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In the present work, the synthesis of BaZrOs nano-ceramics is explored through flash combustion utiliz-
ing glycine as a fuel. The resulting nanoparticles exhibit a cubic Pm3m space group and a spherical mor-
phology with an average size of 45.31 nm. XRD and EDAX verify the integrity of the phase. FTIR and
Raman spectroscopy is used to analyze the molecular bonds and their vibrations, while XPS reveals surface
compositions and oxidation states. The electro-optical properties of BaZrOs are explored through UV-Vis
spectroscopy and electronic band structure analysis. The Tauc plot displays a pair of band gaps, with values of
3.08 eV and 3.84 eV, corresponding to indirect and direct characteristics. BaZrOz demonstrates photocatalytic
potential with a degradation efficiency of approximately 36.41% for rhodamine B under visible light. Electronic
band structure analysis reveals an indirect band gap of 3.05 eV in BaZrOs. The Bader analysis emphasizes the
pronounced covalent characteristics present in the Zr—O bond. Photoluminescence spectra exhibit electronic
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transitions with a peak observed at 420.57 nm (~2.94 eV), suggesting activity within the violet light spectrum.
The CIE chromaticity coordinates imply prospective uses in the manufacture of violet-blue LEDs. These
findings underscore the tailored properties of BaZrOz nano-ceramics, showcasing their versatility for various
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1. Introduction

The modification of source materials across atomic and mole-
cular levels has enabled the development of a wide range of
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applications, notably in advanced optoelectronic devices.

nanoscale materials, allowing for the synthesis of metal-oxide
nanoparticles with improved characteristics." The unique pro-
perties and potential applications of metal-oxide nano-
particles have sparked curiosity, leading to increased interest
in various fields such as health, electronics, and energy.>
Moreover, the multifaceted applications and distinct character-
istics exhibited by transition metal semiconductors in the
realms of optoelectronics and energy sectors have garnered
considerable interest across a spectrum of fields. Within this
category of nanoparticles, transition metal semiconductors
stand out prominently, fulfilling pivotal functions in magnetic
storage media, catalytic processes, and gas detection systems.
Additionally, metal-oxide nanoparticles hold promise for
applications in electronic devices, solid oxide fuel cells, and
optical materials. Research into metal oxide nanoparticles is
ongoing, driven by their unique material properties and their
potential utility in various domains.> Metal oxides with the
structure of a perovskite are frequently used in chemical
sensors, solid oxide fuel cells, thermoelectric devices, and
oxygen-permeable membranes, among other applications.*”
Perovskites indicated by the chemical formula XYO; (where X
denotes alkaline earth and Y signifies 3d transition metals)

This journal is © The Royal Society of Chemistry 2024
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demonstrate outstanding properties as both structural and
electronic ceramics.® When appropriately modified with
dopants, these substances demonstrate conductivity in either
ionic or electronic forms. Typically, in XYO; compounds, the
valence band (VB) near the Fermi energy level (Ef) is typically
formed by the 2p orbitals of oxygen atoms. At the same time,
the formation of the conduction band involves the contri-
bution of d orbitals from the Y atom. The level of interaction
between Y and O is contingent upon the electronegativity of
the Y atom. As a result, the characteristics of the Y-site com-
ponent have a significant impact on the photocatalytic capa-
bilities of perovskite materials.

