N– 17.10 17.10 –SH 46.80 46.80
–S– 24.05 24.00 1-sub Benzene 85.60 92.00 2-sub Benzene 78.80 85.00
3-sub Benzene 65.00 80.00

to fewer accessible vibrational modes.

While ML-based models provide accurate Cp predictions, classical GC methods remain

attractive due to their simplicity and scalability. To improve the quantitative accuracy of

GC-based Cp estimation, we next introduce a data-driven refitting strategy that leverages

large-scale predicted datasets to update the GC parameters. The methodology leverages the

predicted Cp values of 1 million polymers from the PI1M database, previously computed

using our TL-based ML model. For each polymer, we extracted functional group counts

from its molecular structure. These counts were then related to the corresponding predicted

Cp (in J/mol·K) using a non-negative least squares regression approach. The relation follows

the standard additive GC framework:

Cmolar
p =

n∑
i=1

Ni ·GCi, (11)

where Cmolar
p is the molar Cp of the polymer, Ni is the number of occurrences of functional

group i, GCi is the fitted contribution of group i to Cp, and n is the total number of functional

groups considered. The regression was constrained to produce only non-negative GC values

to maintain physical interpretability.

The regression analysis was performed using TL-predicted Cp values for 13,000 PolyInfo

polymers and 1 million PI1M virtual polymers, and the resulting refitted GC values are
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(b) (c)(a)

Figure 8: Comparison of GC model performance for Cp prediction: (a) using literature-
based GC values, (b) using GC values fitted from 13,000 PolyInfo polymers, and (c) using
GC values fitted from 1 million virtual polymers from PI1M database.

reported in Table 3 alongside the original literature-based GC parameters (Satoh formula-

tion) as compiled by van Krevelen and te Nijenhuis40 for direct comparison. To assess the

performance of the newly proposed GC, we compared predicted Cp values against experi-

mental values from the PolyInfo dataset. Figure 8a shows the parity plot using the original

literature-based GC values, which achieves an R2 value of 0.416. When recalculated using

our newly fitted GC values derived from the 13,000 PolyInfo polymers, the R2 improves to

0.484 (Figure 8b). The GC values fitted using the 1 million predicted PI1M data further en-

hance the correlation, yielding an R2 value of 0.562 (Figure 8c), which corresponds to a 35%

improvement over the original GC approach. The refitting procedure results in modest ad-

justments to the original literature-based GC values rather than introducing new functional

groups or qualitative changes. Larger deviations are observed for certain halogen-containing

groups (e.g., Br and I), which are interpreted as empirical corrections arising from correla-

tions present in the large predicted dataset rather than as physically fundamental constants.

Because the refitted GC parameters are derived from model-predicted Cp values, they neces-

sarily inherit uncertainties and biases associated with the underlying TL model. Accordingly,

these parameters are not interpreted as intrinsic physical constants, but as data-driven cor-

rections that improve empirical consistency with experimental trends within the scope of the

available data. Further experimental measurements across chemically diverse polymers will
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(a) (b)

Figure 9: (a) SHAP summary plot showing the distribution of SHAP values for each func-
tional group across the dataset, where red and blue points represent high and low feature
values, respectively. (b) Directional SHAP analysis showing the mean signed SHAP values
for functional groups. Positive SHAP values (blue bars) indicate groups that increase Cp,
whereas negative SHAP values (red bars) indicate groups that decrease Cp

be required to fully validate and refine these group contributions.

To extend the structural interpretation to the level of functional groups, we developed

a separate tree-based regression model trained using functional-group occurrence counts as

input features and the predicted polymer Cp values as targets. This approach captures

how the presence of specific functional groups influences Cp across the dataset. The feature

importance of this model was analyzed using the Shapley Additive Explanations (SHAP)

method to quantify the direction and magnitude of each group’s contribution (Figures 9a–b).

