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The study of quinoxalines as nitrogen-rich heterocyclic compounds has garnered substantial interest within
scientific research owing to their multidimensional functionalization capabilities and significant biological
activities. The scope of study encompasses their application as potent antiviral agents, particularly within
the domain of respiratory pathologies—a topic of pivotal concern in this comprehensive review. They
have several prominent pharmacological effects, such as potential influenza inhibitors, potential anti-
SARS coronavirus inhibitors, potential anti-SARS-CO-2 coronavirus inhibitors, and miscellaneous
respiratory antiviral activities. As a result, some of the literature has described many of these quinoxalines
using various synthetic methods for their mentioned biological effects. In the present review, we
provided insight into quinoxaline synthesis, structure—activity relationship (SAR), and antiviral activities,
along with a compilation of recent studies. The article further encapsulates the gamut of past and

ongoing research efforts in the design and synthetic exploration of antiviral scaffolds, with a pronounced
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Accepted 16th October 2024 emphasis on their strategic deployment against viral pandemics, contextualized against the tapestry of

the recent COVID-19 outbreak. This illuminates the quintessential role of quinoxalines in the

DOI: 10.1039/d4ra04292a armamentarium against viral pathogens and provides a platform for the development of next-generation
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1. Introduction

The ceaseless pursuit of efficacious therapeutic agents persists
as a formidable challenge within the medical field, not solely for
pre-existing disorders but also in response to emergent crises,
such as the recent emergence of COVID-19. During such
exigencies, the protracted timespan required for the discovery,
development, and regulatory approval of new pharmaceuticals
intensifies the imperative for expeditious identification of
viable candidates. This imperative has galvanized the explora-
tion of innovative methodologies encompassing the repurpos-
ing of pre-existing pharmacophores and the de novo discovering
of novel molecular scaffolds through scrutinizing currently
approved medications. The antiviral design and synthetic
capabilities manifested in select antiviral compounds have
gained particular prominence against the backdrop of the latest
SARS-CoV-2 pandemic and the spectre of future antiviral
emergencies. We briefly address the existing literature and
highlight the gap our review aims to fill, emphasizing the
focused research on respiratory viruses and the inclusion of
post-2020 studies.
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Quinoxaline derivatives represent a pivotal class of hetero-
cyclic compounds, distinguished by the substitution of nitrogen
atoms for one or more carbons within the naphthalene core.
Structurally, they comprise fused benzene and pyrazine rings,
rendering a white crystalline solid with a melting point ranging
from 29 to 30 °C and a molecular formula of CgHgN,. These
compounds are typically purified chemically through distilla-
tion and exhibit solubility in water. As delineated in this
discourse, various synthetic methodologies for quinoxaline
derivatives encompass condensation reactions, cyclization
processes, microwave-assisted synthesis, and other diverse
strategies. The structural diversity of quinoxaline frameworks
includes an array of derivatives, including but not limited to
echinomycin analogs, carbonylamino-substituted quinoxalines,
2-chloroquinoxaline varieties, the antiviral agent Glecaprevir, as
well as pyrazolo[1,5-a]quinoxaline, imidazo[1,5-a]quinoxaline,
pyrrolo[1,2-a]quinoxaline, and pyridazino[4,5-b]quinoxalin
derivatives.'*

As one of the prominent useful motifs, the quinoxalines
moiety featured in a huge number of chemosensors and
synthetic pharmaceutical compounds by diverse properties,
including fluoresence and anticancer properties as elucidated
in our preceding investigation.” In our previous work, a series
of quinoxaline derivatives bearing 2-aminoimidazole were
designed and synthesized (Fig. 1)'° These compounds were
evaluated for their potential biological activities, and the results

© 2024 The Author(s). Published by the Royal Society of Chemistry
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demonstrated significant effects at 50 pg mL ™" concentration
with a noteworthy percentage of inhibition. Moreover in
different research we reported some new methods, such as the
green synthesis procedure and Mannich reactions, for the
synthesis of various isatin-based Schiff bases and 2-piperazinyl
quinoxaline core and 2-(piperazinl-yl) quinoxaline and other
quinoxaline derivatives (Fig. 2)."* We reported one-pot multi-
component cyclo-condensation and Mannich reactions, shown
in Fig. 2, with the aim of reducing the complications of using
mineral or homogeneous organic catalysts and traditional
methods." The reported methods were green synthesized, eco-
friendly, non-toxic, economical, and easy-to-workup.>*®
Recently, our research team investigated an in silico study of
quinoxaline motif against COVID-19."*"** Following our recent
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field study, we are moving forward with a survey of quinoxaline
and its activity on respiratory viruses like SARS-CoV-2.

In light of the recent pandemic, the current review pivots to
an examination of the antiviral potential against respiratory
pathogens. It posits quinoxaline derivatives as promising
candidates for antiviral intervention, given their presence
within the chemical structure of therapeutic agents such as
echinomycin derivatives, Glecaprevir, and other molecules. The
expansive scope of this review contemplates the utility of qui-
noxaline derivatives as prospective inhibitors of influenza
viruses, anti-SARS and SARS-CoV-2 coronaviruses, alongside
a range of other respiratory viral infections, underscoring their
significance in the search for novel antiviral agents. The
relentless march of infectious diseases, compounded by the

.

( OH OH A
R, NH, 0O
ji:[ 0 ' NH,NH,, NaHCO; R, N OH
N
W &
Ri NH; ¢ © O ACOH, Reflux (3-24 hr) R]:@N/ OH
O
la (R, Ry =H)
1b (R, = CL, R, = H) 2 3a-3c¢
Ic(R; =H, R, =Cl)
NH
NalOy ACOH ¢ - N~ NN H
rt. D H R, N X N _NH,
5 N N
2 o
16-48 hr R, N H,0, HCI Z NH
R, N
4a-4c¢ Reflux (0.5-2 hr) Gabc
ArCOCH;
Acetophenone
I;I)gﬁr, 4-Acetylbiphenyl
p-Chloroacetophenone
H,N
2-Acethylthiophene FN
CuBr, { 3'4',5'-Trimethoxyacetophenone Ar
N/
p-Methoxyacetophenone N/
R, N I
6a-6¢ +  ArCOCH,Br EtOH, Reflux =
2-24 hr =
7 R, N
8a-8x
5 8a: R, R, = H, Ar = phenyl 8m: R, = Cl, R, = H, Ar = p-F-phenyl {
' 8b:R;,R,=H, Ar = p-Br-phenyl 8n: R, =H, R, = Cl, Ar = p-F-phenyl
\ 8c: Ry, Ry=H, Ar = p-biphenyl 80: R =Cl, R, =H, Ar = p-Br-phenyl !
8d: R, R, =H, Ar = p-Cl-phenyl 8p: R, =H.R,=Cl, Ar=p-Br-phenyl |
' 8e:R|.R,=H, Ar=p-OMe-phenyl  8q:R,=Cl, R,=H, Ar = 2-naphtyl
v 8f:R|,R,=H, Ar=2.4-(Cl),-phenyl  8r: R;=H, R, = Cl, Ar = 2-naphtyl !
E 8g: R}, R, =H, Ar = 2-naphtyl 8s: R =CL R, =H, Ar = p-OMe-phenyl |
v 8h:Ry,Ry=H, Ar=p-F-phenyl 8t: R, = H, R, = Cl, Ar = p-OMe-phenyl |
! 8i:R;,Ry=H, Ar = 3,4,5-(OMe);-phenyBu: R, = Cl, R, = H, Ar = p-Cl-phenyl ‘
i 8j:R;=H,R,=H, Ar=2-thienyl 8v: R, =H, R, = Cl, Ar = p-Cl-phenyl !
1
1 8k:Ry=ClL Ry=H, Ar = phenyl 8w: R, = Cl, R, =H, Ar = p-biphenyl i
' 81:R;=H,R,=Cl, Ar=phenyl 8x: R, = H, R, = ClI, Ar = p-biphenyl