Among the several perovskite nanoparticle varieties, atten-
tion has shifted to BaZrO; nanoparticles due to their ability to
emit visible light, making them useful in optical displays and
devices.” BaZrO; nanoparticles have particular appeal in the
realm of optoelectronics owing to their robust efficiency and
stability across diverse operational conditions. Furthermore,
nanomaterials such as BaZrO; have unique properties that
surpass many standard bulk materials in terms of efficiency
and resilience.®® Additionally, studies suggest that the BaZrO;
nanoparticles can be used in catalysis, since they have catalytic
properties across a wide range of chemical reactions. These
nanoparticles not only possess optical prowess but also
remarkable traits, such as a simple cubic perovskite structure,
demonstrating high chemical stability, exceptional mechanical
strength, and resilience to extreme temperatures. These fea-
tures broaden their utility in fabricating heat-resistant compo-
sites. Recent research has unveiled the potential of BaZrOj;
nanoparticles as proton conductors.'®' Zhu and fellow
researchers conducted a study aimed at accelerating proton
conduction in yttrium (Y)-doped barium zirconate (BaZrOj)
through the manipulation of oxygen vacancies. This approach
involves engineering these vacancies, primarily achieved by
introducing calcium (Ca) doping, with the goal of enhancing
proton diffusion within the material."> The functionality of
semiconductor devices, encompassing photon absorption or
emission, solid-state lighting, photovoltaic cells, detectors, dis-
plays, sensors, lasers, and photocatalysts, is substantially
impacted by the bandgap.'® The BaZrO; perovskite stands as a
promising material across diverse applications, ranging from
fuel cells to solar photovoltaics, owing to its notable oxide-ion
conductivity.'*

The bandgap, a fundamental property of semiconductor
materials, profoundly influences the functionality of semi-
conductor devices by imparting unique electrical character-
istics essential for modern electronics. It defines the energy
distinction between the valence band, where electrons are
bound to specific atoms, and the conduction band, housing
free electrons capable of mobility within the material, conse-
quently dictating the material’s electrical conductivity and
optical properties and requiring precise control and modifi-
cation. Nevertheless, BaZrO;’s broad bandgap limits its photo-
activity and ability to absorb photons in the visible light spec-
trum."® Consequently, modifying BaZrOz's bandgap has
become a key area of research to enhance its effectiveness in
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photovoltaic and related applications. For example, Patra et al.
achieved significant improvements in photocatalytic perform-
ance by modifying BaZrO; with carbon dots, demonstrating
superior efficiency with an optimal CD loading.® Various
methods have been employed to synthesize BaZrO; in different
sizes and shapes, such as polyhedra, nanocubes, nanowires,
decaoctahedra, and monodispersed particles.'®'” These
efforts have enhanced its optical, ferroelectric, and electronic
properties. Common synthesis techniques include the solid-
state reaction (SSR), one-step auto-combustion, sol-gel, pre-
cipitation, hydrothermal, and green synthesis techniques,
which are widely used to produce BaZrO,; nanoparticles.””’
Modifying the bandgap of BaZrO; often involves doping and
alloying with specific elements, introducing impurity energy
levels into its band structure. This precise synthesis not only
affects the size, shape, and composition but also unlocks
potential  applications in catalysis and
technology.'®'® Efforts to enhance visible light absorption in
these wide bandgap materials include adjusting their band
positions with alternative elements or modifying anions to
create oxygen-related vacancies in the lattice structure. Ullah
et al. used DFT calculations to analyze the properties of pris-
tine and Cd-substituted BaZrO;, finding that Cd-substitution
significantly enhanced optical performance, making it more
efficient for optoelectronic devices. Both pure and Cd-substi-
tuted BaZrO; showed potential for efficient overall water split-
ting, indicating their suitability for green energy applications
and solar cells.*® Kayathiri et al.’s green synthesis narrowed
BaZrOj’s bandgap to 4.01 eV through plant chemical substi-
tution, improving its properties. They reported an 84.1%
maximum degradation efficiency of CR dye after 90 minutes of
light irradiation.’

However, diverging from traditional doping approaches, an
alternative method has been employed in this case, involving
modified synthesis techniques, optimized sintering tempera-
tures, and the creation of oxygen vacancies within the lattice.>*
High-temperature synthesis techniques offer a means to fine-
tune semiconductor bandgaps by tailoring interfacial ener-
getics, adjusting valence and conduction band edges, and
inducing surface oxygen vacancies. Surface oxygen voids func-
tion as traps for optically generated charge carriers, lessening
the likelihood of electron-hole recombination, while bulk
oxygen vacancies serve as centers for the recombination of
photogenerated charges, significantly impacting photocataly-
sis.*” In addition, the material experiences the development of
mid-gap energy levels as a consequence of these trap states,
enabling precise adjustments to the electronic structure. The
bandgap values achieved through various synthesis techniques
are summarized in Table 1 for a comprehensive comparison.