Groups such as –NH–, CH3, and CH display positive SHAP values, indicating that their

inclusion increases Cp. These structural motifs are associated with sp3 bonding and local

torsional flexibility that enhances the density of low-frequency modes. In contrast, groups
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such as C=O, =CH, aromatic rings, and –OH exhibit negative SHAP values, corresponding

to their tendency to increase bond stiffness or restrict rotational motion. Halogen-containing

groups show mixed behavior: heavier atoms such as Cl and Br yield small positive SHAP

values, whereas strongly electronegative atoms such as F decrease Cp. The resulting SHAP

hierarchy reproduces the same physical trend obtained from the descriptor analysis: chemical

environments that promote soft, collective motions contribute positively to Cp, while those

that introduce rigidity or strong electronic delocalization reduce it.

To qualitatively verify the SHAP-derived group ordering using an independent physical

measure, we performed vibrational density of states (VDOS) analysis on a set of small

molecules containing CH3, CH2, and other representative functional groups (Figure 10). The

VDOS was obtained from the Fourier transform of the mass-weighted velocity autocorrelation

function (VACF). The velocity trajectories (vx, vy, vz) of all atoms were first extracted from

the MD simulations. Prior to analysis, the overall translational and rotational (center-of-

mass and rigid-body) motions were removed to isolate the intrinsic vibrational dynamics.

Each atom i was assigned a mass-weighted velocity defined as

wi(t) =
√
mi vi(t), (12)

where mi is the atomic mass and vi(t) is the instantaneous velocity vector. The mass-

weighted VACF was computed as

C(m)(τ) =
∑
i

⟨wi(0) ·wi(τ)⟩ , (13)

and subsequently normalized with respect to its zero-time value,

C(m)
norm(τ) =

C(m)(τ)

C(m)(0)
=

∑
i⟨wi(0) ·wi(τ)⟩∑
i⟨wi(0) ·wi(0)⟩

. (14)
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(f)(e)

(c)(b)

(d)

(a)

Figure 10: Vibrational density of states (VDOS) spectra obtained from molecular dynam-
ics simulations after rigid-body motion removal and mass-weighted velocity correction. The
low-frequency region (0–250 cm−1) captures collective, torsional, and skeletal vibrations that
dominate polymer heat capacity at ambient temperatures. Panels (a–f) show representative
small-molecule fragments, comparing CH3 groups with selected functional groups from dif-
ferent chemical environments.

The normalized VACF was then Fourier-transformed to obtain the VDOS,

g(ω) =

∫ ∞

0

C(m)
norm(τ) e

−iωτ dτ, (15)

where ω is the angular frequency.38

The VDOS from different chemical groups indicates their contributions to the overall Cp.

(Figure 10) shows the low-frequency spectral area (0–250 cm−1). The vibrational frequency

corresponding to room temperature is approximately 200 cm−1 based on the Bose-Einstein

distribution. Therefore, we calculate the areas under the curve for different chemical groups

in these studied cases. The integration window was extended to 0–250 cm−1 to capture

all relevant torsional and skeletal motions before the onset of higher-frequency stretching

vibrations.57

Across all test molecules, the CH3 group consistently exhibits the largest integrated low-
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(c)

High Cp polymers

Low Cp polymers

Cp=2039.45 J/kg·K Cp=2038.78 J/kg·K

Cp=925.38 J/kg·KCp=515.31 J/kg·K

(d)

(b)(a)

Figure 11: Representative GREA-based rationale visualizations illustrating struc-
ture–property attribution for polymer Cp prediction. Panels (a) and (b) show high-Cp poly-
mers, where the highlighted atoms correspond primarily to flexible aliphatic segments, ester
linkages, and bulky substituents that promote enhanced vibrational freedom. Panels (c)
and (d) show low-Cp polymers, with attributions concentrated around rigid aromatic units,
halogenated groups, and stiff backbone motifs associated with constrained molecular motion.
Highlighted atoms indicate the top 30% of nodes ranked by model-derived importance.

frequency area (A0−250), confirming its strong association with soft torsional and skeletal

vibrations. Functional groups such as C=O, aromatic, S, F, and Br display smaller A0−250

values compared to the CH3 group within the same molecule, indicating comparatively stiffer

local bonding and reduced accessibility of low-frequency modes. The only group that shows

a comparable or slightly larger spectral area than CH3 is –NH–. These observations generally

align well with the SHAP ranking.