Fig. 1 Synthesis of quinoxaline derivatives containing 2-aminoimidazoles.
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emergence of the COVID-19 pandemic, has underscored the
critical need for a rapid response in the development of antiviral
agents. The protracted drug discovery process, from initial
concept to regulatory approval, often impedes the ability to
address immediate public health crises. In such scenarios, the
scientific community is driven to identify alternative strategies
that can shorten the pathway to effective treatments. One such
strategy is re-investigating existing drugs and molecular scaf-
folds for potential antiviral properties—an approach that can
significantly reduce development time and costs. Within this
realm, heterocyclic compounds such as quinoxaline derivatives
have garnered attention due to their broad pharmacological
potential and the ease with which they can be modified to
enhance their activity and specificity. These nitrogen-
containing bicyclic compounds exhibit a range of biological
activities, and their utility has already been affirmed in various
therapeutic contexts, including cancer treatment. Exploring
quinoxaline derivatives in the context of antiviral therapy is
a logical extension, considering the urgency to develop agents
that can contend with viral infections, particularly those of the
respiratory tract. The exploration of quinoxaline derivatives for

35402 | RSC Adv, 2024, 14, 35400-35423

antiviral activity is not accidental but a result of a systematic
approach, leveraging the knowledge of their chemical proper-
ties and prior therapeutic applications. Their mechanisms of
action against cancer cells provide valuable insight into how
quinoxaline derivatives might be structured to interfere with
viral replication or protein function. By drawing parallels
between the structural requirements for antitumor and antiviral
efficacy, researchers can tailor quinoxaline scaffolds to target
specific viral proteins or pathways.’

Thus, the dual focus on the expedited redevelopment of
existing pharmacophores and the design of novel quinoxaline-
based antivirals represents a dynamic and multifaceted
response to a global health emergency. By integrating the
insights gained from their anticancer potency, the potential of
quinoxaline derivatives is being re-envisioned to confront the
challenge posed by fast-spreading viral diseases such as COVID-
19. In doing so, the same properties that made quinoxaline
derivatives valuable in oncology are being repurposed to explore
their utility in inhibiting viral entry, replication, and maturation
within host cells. The impetus for such investigation is
bolstered by the proven success of quinoxaline compounds in

© 2024 The Author(s). Published by the Royal Society of Chemistry
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antiviral applications, exemplified by the inclusion of qui-
noxaline moieties in the design of agents like Glecaprevir aimed
at combating hepatitis C virus (HCV). The apparent versatility of
these molecules propels them to the forefront of antiviral
research.*

Further exploration of quinoxaline derivatives has revealed
their propensity to serve as inhibitors against a spectrum of
respiratory viruses, including influenza and various coronavi-
ruses. The malleability of the quinoxaline structure allows for
fine-tuning of its pharmacophoric elements, optimizing inter-
actions with viral targets such as enzymes critical for the viral
life cycle, structural proteins, and even host cell receptors
involved in viral entry. These modifications are informed by
structure-activity relationship (SAR) studies, which dissect the
functional groups associated with antiviral activity and guide
the synthesis of more potent and selective analogues The
potential for quinoxaline derivatives to disrupt viral RNA
synthesis, or protein assembly presents a compelling case for
their inclusion in high-throughput screening assays against
SARS-CoV-2, and other emergent pathogens, to identify prom-
ising leads for fast-tracked development. It is crucial to leverage
the full extent of modern drug development techniques,
including computational modeling, virtual screening, and
medicinal chemistry, to advance the discovery and optimization
of quinoxaline-based antivirals rapidly. In the endeavour to
stretch the boundaries of quinoxaline applicability beyond the
realm of cancer therapy, meticulous investigation into their
antiviral efficacy is being harnessed. Quinoxaline chemistry
continues to expand, with ongoing modifications yielding novel
derivatives that offer hope for creating versatile and potent
pharmaceutical agents. This promise, rooted in robust chem-
ical principles and a deepened understanding of biological
interactions, encourages a concerted effort to unlock the full
therapeutic potential of quinoxaline derivatives in combating
not just present viral adversaries but also future ones.

Quinoxaline derivatives, characterized by their planar poly-
aromatic structure, are posited to be effective antiviral agents
against influenza due to their potential interaction with the NS1
protein, which is an invariant protein encoded by the influenza
virus, thus making it a valuable target for therapeutic inter-
vention.>'* Additionally, there is a notable interaction
between the nucleocapsid protein (N.P.) of the SARS coronavi-
rus and human Cyclophilin A (CypA), in which the N.P.
demonstrates a high affinity binding that results in significant
inhibition of CypA's activity, indicating a possible avenue for
antiviral treatments.”> Compounds structured on bicyclic
heterocyclic frameworks have been shown to disrupt the inter-
action between the nucleocapsid protein (N.P.) of HCoV-OC43
and its RNA by binding to the N-terminal domain of the N.P.,
rendering them potential inhibitors of SARS-related coronavi-
ruses.'® Furthermore, computational docking studies have
revealed that certain quinoxaline derivatives bind with high
affinity to the protease responsible for SARS-CoV-2 replication,
thereby indicating their capacity to curb viral propagation.'” In
the context of COVID-19, which may be interpreted as
a syndrome associated with retinoic acid depletion, inhibiting
the metabolism of retinoic acid, mainly through its interaction

© 2024 The Author(s). Published by the Royal Society of Chemistry
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with TLR receptors, emerges as a plausible therapeutic strategy.
Synthesized analogs from the heterocyclic classes of imidazo
[1,5-a]quinoxaline and pyrazolo[1,5-a]quinoxaline have been
evaluated for their ability to impede the activation of NF-kB via
modulation of TLR receptors.” Additionally, compounds from
the pyrrolo[1,2-a]quinoxaline series have been identified as
promising candidates for inhibiting the main protease of SARS-
CoV-2 and as activators of Sirt6, which are hypothesized to
suppress the virus.*'® These findings underscore the thera-
peutic potential of novel heterocyclic compounds in the
ongoing battle against COVID-19.

2. Biological activity, synthesis
approaches, and structure—activity
relationship

2.1 Quinoxaline derivatives as potential influenza inhibitors

Influenza viruses, a tripartite group of RNA viruses including
types A, B, and C, are known for causing highly infectious
respiratory illnesses in humans.” The influenza A viruses are
notorious for triggering the most debilitating forms of the
disease, as exemplified by the HIN1 strain that incited the flu
pandemic of 2009.*° Given this backdrop, creating small-
molecule therapies targeting influenza is a critical research
objective for the current decade. Here, we provide an in-depth
analysis of the latest research, outlining new findings, the
potential therapeutic mechanisms of quinoxaline derivatives,
and their specific implications for treating respiratory viral
infections such as COVID-19 and influenza. Precision biophys-
ical methodologies and structural investigations utilizing high-
resolution nuclear magnetic resonance (NMR) and X-ray crys-
tallography have elucidated that the NS1A protein's N-terminal
domain adopts a distinctive dimeric structure characterized by
six helices.*** Building on this insight, You, L. et al. have pio-
neered the design of quinoxaline derivatives intended to mimic
the molecular architecture of epigallocatechin-3-gallate, with
substitutions at the 2nd, 3rd, and 6th positions of the qui-
noxaline scaffold being pivotal (Fig. 4).