Our study introduces a novel approach to synthesizing and
characterizing BaZrO; that significantly advances the current
understanding and potential applications of this material. We
have developed an innovative synthesis method that allows for
precise control over both particle size and morphology, addres-
sing scalability and uniformity challenges prevalent in conven-
tional techniques. Moreover, our thorough investigation into

microwave
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Table 1 Comparison of bandgap values achieved through various synthesis techniques for BaZrOs
Sintering Band gap  Particle

S. No. Composition Synthesis technique temperature (eV) size (nm) Morphology Ref.
1 BaZr,_,Ce, O3 Modified hydrothermal method 100 °C 2.37-2.14 ~150-200 Hollow spheres 6

(x = 0.00-0.04)
2 BaZrO; CHM approach 50 °C — 50-240 Nano cubes 23
3 BaZrO; Co precipitation method 110 °C 4.87 200 Spheres 24
4 BaZrO; Chemically synthesized 400 °C 4.28 16 Non-uniform nanoparticles 9
5 BaZrO; Green synthesized 400 °C 5.3 11 Non-uniform nanoparticles 9
6 BaZrO; Pechini-type process 1100 °C 4.8 — — 25

impurity phases, employing advanced techniques such as
Raman spectroscopy and XPS, provides a deeper understand-
ing of the synthesis process and its implications for materials
properties, a level of analysis rarely explored in the existing lit-
erature. Crucially, we have demonstrated the capability to
finely tune the bandgap of BaZrO; through careful adjustment
of synthesis parameters, essential for optimizing performance
in optoelectronic devices. Departing from traditional doping
strategies, our approach involves modified synthesis tech-
niques and optimized sintering temperatures to deliberately
introduce oxygen vacancies within the lattice, thereby enhan-
cing semiconductor properties. This comprehensive synthesis
and characterization approach not only advances fundamental
knowledge but also positions BaZrO; for innovative appli-
cations in fields ranging from electronics to catalysis.

Presently, the aim is to tailor the band gap of barium zirco-
nate using suitable synthesis techniques to explore its poten-
tial as a photocatalyst for degrading rhodamine B dye and
perform a detailed structural, electronic and optical analysis
by means of different spectroscopic techniques. Density func-
tional theory calculations, utilizing the projector augmented
wave (PAW) method, are employed to confirm the origin of the
optical band gap. Bader charge analysis is also performed in
order to achieve a quantitative assessment of the bonding
characteristics in the BaZrO; ceramic.

2. Experimental and computational
details
2.1 Synthesis

High-purity barium nitrate [Ba(NOj3),] and zirconium dioxide
[ZrO,] nanoparticles were used as an oxidizer, while glycine
[C,H5NO,] was used as a fuel in a proportion of 0.1:0.1:0.22
for a one-step facile flash combustion synthesis. The pro-
portional quantities of these materials were determined based
on the following chemical equation:

9Ba(NO,), + 9Zr0, + 10C,H;NO,
— 9BaZrO; + 20CO, T +25H,0 + 14N, |

(1)

The main steps for the one-step facile flash combustion
synthesis are schematically illustrated in Fig. 1. The appropri-
ate amount of oxidizers and fuel was taken in a 100 ml beaker
and mixed together to form a homogeneous mixture. A
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sufficient amount of glycine solution was added to ensure that
the total number of reducing and oxidizing valences was
equal, resulting in an equivalence ratio (oxidizing valences/
reducing valences) of one. This served to maximize the release
of heat due to the exothermic reaction.