In addition to descriptor-based analysis, SHAP interpretation, and VDOS decomposition,
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we further examine local, atom-level contributions using the GREA model. Based on nested

cross-validation, GREA is not the best-performing predictive model and is therefore used

here primarily as a tool for interpretability. The central feature of GREA is its environment-

based augmentation, in which atomic representations are conditioned on their surrounding

chemical context. This allows the model to distinguish similar functional groups embedded in

different environments and yields chemically meaningful atom-level attributions. The details

of the GREA framework and its underlying formulation are described in the original work by

Gang et al.45 Figure 11 presents representative rationale visualizations for two high-Cp poly-

mers (Fig. 11a–b) and two low-Cp polymers (Fig. 11c–d). Highlighted regions indicate atoms

that contribute most strongly to the predicted Cp. For high-Cp polymers, the model assigns

greater importance to flexible aliphatic segments and heteroatom-containing linkages, which

increase vibrational freedom and contribute to higher heat capacity. In contrast, low-Cp

polymers are characterized by rigid, highly fluorinated backbones and heavy halogen sub-

stitution, consistent with reduced vibrational freedom. Overall, these atom-level rationales

provide localized and chemically intuitive confirmation of trends identified through descrip-

tor analysis, SHAP values, and VDOS calculations, and help connect the model predictions

to underlying physical mechanisms. These atom-level rationales should be interpreted as as-

sociative rather than causal. The highlighted contributions reflect correlations learned from

the available training data between local chemical environments and predicted Cp, and do

not imply direct mechanistic causation.

With validated predictive models and a refined GC framework in place, we finally demon-

strate how the predicted thermophysical properties can be used for application-oriented poly-

mer screening and categorization. Using the ML-predicted Cp values, we identified promising

polymer candidates for various thermal applications. Although the primary focus of this

study is on Cp, selecting materials based solely on Cp is not sufficient for practical applica-

tions. As a demonstration of practical screening scenarios, we therefore incorporated two

additional thermal properties, thermal conductivity (TC) and glass transition temperature
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(Tg), sourced from our previous studies.9,13,29 Table 4 provides a comprehensive overview of

the categorization framework used. It includes: (i) the names of four application-specific

polymer categories; (ii) threshold values for Cp, TC, and Tg, defined separately for the Poly-

Info dataset and for the larger PI1M database; (iii) functional descriptions outlining the

role of each category; and (iv) representative example applications. Because PI1M contains

a substantially larger and more diverse set of polymers, the corresponding thresholds were

set at slightly higher values to reflect its broader property distribution. The threshold val-

ues for each property were chosen based on the distribution and upper–lower bounds of

the TL-predicted values in each dataset, highlighting polymers with clearly distinct thermal

behaviors. The application-oriented categorization presented here is intended as a high-

level screening and prioritization framework rather than a device-level design or certification

scheme. The Cp, TC, and Tg thresholds are defined heuristically to translate large-scale

property predictions into application-relevant guidance, rather than as strict performance

requirements. The selected threshold ranges are consistent with typical thermophysical prop-

erty values reported for polymers in the literature. Mass-specific Cp of common polymers are

generally reported in the range of approximately 1200–3000 J/kg.K at ambient conditions,

while bulk polymer TCs typically lie between about 0.1 and 0.5 W/m.K.40? Reported Tg

span a broad range, from below room temperature for flexible polymers to above 150–200 ◦C

for thermally stable engineering polymers.40,58 These literature-consistent ranges provide

physical context for the heuristic thresholds adopted in Table 4.

We propose a categorization framework to link predicted thermal properties with application-

specific needs. The Thermal Interface Materials category targets applications requiring effi-

cient heat dissipation and structural stability, favoring polymers with high Cp, high TC, and

high Tg.59 Thermal Insulators, commonly used in high-temperature environments, are char-

acterized by high Cp, low TC, and high Tg, which minimize heat transfer.60 Thermal Buffers,

relevant for energy storage or damping applications, require high Cp, low TC, and low Tg to

provide thermal management at sub-ambient conditions.61 Finally, we define Heat Spreaders
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Table 4: Categorization of polymers based on thermal property thresholds, representative
examples, and example applications.