Intercalation assays with in vitro fluorescence polarization-
based binding assays (FP-assays) showed that binding
carboxyfluorescein-labeled dsRNA (FAM-dsRNA) to the NS1A
protein leads to reduced fluorophore (FAM) mobility, and as
a result, the fluorescence polarization rise. Adding possible
NS1A inhibitors that target the dsRNA binding domain moved
the FAM-dsRNA away from NS1A and lowered the fluorescence
polarization. Additionally, an FP-based assay involving probe
dsRNA intercalation of the quinoxaline derivatives was used as
a control experiment in order to target NS1A rather than dsRNA.
The result indicated that the quinoxaline derivatives can disrupt
the dsRNA binding to NS1A protein. So intercalation assays with
double-stranded RNA (dsRNA) showed analogs 9-a and 9-
b inhibit viral functionality by engaging the dsRNA binding
domain of NS1A and concluded the effective suppression of
influenza A virus proliferation. The SAR analyses have identified
bis-2-furyl-modified analogs to exhibit superior antiviral
efficacy.

RSC Adv, 2024, 14, 35400-35423 | 35403
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acetylurea analogues.*

Meanwhile, the quinoxaline core has been maintained
across variants, with the introduction of various aromatic
moieties, including 2-furyl at the 2nd and 3rd positions and an
assortment of substituted phenyl groups or heterocycles linked
via an amide bond at the 6th position, producing compounds of
notable potency. The synthetic pathway described leads to the
formation of 2,3-di(furan-2-yl)-6-(3-N,N-diethyl carbamoyl-
piperidine)carbonyl amino quinoxaline. This process starts
with condensing 1,2-diketones with ortho-phenylenediamine
derivatives under reflux conditions in either ethanol or
a mixture of acetic acid and sodium acetate (Fig. 3). Following
this, 2,3-difuryl-quinoxaline-6-carboxylic acid is coupled with
a variety of amines employing coupling agents such as PyBOP or
TBTU and DIPEA as a base, culminating in a library of amide-
modified quinoxaline derivatives.**

Minor, P.D. and associates have documented the antiviral
potentials of echinomycin (Fig. 5) against influenza and a range
of other viruses. They have crafted various echinomycin deriv-
atives, including formulations such as methyl sulfonium
perchlorate (Me-Ech) and the monosulfoxide, disulfoxide, and
sulfone versions. Additionally, they generated an echinomycin
analog featuring a methylene dithioether group. Reflecting on

35404 | RSC Adv, 2024, 14, 35400-35423
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Fig. 5 Synthesis pathway of echinomycin derivatives and analogues.

the exploration of echinomycin derivatives' bioactivities, a new
cohort of quinoxaline derivatives, specifically 10h and 10i
(Fig. 6), enriched with thioether, sulfoxide, and sulfone func-
tionalities, has been developed.

In a systematic process, the new compounds 10-h and 10-i
were synthesized from a cyclic octa depsipeptide framework.
The four initial steps were followed by Pa ester deprotection (Zn,
90% aqueous AcOH, at 0 °C, 4 h), disulfide bond formation
(disulfide-linkage octadepsipeptide, 12 at 25 °C), Boc depro-
tection, and cyclization by 1-[3-(dimethylamino)-propyl]-3-
ethylcarbodiimide hydrochloride (EDCI). The next step was
involved the reduction of disulfide bridges using sodium

© 2024 The Author(s). Published by the Royal Society of Chemistry
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selenohydride (NaSeH), followed by the incorporation of
a methylene group between two N-methyl cysteine residues
within the S-S bridge; this step was facilitated by using tetra-n-
butylammonium fluoride (TBAF) in dichloromethane (CH,Cl,).
Subsequent stages included detaching the carboxybenzyl (Cbz)
protective group and introducing an acyl group through the
reaction with quinoxalyl chloride. The strategic insertion of
a methylene moiety where a disulfide bond existed aimed to
attenuate the cytotoxicity associated with echinomycin and
enhance its analogues' water solubility. Echinomycin has been
observed to selectively inhibit the synthesis of viral proteins,
including hemagglutinin, neuraminidase, and M protein, at
substantially low concentrations without impeding the
synthesis of host cellular proteins, even at elevated levels. The
study emphasized that the 10-h derivative displays activity
against vancomycin-resistant enterococci (VRE) within
a minimum inhibitory concentration (MIC) spectrum of 0.5-
8.0 mg mL™", in contrast to echinomycin's MIC of 0.25 mg
mL ™', suggesting that it can exert a potent effect on the influ-
enza virus."*

Ezz Eldin, R.R. and co-researchers have demonstrated that
newly synthesized derivatives of isatin, including the indolo[2,3-
b]quinoxaline hybrid, exhibit efficacy against the HIN1 strain of
the influenza virus. The safety profile of these compounds was

© 2024 The Author(s). Published by the Royal Society of Chemistry

substantiated in non-cancerous cells, with special emphasis on
the quinoxaline derivative (11-b), which not only exhibited
strong inhibitory activity with an ICs, of 0.2164 pM against
HIN1 but also displayed minimal toxicity, as evidenced by
a significantly high cytotoxicity concentration 50% (CC50) value
of 315578.68 uM which is described as the concentration of
a drug or compound that is cytotoxic to 50% of a population of
cells. Furthermore, the reduction in viral gene expression, as
assessed by quantitative PCR, supported the antiviral activity of
the compounds. Computational molecular docking and ADME
prediction analyses corroborated the compound's binding effi-
cacy and favourable pharmacokinetic attributes. The synthesis
of the indolo[2,3-b]quinoxaline hybrid derivative was achieved
by the cyclo-condensation of o-phenylenediamine. The
synthetic pathway outlined for creating this novel isatin hybrid
(Fig. 7) began with the formation of trifluoromethyl piperidin-1-
ylsulfonyl isatin (11-a), which was synthesized by reacting
chlorosulfonyl isatin with trifluoromethylpiperidine. Isatin
derivatives, including an indolo[2,3-b]quinoxaline hybrid,
demonstrate antiviral capabilities against the HIN1 strain of
influenza virus. these compounds proved reliably safe for
normal cells, with a special mention of the quinoxaline-based
molecule (11-b). This compound exhibited a ICs, of 0.2164
uM against H1N1, owing to a substantially higher selectivity

RSC Adv, 2024, 14, 35400-35423 | 35405
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index, indicated by a CC50 value of 315, 578.68 uM, denoting
minimal toxicity. Quantitative polymerase chain reaction
(qPCR) assays that reported a reduction in viral gene expression
further substantiated the antiviral efficacy. Computational
molecular docking and absorption, distribution, metabolism,
and excretion (ADME) studies of this compound showed
promising binding affinity and pharmacokinetic profiles. The
synthetic process which yielded the indolo[2,3-b]quinoxaline
hybrid involved a cyclo-condensation step with o-phenylenedi-
amine. The initial step in fabricating the novel hybrid molecule
involved synthesizing trifluoromethyl piperidin-1-ylsulfonyl
isatin (11-a) through a reaction between chlorosulfonyl isatin
and trifluoromethylpiperidine. Subsequently, the indolo[2,3-5]
quinoxaline was synthesized by condensing trifluoromethyl
piperidin-1-ylsulfonyl isatin (11-a) with o-
phenylenediamine.”***

2.2 Quinoxaline derivatives as potential anti-SARS
coronavirus inhibitors

Li, J., and colleagues proposed a new quinoxaline compound,
designated as 2,3-di(furan-2-yl)-6-(3-N,N-diethyl carbamoyl-
piperidine)carbonyl amino quinoxaline or compound 12-c, as
a potent inhibitor of human Cyclophilin A (CypA) in mouse
spleen cell proliferation. CypA is a widely present cellular
enzyme that was shown to have a high binding affinity to the
nucleocapsid protein (N.P.) of SARS-CoV. The research show-
cased that through sequence alignment and molecular
modeling, the Trp302-Pro310 loop of the SARS-CoV N.P. was
compatible with the active site of CypA, facilitated by various
interactions, including hydrogen bonds and cation-m and -CH-
7 hydrogen bonding. Therefore, the hydrophobic interaction
between CypA/compound 12-¢ might be able to inhibit the
PPlase activity of CypA. The inhibitor's effectiveness in CypA
PPlase activity was quantified, with an ICs, value reported at