The obtained homogeneous mixture was then aged overnight
at room temperature to form a xerogel. Subsequently, the xerogel
was placed on a hotplate and maintained at a temperature of
around 200 °C. During this stage, the xerogel underwent dehydra-
tion and self-propagating combustion within a few seconds,
accompanied by a flash of light. This combustion reaction
released CO, and N, gases and formed a porous foamy-fluffy
powder due to the exothermic reaction between the oxidizer and
fuel. The resulting porous foamy-fluffy powder of BaZrO, was
reheated at 250 °C for 4 hours. Afterward, the fluffy powder was
ground for 2 hours and calcined at 1200 °C in air for 12 hours
using a tubular furnace. Finally, the BaZrO; powder was reground
and sintered at 1200 °C under the same conditions and for the
same duration to enhance its crystallinity.

2.2 Characterization

The determination of the phase composition and crystal struc-
ture of the prepared BaZrO; nanoparticle is accomplished
using powder X-ray diffraction (PXRD) with CuKa radiation
(4 =1.54056 A) on the Bruker D8 Advance instrument. FullProf
software was used for diffractogram analysis, utilizing the
pseudo-Voigt function to refine peak profiles. Characterization
of the sample size, surface morphology, and elemental compo-
sition was carried out using a “Carl Zeiss Supra 55” FESEM,
combined with energy X-ray dispersive spectroscopy (EDS).
The standard KBr pellet technique was used to record the
Fourier transform infrared (FT-IR) absorption spectrum, using
a PerkinElmer FT-IR spectrometer (Spectrum 1000, Japan). For
Raman spectra, the LaBRAM HR Raman spectrometer from
Horiba (France SAS), utilizing a 633 nm He-Ne laser source
with 100% power, was employed. X-ray photoelectron spec-
troscopy (XPS) was performed at the Indus-2 synchrotron facil-
ity RRCAT Indore, operating in the hard X-ray region and utiliz-
ing a Photoemission Electron Spectrometer (PES), BL-14,
powered by a 1.5 T bending magnet source. This synchrotron
source is equipped with a double-crystal monochromator
[Si (111)] featuring an excitation energy of 4.065 keV. The system
is further enhanced with a hemispherical analyzer and detec-
tor system (Phoibos 225, Specs make). Throughout the experi-

This journal is © The Royal Society of Chemistry 2024
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Fig. 1 Schematic diagram of the synthesis of BaZrO3 nanoparticles via glycine-assisted combustion techniques.

ments, the pressure in the experimental station was main-
tained at 5 x 10”° mbar.

To address surface charging effects, all peaks were refer-
enced to the C 1s spectrum (284.77 eV) in the analysis. The
XPS core level spectral data underwent analysis and quantifi-
cation using XPSPEAK 4.1 software, and the Shirley back-
ground method was applied to subtract the background from
all XPS spectra. All measurements were conducted at room
temperature.

Polarization measurements were performed using ferroelec-
tric hysteresis loops (M/s Radiant Technology, USA) at 20 kHz.
The optical band study of synthesized BaZrO; nanoparticles
was carried out using a PerkinElmer Lambda 950 UV-visible
spectrophotometer across a wavelength range of 200 to
800 nm. Photocatalytic activity testing of the BaZrO; catalyst

This journal is © The Royal Society of Chemistry 2024

for RhB (10 mg L™') degradation was conducted under UV
light using a 150 W Xenon lamp housed within a column-
shaped stainless-steel cabinet (4;,.x ~400 nm). Room tempera-
ture photoluminescence excitation spectra were acquired using
an F-7000 Hitachi fluorescence spectrophotometer, utilizing a
Xenon lamp employed as the excitation source for emission.