Category Thresholds
(PolyInfo)

Thresholds
(PI1M) Functional Description Example Applications Representative exam-

ples
Thermal
Interface

Materials
(High Cp, High
TC, High Tg)

Cp ≥ 1600
TC ≥ 0.4
Tg ≥ 100◦C

Cp ≥ 1800
TC ≥ 0.5
Tg ≥ 130◦C

Efficient heat transfer
across interfaces with high
thermal stability under
operating conditions

Interface pads in
CPUs/GPUs, power
electronics, EV battery
modules

High-Tg engineering poly-
mers (e.g., PEEK-like sys-
tems) used in thermally de-
manding structural applica-
tions

Thermal
Insulators
(High Cp, Low
TC, High Tg)

Cp ≥ 1700
TC ≤ 0.2
Tg ≥ 120◦C

Cp ≥ 2000
TC ≤ 0.2
Tg ≥ 110◦C

Minimizes heat transfer
while maintaining thermal
and mechanical stability at
elevated temperatures

Fire-resistant coatings,
aerospace insulation,
protective gear

Polyethylene-based materi-
als exhibiting low TC and
moderate-to-high Cp under
ambient conditions

Thermal Buffers
(High Cp, Low
TC, Low Tg)

Cp ≥ 1800
TC ≤ 0.2
Tg ≤ 10◦C

Cp ≥ 2200
TC ≤ 0.2
Tg ≤ −50◦C

Acts as a thermal reservoir
for energy absorption and
damping at sub-ambient
conditions

Cold chain packaging,
biomedical storage, low-
temperature wraps

HDPE and related poly-
olefins with low Tg and
strong thermal buffering be-
havior

Heat Spreaders
(Low Cp, High
TC, High Tg)

Cp ≤ 1000
TC ≥ 0.4
Tg ≥ 150◦C

Cp ≤ 700
TC ≥ 0.6
Tg ≥ 150◦C

Rapid dissipation of local-
ized heat under high ther-
mal loads and cycling

LED spreaders,
aerospace electronics,
laser cooling systems

Sulfur- and heteroatom-rich
polymers reported to ex-
hibit elevated TC and ther-
mal robustness

as materials prioritizing rapid heat conduction and thermal resilience, requiring low Cp, high

TC, and high Tg, which are ideal for high-performance electronics.62 As a qualitative valida-

tion of the application-oriented categorization, we examine whether well-known polymers are

placed into categories consistent with their established thermophysical behavior reported in

the literature. This comparison is intended to verify the physical plausibility of the screening

framework rather than to serve as device-level validation. For example, polyethylene-based

materials are widely used in applications where low TC and thermal buffering are desirable.

High-density polyethylene (HDPE) exhibits mass-specific Cp in the range of approximately

1300–2400 J/kg.K and bulk TC on the order of 0.3–0.5 W/mK at ambient conditions, to-

gether with a very low Tg.40 These literature-reported properties satisfy the defining criteria

of the low-conductivity categories in Table 4 (Thermal Insulators / Thermal Buffers), con-

sistent with the established use of polyethylene materials in insulating and thermal buffering

roles. Similarly, high-performance engineering polymers such as poly(ether ether ketone)

(PEEK), which exhibits a high Tg of approximately 143 ◦C and is commonly employed in

thermally demanding environments requiring structural stability, are preferentially grouped

into categories characterized by elevated Tg thresholds.40,58 While PEEK is not selected for

high thermal conductivity, its classification reflects the intended role of high-Tg criteria in
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(a) (b)

Figure 12: Scatter plots of ML-predicted polymer properties in the Cp–TC–Tg space. (a)
Predictions for experimentally known polymers from the PolyInfo dataset (N = 13,000),
categorized into four functional application classes. (b) Predictions for virtual polymers
from the PI1M dataset (N = 1 million), showing broader chemical diversity while following
the same classification boundaries.

identifying thermally stable polymer classes. These examples demonstrate that the proposed

threshold-based categorization recovers well-established qualitative distinctions among poly-

mer classes, supporting its use as a first-pass screening and prioritization tool. The case

studies show that ML models can quickly identify polymer candidates given property tar-

gets, and that this approach is generalizable to any custom-defined property targets.