35406 | RSC Adv, 2024, 14, 35400-35423

0.41 pM, demonstrating compatibility with the hydrophilic
carboxymethylated dextran matrix utilized in a CM5 sensor chip
(Biacore). Fluorescence titration further supported the claim
that compound 12-c is a strong contender for CypA inhibition.
Synthesis of compound 12-c¢ followed a sequential method-
ology; initially, 6-amino-2,3-di(furan-2-yl)quinoxaline (12-a) was
reacted with triphosgene in the presence of triethylamine under
a nitrogen atmosphere at room temperature, giving rise to 2,3-
di(furan-2-yl)-6-isocyanate quinoxaline (12-b). The final step
involved reacting N,N-diethylnipecotamide with compound 12-
b to produce compound 12-c (Fig. 8). Reactions were generally
conducted in round-bottomed flasks that had been dried in an
oven under a protective nitrogen atmosphere while stirring was
provided by a magnetic stirrer. Purification of reagents included
distillation of triethylamine over sodium and dichloromethane
over calcium hydride (CaH,).>

A novel structure of the anti-SARS coronavirus effect based
on a quinoxaline derivative was reported by al G.e. (Fig. 9). They
studied De-ubiquitination enzymes, including ubiquitin-
specific protease (USPs), and the ubiquitin pathway regulates
protein degradation.>®

Research has indicated the potential role of coronavirus
nucleocapsid proteins (N.P.) as targets for antiviral drugs. In
their study, Chung-ke Chang and colleagues have derived
agents that target the N.P., such as compound 15 employing in
silico virtual screening methods aimed at coronavirus nucleo-
capsid proteins. They used experimental approaches to
corroborate their findings, including surface plasmon reso-
nance (SPR) assays by the repeated intergenic sequence of
HCoV-0C43, 5'-biotin-(UCUAAAC)4-3', as a probe, X-ray crys-
tallography, and molecular docking studies. Among the iden-
tified compounds, the quinoxaline-based compound in SPR
assay notably reduced the RNA-binding ability of the N.P. by
over 20%. Specifically, it was very effective in inhibiting the

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Carbonylamino quinoxalines were suggested as a potent inhibitor against human Cyclophilin A.2
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Fig. 9 5,10-Dioxo-5,10-dihydro-benzolglquinoxaline-2,3-dicarbonitrile.?®
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Fig. 10 6-Chloro-7-(2-morpholin-4-yl-ethylamino)quinoxaline-5,8-
dione compound as a coronavirus replication inhibitor.*®

RNA-binding activity of N.P.’s N-terminal domains (N-NTDs)
from HCoV-OC43 in vitro. X-ray crystallographic analysis
revealed that the interaction of the quinoxaline molecule with
the N-terminal domain impedes the RNA association with
HCoV-OC47 NP (Fig. 10).¢

2.3 Quinoxaline derivatives as potential anti-SARS-CO-2
coronavirus

A thorough molecular dynamics (M.D.) simulation study eval-
uated the binding of various drugs to the main protease (Mpro)

© 2024 The Author(s). Published by the Royal Society of Chemistry

of SARS-CoV-2, including their combinations. The study
considered anti-HCV drugs, namely Elbasvir and Glecaprevir,
alongside the anti-HIV medication Ritonavir, as potential
frameworks for the experimental testing and pharmacophore
development of anti-COVID-19 therapeutics. Such a strategy is
pivotal for creating drugs that are less susceptible to viral
mutations and specifically target the Mpro enzyme of SARS-
CoV-2. Glecaprevir, a quinoxaline-based molecule shown in
Fig. 11, is known as an inhibitor of the nonstructural (N.S.)
protein protease of hepatitis C virus (HCV). Owing to the
structural similarities between the proteases of SARS-CoV-2,
HCV, and HIV, it is hypothesized that medications designed
to inhibit HCV and HIV could also yield positive therapeutic
effects against SARS-CoV-2. The study further evaluated the
interaction of Glecaprevir with the catalytic site and two novel
allosteric sites of Mpro. According to Bhat, Z.A., and associates,
the quinoxaline ring of Glecaprevir formed fundamental inter-
actions predominantly with several hydrophobic amino acid
residues, including Leu286, Leu287, Leu272, Met276, Ala285,
Gly275, and Gly278. Additionally, a significant polar interaction
was observed with the side chain of Asn277 situated within the
a-helical domain of Mpro. The team also discovered potential
druggable allosteric sites located at the intra-domain and
dimeric interface of the enzyme, providing insights into novel
therapeutic targets.*

The following describes the process of synthesizing glecap-
revir, beginning with building the linker region, intermediate
16-1 (Fig. 12). Diacetate intermediate produced by acetylating
racemic trans-1,2-cyclopentanediol accomplished in a lipase
buffer to create (1R,2R)-2-hydroxycyclopentyl acetate. The

RSC Adv, 2024, 14, 35400-35423 | 35407
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Fig. 11 Glecaprevir structure.*

preparation (1R,2R)-2-(allyloxy) cyclopentane-1-ol involved the
creation of allyl ether in the presence of sodium hydride and
allyl bromide in DMF. Intermediate 16-1 was formed by reacting
(1R,2R)-2-(allyloxy) cyclopentane-1-ol with (S)-2-amino-3,3-
dimethylbutanoic acid and activating it with phosgene.
Difluoroallyl bromide compound (16-a) and ethyl glyoxalate
performed a Barbier reaction with indium to generate difluoro
alcohol (16-b), which TPAP/NMO then oxidized to produce keto
ester (16-c). The intermediate 16-d for chloroquinoxaline was
prepared by condensing 16-c with o-phenylenediamine in
ethanol after being treated with POCl;. Under basic procedures,
coupling of 16-d with L-N-Boc-4-hydroxyl-proline occurred
without any problems, and the intermediate esterified to
produce ester 16-e. Diene 16-f synthesized by Boc deprotection,
amide coupling, and intermediate 16-1. The ring-closing

View Article Online

Review

metathesis of diene 16-f in toluene could successfully produce
the macrocyclic intermediate 16-g. Eventually, glecaprevir was
synthesized by saponifying intermediate 16-g and linking it to
amine 16-h. There was a procedure by which the quinoxaline
fragment of glecaprevir was created.**’

COVID-19 has been associated with a condition known as
retinoic acid depletion syndrome, similar to other inflammatory
diseases. Substances that impede the liver cytochrome P450
oxidase system are deemed potential COVID-19 therapeutics as
they prevent retinoic acid metabolism. A common feature of
numerous relevant infectious and autoimmune conditions is
chronic immune activation, which often results from over-
stimulation of toll-like receptors (TLRs), and this has spurred the
development of TLR antagonists. When retinoic acids are
depleted, this can lead to a dominance of the NF-kB pathway,
resulting in a surge of cytokine production, a state referred to as
“retinoic acid depletion syndrome”.”® Bou Karroum, N et al
explored a range of synthesized compounds, specifically deriva-
tives of the heterocyclic imidazo[1,5-a]quinoxaline and pyrazolo
[1,5-a]quinoxaline categories, for their ability to restrain NF-«xB
translocation within HEK-Blue cells that overexpress TLR7 or
TLR8. Pyrazolo[1,5-a] synthesized quinoxaline derivatives fol-
lowed the delineated procedures (Fig. 13). Here, dimers 17(a-b)
were generated from the bimolecular condensation of 5-
substituted 1H-pyrazole-3-carboxylic acids with thionyl chloride.
Subsequent coupling of 17(a-b) with fluoro aniline derivatives
yielded intermediates 18(a-b). The formation of tricyclic struc-
tures, 19(a-b), was achieved through intramolecular cyclization
of 18(a-b) under fundamental conditions. The 19(a-b) reaction
with phosphorus oxychloride and N,N-diethylaniline produced
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E F DCM
\)4 0~ TOEt F NHz
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0/_ 1HCI, DCM ;
I e P
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Fig. 12 Synthesis pathways of Glecaprevir.*
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Fig. 13 Synthesis rutes of pyrazolol[1,5-alquinoxaline derivatives.®

20(a-b). The final compounds, 21(a-b), were obtained by replac-
ing the chlorine atom with aqueous ammonia in 20(a-b).