2.3 Computational details

In this study, electronic and geometrical calculations based on
density-functional theory (DFT) were conducted using the
Vienna ab initio simulation package (VASP).*® The projector-
augmented wave (PAW) method was employed to consider
both ionic core effects and electron—electron interactions.””
The Perdew-Burke-Ernzerhof (PBE) functional within the gen-
eralized gradient approximation (GGA) handled the exchange-

Nanoscale, 2024, 16, 18086-18107 | 18089
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correlation potential.*® To ensure precision in both geometri-
cal and electronic properties, a kinetic cut-off energy of 550 eV
was specified. Optimization and partial density of states ana-
lysis utilized a 15 x 15 x 15 dense k-point mesh employing the
Monkhorst-Pack (MP) system.

3. Results and discussion
3.1 Crystal structure and phase composition analysis

3.1.1 X-Ray diffraction pattern. For an initial assessment of
the crystallographic structure, its lattice parameters, and size
of the BaZrO; nanoparticles that were prepared, we utilized the
X-ray diffraction technique. The analysis was conducted at
room temperature, employing a wide range of Bragg’s angles
(260) spanning from 20° to 90°. The first peak at 260 of 21.18°
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Fig. 2 XRD patterns of the as-synthesized BaZrOz nanoparticles.
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was indexed with the (100) planes, confirming a cubic cell
structure for BaZrO;. The complete Akl assighment, detailed in
Fig. 2, aligns with JCPDS card number 00-001-0890.%3°
However, one peak around 23.96 degrees suggests the presence
of BaCO; as an impurity.>® The emergence of the BaCO; phase
is likely attributed to the reaction between BaO and CO,. It is
plausible that BaCO; is formed during the breakdown of the
intermediate —-(COO),Ba functional groups. Clearly, the crystal-
linity shows a noticeable enhancement following the heating
of the porous foamy-fluffy powder of BaZrO;. In Fig. 3(a), the
fitting process of the XRD pattern of the BaZrO; nanoparticles
using the Rietveld method within a perovskite framework
characterized by a cubic configuration in the Pm3m (no. 221)
space group is presented. The fitting resulted in a final differ-
ence and a profile fit. The XRD profile reveals three prominent
peaks at 30°, 43°, and 53° with Miller indices (1 1 0), (2 0 0),
and (2 1 1), respectively. These observations suggest that
the crystal structure is predominantly oriented in the (1 1 0),
(2 0 0), and (2 1 1) directions. The calculated pattern and the
observed one exhibit a strong correspondence with character-
istics atomic parameters after Rietveld refinement are pre-
sented in Table 2. The low values of various R-factors such as
Rexps Roragey Rpy Rp, Rwp, and 1%, along with GOF, support the
justification for the refined model, indicating a well-aligned
agreement between the experimental data and the refined
model.

The Williamson-Hall plot method*" was employed to deter-
mine the crystallite sizes of the synthesized samples through
the following relationship:

p cos 0 = 4¢ sin 6 + kA/D (2)

where K is the Scherrer constant, often taken as 0.9, D stands
for the crystallite size, 1 represents the X-ray radiation wave-
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Fig. 3 (a) Rietveld refined X-ray diffraction pattern of BaZrOs nanoparticle
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and (b) W-H plot.
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Table 2 Structural and lattice parameters, elemental composition, and
effective Bader charges of Ba, Zr and O atoms in the pristine BaZrOs
ceramic

Phase BaZrO;
Structural & lattice parameters
Space group Pm3m (221)
a(A) 4.18990
Atoms Atom  Site/Sym. x y z
Ba 1b/m3m 0.5 0.5 0.5
Zr la/m3m 0.0 0.0 0.0
o 3d/4/ 0.5 0.0 0.0
mm-m
V(&%) 73.5500
D (nm) 70.2900
£ (x107%) 1.6200
(dpa_o) (A) 2.96270
(dze0) (A) 2.09494
Reliability R, 14.70
factors Ryp 14.70
Rep  13.94
Rpragg  1.805
R¢ 1.930
Y 1.120
GOF 1.054
Elemental composition for BaZrO,
Element Weight Atomic Error
% % %
CK 17.1 45.3 11.4
OK 18.7 37.2 9.6
Zr L 22.2 7.8 5.5
BalL 42.0 9.7 7.8
Total 100.00 100.00 34.3
Effective Bader charges
Atom Effective Bader charge (e)
Ba® 1.5229
et 2.4952
0>~ -1.3394