Figure 12a shows a scatter plot of the PolyInfo polymers, visualizing the relationship

between Cp, TC, and Tg. The overlaid shaded regions indicate the approximate areas oc-

cupied by polymers with distinct combinations of thermal properties, corresponding to the

four application categories discussed in Table 4. These regions highlight clusters of data-

points with relatively high or low values of Cp, TC, and Tg, representing typical candidates

for applications such as thermal interface materials, insulators, buffers, and heat spreaders.

Similarly, Figure 12b presents the plot for the PI1M dataset. The same region boundaries

are overlaid to visualize the distribution of newly screened polymers across the functional

application space. With 1 million polymers, the PI1M dataset spans a larger chemical space,
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and since the threshold values are higher, it offers a selection of polymer candidates with

more extreme properties.

Cp = 1931 J/(kg·K)
TC = 0.425 W/(m·K)
Tg = 104 °C

Cp = 1663 J/(kg·K)
TC = 0.449 W/(m·K)
Tg = 105 °C

Cp = 1620 J/(kg·K)
TC = 0.446 W/(m·K)
Tg = 165 °C

Cp = 1815 J/(kg·K)
TC = 0.557 W/(m·K)
Tg = 139 °C

Cp = 1825 J/(kg·K)
TC = 0.407 W/(m·K)
Tg = 112 °C

Cp = 1853 J/(kg·K)
TC = 0.138 W/(m·K)
Tg = 151 °C

Cp = 1754 J/(kg·K)
TC = 0.135 W/(m·K)
Tg = 129 °C

Cp = 1732 J/(kg·K)
TC = 0.150 W/(m·K)
Tg = 134 °C

Cp = 1783 J/(kg·K)
TC = 0.140 W/(m·K)
Tg = 142 °C

Cp = 1846 J/(kg·K)
TC = 0.171 W/(m·K)
Tg = 127 °C

Cp = 1915 J/(kg·K)
TC = 0.163 W/(m·K)
Tg = 6 °C

Cp = 953 J/(kg·K)
TC = 0.462 W/(m·K)
Tg = 229 °C

Cp = 937 J/(kg·K)
TC = 0.459 W/(m·K)
Tg = 270 °C

Cp = 941 J/(kg·K)
TC = 0.515 W/(m·K)
Tg = 277 °C

Thermal Interface Materials

Thermal Insulators

Thermal Buffers

Heat Spreaders

Polyesters/thioesters Polyesters/thioesters Polyesters/thioesters Polyphenylenes  Polyamides/thioamides

Polyacrylics, Polyvinyls Polyolefins  Polyacrylics, Polyvinyls    Polydienes   Polyacrylics, Polyvinyls

Polyolefins Polyimines Polydienes Polyolefins  Polydienes

Cp = 1895 J/(kg·K)
TC = 0.177 W/(m·K)
Tg = -23 °C

Cp = 1882 J/(kg·K)
TC = 0.177 W/(m·K)
Tg = 7 °C

Cp = 1830 J/(kg·K)
TC = 0.189 W/(m·K)
Tg = -34 °C

Cp = 1898 J/(kg·K)
TC = 0.181 W/(m·K)
Tg = -14 °C

Polyphenylenes Polysulfides, Polyimines Polysulfides, Polyimines Polysulfides, Polyimines  Polyimines