The research team also generated imidazo[1,5-a]quinoxaline
derivatives, integrating diverse alkyl chain lengths at the 1-
position on the imidazole moiety. Firstly, protective measures
for the amino functionality were undertaken on the 2-iodo-1H-
imidazole starting material, paving the way for the generation of
alkylated imidazole compounds, denoted as the 22-a (1-3)
series, via Sonogashira cross-coupling reactions. Subsequent
removal of the protective group enabled the attachment of these
imidazoles (22-b (1-3) series) to ortho-fluoronitrobenzene
through a coupling process facilitated by an abundance of

potassium carbonate, producing the 22-c¢ (1-3) series of
compounds. The next phase entailed a two-step reduction: one
to transform the nitro group and another to address the alkyne
functionality. This set the stage for constructing the 22-e (1-3)
series based on intramolecular cyclization of the precursors 22-
d (1-3). The catalyst employed during this cyclization step was
carbonyldiimidazole. Subsequently, the nucleophilic displace-
ment utilizing aqueous ammonia and chlorination mediated by
phosphorus oxychloride afforded the 22-f (1-3) series. In
a particular synthesis pathway outlined in the stated synthetic
scheme (Fig. 14), the 22-g (1-3) series was prepared, featuring
a butyl chain attached to the imidazole ring. The SAR

I R
Alkynes, DMF, TFA.CH,CI
N/< Boc,0, DMF/ACN N/< Pd(PPh3), Cul N=— 0 ——
N 4/< { 70°C, 12hr ~ N% 0°C, hr
EtN, r.t, 24hr ’ (o)
22-8(1_3)
R
NO, FN
R NO, N/
- Ny ——>
NH i Reflux, 24 h
lss, ™ ACN, Reflux, 24 br R 0psi24hbr \{ e, 22 A N o
R H
22-b(y.3) 22-¢(13) 22-dy3) 22-¢(1.3)
R
R
=N
=N z—’/ Series(1-3):
POCl3, DEA N~ 30% aq. NH,OH 1: R=pentyl
—_—> —_— > 2: R=isopentyl
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N7 "NH,
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Fig. 14 Synthesis rutes of imidazol[l1,5-alquinoxaline derivatives.®
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Fig. 15 The compounds labeled as 23 and 24, specifically 2,3-di(furan-2-yl)-6-ethoxycarbonylamino quinoxaline and ethyl(35)-1-(2a,8a-
di(furan-2-yl)-2-oxo-1,2,2a,8a-tetrahydroazeto[2,3-blquinoxalin-6-yl)piperidine-3-carboxylate, respectively, have been identified as potential
agents against SARS-CoV-2. Compound 23 integrates two furan rings at the 2 and 3 positions and an ethoxycarbonylamino group at the 6
position on a quinoxaline scaffold. Compound 24 features a similar furan-quinoxaline structure, with the addition of an ethyl piperidine
carboxylate moiety, imparting a distinct stereochemistry represented by the (3S) configuration. These molecular components are the focus of

anti-SARS-CoV-2 pharmaceutical investigation.?®

assessment of these imidazo[1,5-a]quinoxaline entities revealed
a moderate elevation in their antagonistic efficacy when the
alkyl chains consisted of 4 to 5 carbon atoms (butyl, pentyl, and
isopentyl groups). However, extending the alkyl chain length
beyond five carbon atoms to hexyl led to diminished antago-
nistic activity.

In a concentration of 15 pM, derivatives of pyrazolo[1,5-a]
quinoxaline achieved an inhibition rate near 50% for NF-xB
translocation in HEK-blue cells with an overexpression of TLR7.
These derivatives are recognized as potent and selective TLR7
antagonists, positioning them as promising points of departure
for the synthesis of new immunomodulatory compounds with
therapeutic potential. Notably, 21-a and 21-b, which possess
butyl and isobutyl chains, demonstrated substantial selectivity
and potency as TLR7 antagonists, with IC50 values of 8.2 uM
and 10.0 puM, respectively. Regarding the SAR analysis, the
derivatives from the pyrazolo[1,5-a]quinoxaline series that
incorporated either butyl or isobutyl tails exhibited the highest
antagonistic effect against TLR7. The addition of a methyl
group at the 8th position in these compounds was observed to
have a negligible impact on their activity.

Conversely, this antagonistic effect was compromised when
substituting a methyl group at the 9th position. Furthermore,
comparative ligand-docking studies have illuminated a distinc-
tive binding mode for these heterocyclic molecules to a newly
identified antagonist binding site for TLR7. These findings,
combined with the SAR data, rationalize the potential investi-
gation of quinoxaline derivatives as viable options in the treat-
ment of COVID-19.°

El-Hoshoudy, A. utilized a computational inquiry to investi-
gate the inhibitory impacts of certain quinoxaline derivatives,
among other ligands, through molecular docking techniques
focused on the 6YB7 protease associated with COVID-19. The
main virus protease was docked with some antiviral drugs and
natural inhibitory ligands against COVID-19 which were
improved for Escherichia coli BL21 (DE3) to identify the antiviral
activity of these candidates against COVID-19. The findings
from the docking studies revealed that quinoxaline derivatives
23 and 24 (Fig. 15) demonstrated significant binding affinity

35410 | RSC Adv, 2024, 14, 35400-35423

toward the protease, suggesting their capability to suppress the
protease’s function and consequently mitigate viral infection by
COVID-19.”°

In their research, Shahinshavali, S.
a sequential and structural analysis of the N-terminal RNA-
binding domain (NTD) of N-protein of SARS-CoV-2 in compar-
ison to that of HCoV-OC43, intending to identify shared regions
between the two proteins, and active site residues were pin-
pointed. Drugs such as chloroquine, favipiravir, and quinoline,
currently under consideration for their efficacy against corona-
viruses, served as the basis for in silico docking studies to explore
their potential as SARS-CoV-2 inhibitors. The study introduced
a novel molecular framework, designated template (D), which
incorporated the chloro functional group and pyrazine ring
found in the antiviral agent's quinoline and favipiravir. This
template, specifically a 3-alkynyl substituted 2-chloroquinoxaline
structure, was utilized to evaluate its binding affinity to the N
protein’'s nucleotide binding site of SARS-CoV-2 through molec-
ular docking. The results indicated that template (D) derivatives
generally demonstrated decent to moderate binding affinities, all
exhibiting values above 5.0 kcal mol . This novel compound, 3-
alkynyl substituted 2-chloroquinoxaline labeled as compound
25(a-c), was synthesized using a more eco-friendly and expedient
approach that omitted bi-metallic salt catalysts. It employed
a copper-catalyzed C=C bond formation reaction aided by
ultrasonication. The synthesis method produced the compound
26-a efficiently by coupling 2,3-dichloroquinoxaline with readily
available terminal alkynes in the presence of Cul, PPh;, and
K,COj; within a PEG-400 medium® (Fig. 16).