length (1 = 1.5406 A), 0 corresponds to Bragg’s angle, f sig-
nifies the full width at half-maximum (FWHM) of the Bragg’s
peak, and e denotes the internal strain. The calculation of crys-
tallite size (D) involves determining the Y-intercept of the
linear fit, while the lattice strain can be represented by the
slope of the linear line. Fig. 3(b) presents an illustrative
Williamson-Hall plot for the BaZrO; sample. According to the
Hall-Williamson method, the calculated crystallite size for the
predominant (k2 k [) Bragg reflection depicted in Fig. 3(b) is
70.29 nanometers. The value of internal strain is tabulated in
Table 1.

In Fig. S1(a),T we depict the crystallographic representation
of BaZrO; nanoparticles, emphasizing their perovskite nature
characterized by a robust cubic symmetry. In this crystalline
arrangement, the central positions are occupied by Ba atoms,
with Zr atoms positioned at the wunit cell’s vertices.
Furthermore, oxygen atoms are situated at the midpoint of the
edges. Notably, the Ba cations exhibit a 12-fold octahedral
coordination, while the Zr cations display a 6-fold octahedral
coordination, as illustrated in Fig. S1(b) and S1(c),T respect-
ively, (ESIT).

The analysis of BaZrO; charge density plots offers crucial
insights into its electronic structure and bonding traits. An in-
depth examination of the electron density distribution within

This journal is © The Royal Society of Chemistry 2024
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the unit cell involved conducting a detailed study that mapped
electron density in the 110 plane using the GFourier
program,*? which is a component of the FullProf package. This
method generated two-dimensional Fourier maps, effectively
illustrating how electron density envelops each atom in the
compound’s elements.

Typically depicted with contour lines, these maps offer a
clear and intuitive view of electron density distribution. Shown
in Fig. S1(d and e),} the color scale in these maps illustrates
varying electron density levels. Areas of higher electron density
appear in shades of red, while lower density regions are
depicted in violet. Significantly, there is a notable elevation in
electron density for all atoms except oxygen and the interstitial
region. This visual representation effectively illustrates unique
electron density patterns for various atoms in the compound,
unveiling localized electron distribution and highlighting sig-
nificant density regions within the crystal structure. From the
Pauling electronegativity scale,® the Ba-O and Zr-O bonds
exhibit a more ionic character. Moreover, predominant charge
transfer occurs from other atomic species towards the oxygen
atoms. Additionally, the Ba-O bond appears more ionic com-
pared to the Zr-O bond.

3.1.2 Structural morphology and chemical composition
analysis. A microscopic investigation employing Field
Emission Scanning Electron Microscopy (FESEM) and Energy
Dispersive X-ray Analysis (EDAX) was conducted to validate the
microstructural features and dimensions of the BaZrO; nano-
particles. In Fig. 4(a and b), the FESEM micrographs at
100 nm for the BaZrO; nanoparticles are displayed. The
sample showcases a homogeneous dispersion of particles
characterized primarily by agglomerates of nanocrystals,
assuming a spherical morphology. This distinct morphology,
attributed to the utilization of the wet-chemical technique,**
serves as an indicator of a densely packed particle arrange-
ment. This agglomeration phenomenon is frequently encoun-
tered, particularly when synthesis is conducted at elevated
temperatures.®®