Cp = 773 J/(kg·K)
TC = 0.734 W/(m·K)
Tg = 161 °C

Cp = 913 J/(kg·K)
TC = 0.523 W/(m·K)
Tg = 211 °C

Figure 13: Selected polymer candidates from the PolyInfo dataset representing four func-
tional categories based on predicted Cp, TC, and Tg, with corresponding polymer class labels.
Selection was based on threshold criteria from Table 4.
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Figure 13 presents the selected polymer candidates from the PolyInfo database, with five

representative polymers shown for each of the four application categories. Each polymer

is depicted with its chemical structure, along with its polymer class, and corresponding

thermal property values. For the selected polymers, the Cp values predicted using the ML

model were cross-checked using the newly proposed GC method. For selection, only polymers

where both ML-predicted and GC-derived Cp values satisfied the threshold criteria, defined

in Table 4, were included. We adopted the GC method for Cp validation instead of MD

simulations, as MD-predicted values tend to be systematically overestimated. This figure also

illustrates the structural and thermal property diversity of representative polymers across

four functional categories. In the Thermal Interface group, polyesters and polyphenylenes

stand out with high values of Cp, TC , and Tg. The Thermal Insulator and Buffer categories

are mostly polyacrylics, polyolefins, and polyvinyls, which exhibit high Cp but low TC , which

are favorable for thermal resistance and energy absorption. Conversely, the Heat Spreader

category includes polymers such as polysulfides and polyimines, which display relatively low

Cp and high TC and Tg, ideal for efficient heat spreading. These examples highlight real

polymer candidates tailored for specific thermal roles, reinforcing the utility of data-driven

screening in materials design.

Similarly, Figure 14 shows the selected polymer candidates from the P11M dataset, with

five representative polymers displayed for each application category. The selections are based

on the higher threshold values defined for P11M in Table 4. Each polymer is shown with its

ML-predicted Cp value, along with the TC and Tg. Because the proposed application cate-

gories are derived from multiple predicted properties (Cp, TC, and Tg), uncertainties from

the individual predictive models may accumulate in the final classification. Accordingly,

the resulting application labels should be interpreted probabilistically and used for candi-

date prioritization rather than definitive assignment. In addition, we verified that modest

variations (on the order of ±10%) in the threshold values for Cp, TC, and Tg do not qual-

itatively alter the overall distribution of polymers across application categories, indicating
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Cp = 1950 J/(kg·K)
TC = 0.503 W/(m·K)
Tg = 131 °C

Cp = 1839 J/(kg·K)
TC = 0.619 W/(m·K)
Tg = 149 °C

Cp = 1832 J/(kg·K)
TC = 0.504 W/(m·K)
Tg = 134 °C

Cp = 1910 J/(kg·K)
TC = 0.517 W/(m·K)
Tg = 169 °C

Cp = 1935 J/(kg·K)
TC = 0.507 W/(m·K)
Tg = 134 °C

Cp = 2305 J/(kg·K)
TC = 0.150 W/(m·K)
Tg = 110 °C

Cp = 2024 J/(kg·K)
TC = 0.157 W/(m·K)
Tg = 111 °C

Cp = 2056 J/(kg·K)
TC = 0.177 W/(m·K)
Tg = 112 °C

Cp = 2154 J/(kg·K)
TC = 0.147 W/(m·K)
Tg  = 143 °C

Cp = 2570 J/(kg·K)
TC = 0.200 W/(m·K)
Tg = -82 °C

Cp = 2520 J/(kg·K)
TC = 0.198 W/(m·K)
Tg = -66 °C

Cp = 2400 J/(kg·K)
TC = 0.175 W/(m·K)
Tg = -53 °C

Thermal Insulators

Cp = 2023 J/(kg·K)
TC = 0.146 W/(m·K)
Tg = 132 °C

Thermal Buffers

Heat Spreaders

Cp = 666 J/(kg·K)
TC = 0.633 W/(m·K)
Tg = 158 °C

Cp = 639 J/(kg·K)
TC = 0.657 W/(m·K)
Tg = 151 °C

Cp = 628 J/(kg·K)
TC = 0.607 W/(m·K)
Tg = 166 °C

Cp = 566 J/(kg·K)
TC = 0.723 W/(m·K)
Tg = 163 °C

Cp = 687 J/(kg·K)
TC = 0.731 W/(m·K)
Tg = 153 °C

Cp = 2318 J/(kg·K)
TC = 0.189 W/(m·K)
Tg = -68 °C

Cp = 2286 J/(kg·K)
TC = 0.179 W/(m·K)
Tg = -58 °C

Thermal Interface Materials 

Figure 14: Selected polymer candidates from the PI1M dataset representing four functional
categories based on predicted Cp, TC, and Tg. Selection was based on threshold criteria from
Table 4 with stricter cutoffs for this dataset.