In the referenced article, it was determined that most
examined compounds exhibited binding affinities ranging from
good to moderate when assessed by in silico protein interaction
studies. The characteristics and magnitude of the substituent
groups attached to the alkyne, apart from the chloroquinoxaline
portion, significantly influenced their capacity to bind in silico
with the target protein. SAR analysis inferred that substituents
such as hydroxy cycloalkyl, aryl, and heteroaryl at the R position
of compounds 25(a—c) exhibited the highest efficacy. Substitu-
ents like hydroxy dimethyl, pentyl, or hexyl chains provided

et al. conducted

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 16 Synthesis of 3-alkynyl substituted 2-chloroquinoxalines facilitated by ultrasonication and catalyzed by copper.®

moderate efficacy, while hydroxy methylene groups showed
lesser efficacy among the substitutions examined. Larger alkyl
chains, such as butyl or tert-butyl groups, were found to
diminish binding affinity further. The chloro functional group
was notably engaged in hydrophobic interactions, particularly
affecting the binding affinities to the N-terminal RNA-binding
domain (NTD) of the N-protein of SARS-CoV-2. The quinoxa-
line backbone facilitated interactions such as m-m stacking,
hydrophobic, van der Waals contacts, and m—cation interactions
at the active site. In the realm of SARS-CoV-2 main protease
(Mpro) inhibition, novel potent lead compounds have been
identified with computer-aided drug design. SARS-CoV-2,
characterized as a positive-sense, single-stranded enveloped
RNA virus, encodes four structural proteins in two polyproteins:
pplab and pp1la. The virus-specific chymotrypsin-like protease
(Mpro) and papain-like protease (PLpro) are further processed
into functional proteins.?

Further enhancing this effort, Frecer, V. and S. Miertus
introduced rigid condensed aromatic systems to increase the
solvent-exposed surface area of the P3 moiety, enhancing
inhibitor binding the binding affinity of the amino acids within
the main protease 3CLP™ of COVID-19 via a pronounced hydro-
phobic effect. For instance, aromatic compounds like quinoxa-
line-1(4H)-ol (27-b) were chosen for the P3 residue of SARS-CoV-2
Mpro to add an extra hydrogen bond (H.B.) from hetero atoms or
functional groups to the side chain of GIn189 in Mpro. Similarly,
1,4-dihydroquinoxaline (27-a) positioned at P3 could donate an

additional H.B. to the backbone carbonyl of Glu166. Quinoxa-
line-1(4H)-ol (27-b) was also considered for inclusion as
a condensed aromatic moiety at the P3 residue (Fig. 17)."”

Compound 31, a 4-(5-nitro-thiophen-2-yl)-pyrrolo[1,2-a]qui-
noxaline derivative, has been identified by Divya, K. and
colleagues as a potential inhibitor of the main protease of SARS-
CoV-268058. In the work of Divya, K. et al, they identified
compound 28, or 4-(5-nitro-thiophen-2-yl)-pyrrolo[1,2-a]qui-
noxaline, as a potential inhibitor of SARS-CoV-2's main protease
through in silico analysis. By conducting a docking study to
ascertain the compound's affinity for binding to amino acid
residues at the 3CLP™ active site of SARS-CoV-2, the research
demonstrated the significance of compound 28's interaction.
The molecular docking results illustrated that compound 28
establishes noteworthy interactions, predominantly through
hydrogen bonds and hydrophobic forces, with residues at the
3CLP™ active site this enzyme is crucial to the virus's life cycle.
Compound 28's affinity was comparable to established COVID-
19 therapeutics like remdesivir and favipiravir.

Synthesis of compound 28 (Fig. 18) involved a direct and
simple, catalyst-free process that combined 1-(2-aminophenyl)
pyrrole with 5-nitro-2-thiophene carboxaldehyde. This mixture
was then subjected to reflux in an oil bath maintained at 60 °C
for twelve hours, resulting in a successful yield.®

The enzyme group known as sirtuins, specifically the Sirt
family, is characterized by its dependence on NAD+ for func-
tion. Significant interest has been directed toward activating

OH o NH
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Fig. 17 1,4-Dihydroquinoxaline (27-a) and quinoxaline-1(4H)-ol (27-b) as peptidomimetic inhibitors of SARS-CoV-2 main protease.”

© 2024 The Author(s). Published by the Royal Society of Chemistry

RSC Adv, 2024, 14, 35400-35423 | 35411


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ra04292a

Open Access Article. Published on 07 2567. Downloaded on 2/11/2568 12:40:39.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

RSC Advances

View Article Online

Review

Y
o+ (X,
NH,

N/
MeOH,60°C
" . ~ /9
12 hr N \ N*
N
-

28

Fig. 18 Synthesis of 4-(5-nitro-thiophen-2-yl)-pyrrolo[1,2-alquinoxaline, compound 28.
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Fig. 19 Structure of pyrrolo[1,2-alquinoxaline-based derivatives.*®

Sirt6, a member of this family, due to its potential as a thera-
peutic target for various diseases, including COVID-19. In their
study, Xu, J., and colleagues have discovered several new
derivatives of pyrrolo[1,2-a]quinoxaline (Fig. 19), which act as
potent, selective activators of Sirt6. Among these, the

compound  2-(4-(3-(4,5-dihydropyrrolo[1,2-a]quinoxaline-4-yl)
pyridine-2-yl)piperazine-1-yl)-N,N-dimethylethan-1-amine,
referred to as compound 29, stands out for its notably enhanced
effectiveness and minimal cytotoxicity. Molecular docking
research underscores that compound 29's side-chain proton-
ated nitrogen engages in m—cation interactions with the Trp188
residue, resulting in increased binding within the extended
pocket. The study's conclusions highlight that compound 29 in
Cell viability assay (A549-hACE2 cells) suppresses SARS-CoV-2
infection, demonstrating an ECs, value of 9.3 pM in present
of the lead compound UBCS039 for evaluating their potentials
against SARS-CoV-2."*

Missioui, M., and colleagues have developed a novel qui-
noxalin compound, named N-(4-methoxyphenyl)-2-(3-methyl-
2-0x0-3,4-dihydroquinoxalin-1(2H)-yl)acetamide (NMPOQAa),
designated as compound 30-b. This compound was synthe-
sized and evaluated for potential anti-COVID-19 activity.
While the measured experimental parameters were closely
aligned with theoretical predictions, a discrepancy was
observed in the geometrical alignment owing to differences in
torsion angles between the theoretical and experimental
structures. Through molecular docking studies, compound
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Fig. 20 Synthetic route N-(4-methoxyphenyl)-2-
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(3-methyl-2-oxo-3,4-dihydroquinoxalin-1(2H)-yl)acetamide, compound 30-b.3°
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30-b exhibited a behavior consistent with that of the known
COVID-19 therapeutic, Remdesivir against the 6M03 protease
(a COVID main protease). The SAR study indicated that the
NMPOQAa compound by many hydrophobic interactions
intracted with the amino acid residues of the active such as,
Phe8, GIn100, Arg105, Asp150 and Asp295. The synthetic
pathway for compound 30-b began with the condensation of o-
phenylenediamine with ethyl pyruvate in an aqueous HCI
solution, which was maintained at room temperature for half
an hour. Subsequently, P-Toluidine was dissolved in glacial
acetic acid and cooled in an ice bath. Chloroacetyl chloride
was then cautiously added to the solution in increments, with
continuous stirring. After completing this reaction phase,
adding a sodium acetate resolution precipitated solids within
30 minutes. For the final step, 3-methylquinoxalin-2(1H)-one
was dissolved in dimethylformamide and combined with 2-
chloro-N-(4-methyl-2-nitrophenyl)acetamide, a precursor
labeled as compound 30-a. This was followed by the intro-
duction of potassium bicarbonate as the base for proton
abstraction and a small quantity of benzyl triethylammonium
chloride (BTBA) for phase transfer catalysis. The mixture then
underwent reflux while being stirred continuously for two
hours at 80 °C (Fig. 20).*°