Fig. 4(c) presents the distribution of average particle sizes,
with a frequency plot illustrating the size distribution derived
from measurements of a substantial quantity of BaZrO; par-
ticles. The particle size distribution conforms to the character-
istics of a normal distribution function. Notably, the calculated
average particle size of BaZrO; stands at approximately
45.31 nm. Previously, BaZrO; powder was synthesized using
sol-gel auto-combustion in a pre-heated furnace, exploring the
influence of pH variation on citrate nitrate sol-gels and result-
ing in nanoparticles averaging 33.3 nm in size.>® In order to
establish the elemental composition of BaZrO;, Energy
Dispersive X-ray Analysis (EDAX) was performed under pre-
cisely controlled temperature conditions. The EDAX spectrum
depicted in Fig. 4(d) distinctly exhibits the detection of Ba, Zr,
and O elements, thus confirming the absence of any signifi-
cant loss of essential elements during the sintering process,
accounting for experimental uncertainties. The elemental com-
position typical of BaZrOs3, involving atomic percentage, is pre-
sented in Table 2. This meticulous analytical evaluation

Nanoscale, 2024, 16,18086-18107 | 18091
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Fig. 4 (a and b) Surface morphology micrographs, (c) average particle size distribution of BaZrOs, and (d) EDAX spectra.

reinforces both the consistency in cationic composition within
BaZrO; and the non-existence of secondary phases within the
structure of BaZrO;. The observation reveals a Ba/Zr ratio of
1.24, nearly approaching unity, signifying the integration of
these elements into the structure and providing confirmation
of the absence of any remaining oxides.?”

Furthermore, for a thorough comprehension of the elemen-
tal composition and distribution within the synthesized nano-
particles, we have incorporated the elemental distribution
graphs derived from EDS analysis as depicted in Fig. S2.f The
EDS mapping data, shown in Fig. 5(a-d), highlights the follow-
ing: Fig. 5(a) identifies the region where the EDS mapping was
conducted, while Fig. 5(b-d) respectively displays the presence
of Ba, Zr, and O in the synthesized sample. Importantly, no
other detectable impurities were found within the resolution
limit of the EDS measurement.

3.1.3 Phonon dispersion curve. Examining thermodynamic
stability involved calculating phonon dynamics while assum-
ing the cubic Pm3m phase. Fig. S3t illustrates phonon dis-
persion relations along the principal symmetry directions of
the Brillouin zone. A noteworthy aspect of the phonon spectra

18092 | Nanoscale, 2024, 16, 18086-18107

is the lowest-frequency phonon branch, which demonstrates
negative phonon frequencies at the M-points within the
Brillouin zone. The unstable phonon mode at the M-point,
which was not observed by Perrichon and coworkers®® or
Bilic et al.,** was detected in other calculations reported by
Helal et al.*® and Akbarzadeh,*' which also employed the DFT
method. The occurrence of phonon instability at the M-point
is contingent upon the selection of the exchange-correlation
potential and pseudopotential quality used to depict the inter-
action between the core and the valence electrons.*

Imaginary frequencies, denoted by negative phonon fre-
quencies, signify a breakdown in crystal symmetry.
Anharmonic phonon interactions can also contribute to these
negative frequencies, potentially triggering a structural phase
transition in BaZrO; under specific conditions. It is crucial to
emphasize that the computed phonon dispersion spectra
correspond to conditions of absolute zero temperature and
zero pressure. Variations in temperature or pressure can sig-
nificantly alter the situation. Thus, it can be inferred that
BaZrO; displays dynamic instability at low temperatures and
zero pressure. However, this scenario may change under

This journal is © The Royal Society of Chemistry 2024
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Fig. 5 (a) Field of view for EDS mapping, (b) EDS mapping for Ba L, (c) EDS mapping for Zr L and (d) EDS mapping of O K elements of BaZrOs

nanoparticles.

pressure, as evidenced by the previously documented pressure-
induced phase transition in BaZrOj; crystals.****

Regarding lattice dynamics, this phase transformation
corresponds to lattice instability at the Brillouin zone bound-
ary points. The lattice instability identified in the present cal-
culations aligns closely with earlier studies that employed a
similar approach.

3.1.4 Vibrational spectroscopy analysis. FTIR spectroscopy
is an effective analytical technique that can help to analyze the
vibrational modes of molecules in a sample. By measuring the
absorption of infrared radiation by the sample, we can gain
valuable insights into its chemical compositio