that the screening results are robust to small threshold perturbations. By leveraging both

established and large-scale virtual datasets, we demonstrate the potential to discover high-

performing candidates across a broad chemical space. These selected polymers provide a

strong foundation for further computational or experimental evaluation and showcase the

practical relevance of data-driven screening strategies in polymer thermal property design.

42

Page 42 of 52Polymer Chemistry

P
ol

ym
er

C
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
 2

56
9.

 D
ow

nl
oa

de
d 

on
 6

/2
/2

56
9 

10
:1

2:
01

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5PY01039J

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5py01039j


Conclusion

This work presents a comprehensive TL framework for predicting the Cp of polymers, a

key property for efficient thermal energy management in various applications. ML models

were first pretrained using large datasets generated from MD simulations and GC method

calculations, and then fine-tuned on experimental data to improve accuracy. Multiple ML

models were evaluated, including MLP, GNN, and GREA architectures, using a range of

molecular fingerprints and structural descriptors. MLP model with TL showed superior

performance, highlighting the effectiveness of combining structural priors with experimental

trends.

The trained models were applied to polymers from both known and virtual datasets to

perform large-scale Cp screening. We further explored LLMs as few-shot, training-free base-

lines; however, their performance was substantially inferior to domain-specific ML models,

limiting their applicability for quantitative property prediction. Structure–property anal-

ysis, supported by SHAP interpretation and VDOS analysis, revealed that polymers with

a higher fraction of sp3-hybridized carbons and more rotatable bonds tend to exhibit in-

creased Cp values because enhanced vibrational flexibility increases the number of accessible

low-frequency modes.. These trends align with the theoretical understanding that a greater

number of low-energy, thermally accessible vibrational DOF significantly contributes to Cp

in polymers.

In addition, we proposed new GC values through data-driven regression, providing an

interpretable and lightweight alternative for Cp estimation. Based on predicted Cp, along

with TC and Tg, polymers were classified into four application-relevant categories: thermal

interface materials, insulators, buffers, and heat spreaders. Representative candidates were

identified for each category, demonstrating the practical utility of the screening framework.

Overall, this study demonstrates how integrating multi-fidelity data, ML, and interpretable

modeling can accelerate polymer discovery. The framework is adaptable and can be extended

to other thermophysical properties, offering a valuable tool for guiding the design of advanced

43

Page 43 of 52 Polymer Chemistry

P
ol

ym
er

C
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
 2

56
9.

 D
ow

nl
oa

de
d 

on
 6

/2
/2

56
9 

10
:1

2:
01

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5PY01039J

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5py01039j


materials for thermal energy applications.
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Data availability statement 
​
​
All data and code supporting this study are publicly available. The complete 
implementation of the machine-learning workflows is provided at 
https://github.com/sobinalosious/POLY-CP-TL. The repository includes: (i) 
the curated experimental Cp dataset used for training and evaluation, with 
corresponding SMILES representations; (ii) the proxy datasets used for 
pretraining, including MD and GC derived Cp values; (iii) the full MD 
workflow used to compute Cp, including LAMMPS input scripts and Python 
post-processing codes for both EMD and NEMD methods; (iv) the GC 
calculation code and parameter tables used to estimate Cp from SMILES; 
(v) all scripts required to reproduce the results reported in Table 1, including 
nested cross-validation, Optuna-based hyperparameter optimization, 
pretraining, fine-tuning, and evaluation pipelines; (vi) the exact 
cross-validation splits, random seeds, and fold-wise optimal 
hyperparameters; and (vii) trained model weights for the best-performing 
configurations.​
​
​
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