Missioui, M. and associates synthesized a novel compound
labeled as diethyl 2-(2-(2-(3-methyl-2-oxoquinoxalin-1(2H)-yl)
acetyl)hydrazono)malonate (MQOAHM), known as compound
31(a-b), to evaluate its potential as a COVID-19 therapeutic.
Although initial results did not demonstrate a definitive effect
against COVID-19 (MPro, PDB 7BQY), the intricate network of
multi-hydrogen bonds and hydrophobic interaction between
the newly formed ligand and the receptor's active amino acid
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Fig. 22 Structure of quinoxaline derivatives compound 32.32

residues suggested that the compound deserved additional
investigation for its potential use in treating COVID-19. The
study reported a synthesis process for this compound 31(a-b)
(Fig. 21). The procedure involved combining the quinoxaline
derivative in an ethanolic solution with diethyl 2-oxo malonate.
This mixture was stirred continuously for 2 hours while heated
under reflux at 80 °C. The synthesis was completed with
a reaction yield of 65%.%"

Mahgoub, R.E. and collaborators conducted a virtual
screening focused on structure, wherein they processed
approximately 3.8 million compounds from four distinct
chemical libraries to pinpoint inhibitors targeting the active site
of the SARS-CoV-2 Mpro enzyme using simple enzyme assays
and kinetics studies (a fluorescence resonance energy transfer
(FRET)-based assay). Among the substances evaluated, three
promising inhibitors were identified, with the quinoxaline
derivative known as compound 32 (Fig. 22), showing particu-
larly favorable pharmacokinetic properties, indicative of its
potential as a lead compound with ICs, value about 301.0 uM
against SARS-CoV-2 Mpro. The research determined that
compound 32 can fit snugly within the Mpro's active site despite

NH, H;CH,CO

Reagents:

a) HCI1

b) Bromoethylacetate, K,CO3;, BTBA, DMF;
¢) NH,NH,;,H,0, EtOH;

d) Diethyl-2-oxomalonate, EtOH.

NH, H;C._O a Na b
+ I —_— _
O O

HN.
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nycm,co M oc,cn,
NHNH,
0O O
31(a-b) 31-3

CHj; @NICHS
E N~ "0
(0)
31-1
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Fig. 21 Synthetic route 2-(2-(2-(3-methyl-2-oxoquinoxalin-1(2H)-yl)acetyl)hydrazono)malonate, 31(a-b).**
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Fig. 23 Structure of (2)-5-(3-(furan-2-carbonyl)-4-(4-hydrox-
yphenyl)  but-3-en-1-yl)-3-(furan-2-yl)quinoxalin-2(1H)-one  as

potential SARS-CoV-2.3

its relatively diminutive structure, engaging crucial subsites
effectively. Given its inhibitory potency and characteristics akin
to a lead compound, compound 32 represents a viable candi-
date for further research and development into antiviral medi-
cations that could benefit clinical settings.**

Through molecular docking studies targeting the Mpro
enzyme, a panel of 13 molecules was identified, each adhering
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Among these, the compound designated as (Z)-5-(3-(furan-2-
carbonyl)-4-(4-hydroxyphenyl)but-3-en-1-yl)-3-(furan-2-yl)qui-
noxalin-2(1H)-one, referred to as compound 33 (Fig. 23), was
highlighted. These molecules were subjected to further molec-
ular docking analysis against the SARS-CoV-2 Mpro, reinforcing
their promise as possible inhibitors of the SARS-CoV-2 main
protease. This in silico fragment-based drug design approach
highlights these fragments as potential leads for continued
research in the drug discovery process aimed at combating
COVID-19.*

P. Moghimi and colleagues focused on pyridazino[4,5-b]
quinoxaline-1(2H)-one structure, specifically compounds 35(a-
b), which were evaluated for their effectiveness against the main
protease of COVID-19. Molecular docking studies revealed that
these compounds, particularly the phenyl and nitrophenyl-
substituted variants, displayed strong binding affinities with
values of —7.6 kcal mol ™' for both. Notably, the spatial
arrangement of compounds 35(a-b) within the chymotrypsin-
like cysteine protease, 3CLP™, was considered advantageous.
Additionally, MD simulations aimed at assessing the stability of
the protein-ligate complex indicated the nitrophenyl compound
formed a stronger association than its phenyl counterpart,
suggesting its superior inhibitory action based on the in silico
analysis. The synthetic pathway for these pyridazino[4,5-b]qui-
noxaline-1(2H)-one derivative began with a reaction between
compound 37-1 and thiocarbohydrazide, and 34-2 executed in
the presence of ethanol under reflux. This process yielded 1-
oxopyridazino[4,5-b]quinoxaline-2(1H)carbothiohydrazide,
designated 37-3. Subsequently, compounds 35(a-b) were
synthesized using a direct and efficient method) Fig. 24), which
involved the reaction of 2-(ethoxycarbonyl)-3-formyl quinoxa-

to Lipinski's rule of five and demonstrating favorable pharma-  Jine 1,4-dioxide with thiocarbohydrazide under reflux
cokinetic predictions by the QikProp module of Maestro. conditions.’
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Fig. 24 Synthetic route 2-(5-phenyl-6H-1,3,4-thiadiazin-2-yl)pyridazino[4,5-blquinoxalin-1(2H)-ones, 35-a, 35-b.”
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Fig. 25 The structure of quinoxaline thiazolo[2,3-c] derivatives.**
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Fig. 26 Structure of
quinoxaline.®

complex Rebek's acridine diacid with

In a study by Ghufran M. et al., potential inhibitors for the
SARS-CoV-2 main protease (Mpro) were sought using structure-
based virtual screening, molecular docking (via molecular
operating environment (MOE)), and assessment of drug-like
properties. The team employed three distinct databases—
ChemBridge, ZINC, and a proprietary in-house collection to
identify viable drug candidates that could effectively interact
with the catalytic site of Mpro. Among the screened compounds,
a quinoxaline derivative labeled as 36-a from the in-house
database emerged as the most promising, exhibiting a high
docking score of —38.7102 and a root-mean-square deviation
(RMSD) value around 2.4 A across a 150 nanosecond (ns)

simulation. The docking conformation suggested that this
quinoxaline derivative is expected to establish hydrophilic and
hydrophobic interactions with Mpro's active site residues.
Additionally, amino acid residues within the enzyme's active
site appeared capable of forming hydrogen bonds with the 1,4-
dihydroquinoxaline portion of the compound. These findings
support the potential application of these compounds (Fig. 25)
in the treatment of the SARS-CoV-2 infection.**

2.4 Miscellaneous

Utilizing the EUDOC computational platform, an extensive
screen of 23, 426 chemical structures was performed at a gran-
ular level of detail—1.0 A for translational adjustments and 10°
for rotational changes—to identify inhibitors of the
chymotrypsin-like cysteine protease linked to the severe acute
respiratory syndrome-associated coronavirus. Within this
research, the complex formation of Rebek’s acridine diacid with
quinoxaline®»* (Fig. 26) (bearing the Cambridge Structural
Database code: YAW]IP) was re-enacted through EUDOC, capi-
talizing on the non-covalent interaction parameters furnished
by the second-generation AMBER force field. Historically, NMR
spectroscopy of the YAW]JIP complex had delineated a face-to-
face 7 stacking between the guest quinoxaline molecule and
the acridine moiety of Rebek's acridine diacid. However, the
EUDOC program's three-dimensional reconstructions refined
the representations of quinoxaline and Rebek's acridine diacid

Ry
HyN g R;COCO,R
| >
)
H,N N R=H,EtOH,Na
R, 10%H,S0,4 or EtOH
37-2(1_3)

1) R;=R,=H:

2) Rj=CLR,=H;

3)R;=CL,R,=OH

R R
’ { g N R
N N (0] A AN 3
| ] . +
N N7 R, N N“ 0
H
Rl Rl
37-b(1_3) 37-0(1_3)

Fig. 27 Synthesis pathway of Pyrido quinoxalines derivatives.®
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Fig. 28 SAR of novel quinoxaline derivatives with anti-influenza activity.
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Fig. 29 SAR of novel quinoxaline derivatives with anti-SARS corona activity.
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Fig. 30 SAR of novel quinoxaline derivatives with anti-SARS-CoV-2 activity.

to establish a complex strikingly similar to the known crystal
structure (Form A), presenting a minimal weighted root mean
square deviation (mwRMSD) of 0.7 A. Contrary to earlier
suppositions, it did not depict the near face-to-face m-stacking
scenario proposed. In conclusion, the employment of the
EUDOC program demonstrated its utility in accurately predict-
ing the three-dimensional modeling of host-guest complexes,
offering significant contributions to the formulation of novel
molecular designs grounded in supramolecular chemistry.*”

35416 | RSC Adv, 2024, 14, 35400-35423

Carta, A. et al. studied new classes of linear N-tricyclic
compounds, pyrido[2,3-g]quinoxalines in cell-based assays for
cytotoxicity and antiviral activity against the respiratory syncy-
tial virus (RSV). They showed moderate, although particular
activity (pyridoquinoxalines 37-b and 37-c¢ against RSV (ECs,
range = 12-18 uM)). Pyridoquinoxalines (37-b and 37-c deriva-
tives) were developed through the introduction of different
electron-withdrawing substituents for the phenyl moiety. SAR
studies of pyridoquinoxalines suggested that a phenyl or benzyl
side chain for this nucleus is generally more favorable than an
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aliphatic substituent. Among the studied compounds, 2-oxo-
substituted derivatives exhibited higher activity than unsub-
stituted replications. In addition, pyridoquinoxalines could be
designed by introducing different electron-withdrawing
substituents on the phenyl moiety.

The synthetic route of 37-b and 37-c series started following:
diamines 37-a series reacted with a-keto carboxylic derivatives
in refluxing ethanol for 3-15 h or in 10% aqueous solution of
sulfuric acid at 45-50 centigrade for 2 h, combinations of two 2/
3-oxo-isomers were obtained in 10-80% yield that named 37-
b and 37-c series (Fig. 27) which were then split and purified by
chromatography.?®

2.5 The structure-activity relationship (SAR)

2.5.1 The SAR for anti-influenza activity. SAR of quinoxa-
line derivatives in targeting the NS1A protein for anti-influenza
therapies was considerably influenced by changes at positions 2
and 3, particularly by bis-2-furyl substitutions (Fig. 28). The
study also discovered that introducing various substitutions or
heterocycles at position 6 through an amide linker considerably
impacted biological activity. Additionally, substituting indole
on positions 2 and 3 can enhance the action against
influenza.**?*®

2.5.2 The structure-activity relationship for anti-SARS-CoV
activity. SAR investigations have identified that an amidic side
chain or the presence of isoesters commonly enhances
hydrogen bonding interactions with the protein targets of SARS-
CoV (Fig. 29). Within this structural context, the quinoxaline
core forms a hydrogen bond via its nitrogen-hydrogen (-N.H.)
group with the arginine residues (specifically Arg55 and Arg164)
on the SARS-CoV protein. It was indicated that hydrophobic part
of compound 12-c¢ could played key role in PPIase activity of
CypA inhibition for example furan ring interacted with the
benzene ring of Phe113 via - stacking. Also the quinoxaline
ring by -NH-7 hydrogen bond with the -N-H group of Arg55 as
it mentioned which was a key determinant against the PPIase
activity could be a promising scaffold. Compounds such as 12-c,
14, and 15 have been shown to mimic effectively the binding
pattern observed in the ribonucleotide-binding site of the SARS-
CoV, suggesting their potential to hinder the viral activity
(Fig. 30).>"¢

2.5.3 The structure-activity relationship for anti-SARS-
CoV-2. Analysis conducted on imidazo[1,5-a]quinoxalines for
SAR purposes indicated an increment in antagonistic activity
at position R6, specifically when the side chain had an alkyl
length of 4 to 5 carbon atoms, including butyl, pentyl, and
isopentyl groups.*® Within compound 25(a—c), the SAR study
revealed optimal activity when hydroxycycloalkyl, aryl, and
heteroaryl groups occupied the R; position alongside a prop-
argyl group. Incorporating an enlarged heterocyclic segment
into the quinoxaline core reduced the molecule’s flexibility and
peptide-like characteristics, enhancing structural stability.?
Compounds 27-a and 27-b showed lone pair-p interactions
facilitating their binding within the pocket. For 27-b, the
presence of 1,4-dihydroquinoxaline provided an additional
hydrogen bond donor to the backbone carbonyl of the targeted
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protein.” The side chain’s protonated nitrogen in compound 29
was found to engage in m-cation interactions with the target,
augmenting binding space stability. The SAR findings suggested
beneficial effects from hydrophobic structures on the tricyclic
core, including the substitution of a benzene ring for a pyridine
ring, which was well accommodated as evidenced by the binding
interactions of compound 29's protonated nitrogen side chain
within the pocket.”®* Molecular docking results for NMPOQA have
posited that this ligand, containing N and O atoms with available
lone pairs, demonstrated affinity profiles superior to that of the
drug Remdesivir, potentially due to its ability to engage in 7 -7
stacking as part of hydrophobic interaction. NMPOQA's
comparatively lower binding energy suggests it could be a formi-
dable contestant in the quest for COVID-19 therapeutics.*® Eval-
uation of compound 32 revealed that its diminutive size did not
preclude it from filling essential subsites of the active site,
showcasing a variety of inhibitory and lead-like qualities condu-
cive to the development of clinically significant antiviral agents.*
An in silico comparative analysis pointed out a more potent
inhibitory effect exerted by the nitrophenyl complex over its
phenyl counterpart.® The docking behavior of ligand 36-
a emphasized the potential for forming dual-natured (hydro-
philic and hydrophobic) interactions with the essential amino
acid residues in the Mpro protein's activity domain. Furthermore,
the proclivity of amino-acid residues to establish hydrogen bonds
with the 1,4-dihydroquinoxaline segment of the molecule
underscored the therapeutic promise of these compounds,
against SARS-CoV-2 ** (Fig. 25).>* The detailed structural charac-
teristics and specifications of all compounds investigated in this
study are comprehensively listed in Table 1.

3. Conclusion

Quinoxaline describes a significant category of nitrogen-
containing heterocycles with a wide range of biological activi-
ties, especially respiratory antiviral activities. Two-ring hetero-
aromatic, quinoxaline derivatives are essential precursors for
synthesizing various physiologically significant and pharmaco-
logically utilized molecules. Quinoxaline scafolsshowed poten-
tial influenza inhibitory, anti-SARS coronavirus inhibitory, anti-
SARS-CO2 coronavirus, and other related anti-virus activities.
This present article provides the researchers with synthesized
methods on quinoxaline templates reported as respiratory
antiviral compounds and a thorough understanding of their
effects in helping against significant and epidemic viral
diseases such as the COVID-19 pandemic. As we detected,
a suitable substitution pattern suggests that the positions of 2, 3
and 6 are significant points of biological relevance for improved
activities across antiviral diseases that are studied in this article.
Quinoxaline derivatives can be a valuable framework for
developing novel pharmacological entities for the treatment of
these antiviral diseases in therapeutic medicine. Further, in
vitro and in vivo experimental activities are required to convert
these potential inhibitors into clinical drugs. This review could
impact the development of therapeutic agents for future anti-
viral outbreaks such as COVID-19.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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