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Machine learning for carbon dot synthesis
and applications

Ali Nabi Duman *a and Almaz S. Jalilov *b

One of the hottest topics in nanoparticles research right now is carbon dots (CDs). In order to be used

in applications like medical imaging and diagnostics, pharmaceutics, optoelectronics, and photocatalysis,

CDs must be synthesized with carefully controlled properties. This is often a tedious task due to the fact

that nanoparticle syntheses frequently involve multiple chemicals and are carried out under complex

experimental conditions. The emerging data-driven methods from artificial intelligence (AI) and machine

learning (ML) provide promising tools to go beyond the time-consuming and laborious trial-and-error

approach. In this review, we focus on the recent uses of ML accelerating exploration of the CD chemical

space. Future applications of these methods address the current limitations in CD synthesis expanding

the potential uses of these intriguing nanoparticles.

1 Introduction

Due to their distinctive advantages, such as simple synthesis,
long-term photo- and colloidal stability, biocompatibility, bio-
degradability, non-/low toxicity, low cost, tunable photolumi-
nescence, and good dispersibility, carbon-based nanomaterials,
particularly carbon dots (CDs), have been one of the most
studied materials in recent years.1–8 These favorable charac-
teristics make CDs useful for applications in biosensing and
bioimaging,9–11 cancer research,12 drug delivery,13 visible light
communication,14,15 and optoelectronic devices.16–19 A base
carbon core with chemical functional groups attached or
modified on the surface makes up the core–shell-like structure
of CDs. The surface generally consists of some common
functional groups, such as amino, epoxy, carbonyl, aldehyde,
hydroxyl, and carboxylic acid, while the carbon core structure

consists of sp2 and sp3 carbon atoms.20–22 The additional mole-
cular structures which are essential to their features make CDs
extremely complex.

CDs can be synthesized by utilizing bottom-up or top-down
methods.16,23 In the top-down methods, large carbon materials
are cut into small carbon structures smaller than 10 nm. The
demanding physical procedures to break down the carbon
materials (e.g., graphite, graphene oxide, carbon nanotubes,
activated carbon, soot) involve laser ablation, arc discharge and
nanolithography under unfavorable conditions such as strong
oxidants, concentrated acids, and high temperatures.24–33 The
more adaptable and accessible bottom-up methods usually
include ultrasound synthesis, chemical oxidation, room tem-
perature method, and hydrothermal and solvothermal proces-
sing of relatively small molecular precursors.34 Although these
methods may include high temperatures/pressures, long reac-
tion times, or toxic solvents, the use of microwaves in sol-
vothermal synthesis partially solves these issues by reducing
the reaction time and the amount of solvents.35–40 The room
temperature method is another advantageous technique
because it does not require complicated machinery or harsh
synthesis conditions, making it environmentally friendly and
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sustainable.41–43 Hence, the simple setup, low cost and acces-
sibility to a wide variety of precursors make bottom-up methods
more favorable over top-down methods.

CDs can be divided into four main classes according to their
carbon core structure, surface functionalities, and performance
features: (i) graphene quantum dots (GQDs), (ii) carbon nano-
dots (CNDs), (iii) carbon quantum dots (CQDs), and (iv) carbo-
nized polymer dots (CPDs).44,45 GQDs are usually synthesized
by using a top-down approach, while preparation of CNDs and
CQDs is mainly done by using bottom-up methods.46–48 A
variety of models (e.g. polycyclic aromatic hydrocarbons, mole-
cular fluorophores, or sp2/sp3 hybrid spherical structures) are
used to explain the different structures of CDs.49–52

Due to the necessary high temperatures during bottom-up
synthesis of CDs, multiple reaction pathways occur while form-
ing a considerable amount of by-products. Along with the
irregular mass transfer, low reproducibility is also common
as reported in earlier studies.35,53 One solution to optimize
the target properties is to scan large experimental synthesis
conditions including the reaction temperature, the mass of
precursor, ramp rate, and reaction time. However, the high
complexity of the extracted data, repetitive experimental proce-
dures, and the lack of predictability make this scan very time-
consuming to achieve ideal results. For example, it is still
unclear how CQDs emit their fluorescence because it is a very
complicated process. It is customary to analyze the pH-dependent
photoluminescence (PL) spectra of CQDs at a fixed excitation and
ignore all other potential excitations; however, this method only
allows for the extraction of a portion of the available data.39,54–60

On the other hand, the complexity of data analysis methods can
rise along with the number of PL measurements. Similarly, current
CDs reported in the literature were frequently prepared optimally
by controlling one reaction parameter and fixing the other reaction
factors, while not considering the complex relationship between
reaction parameters during CD synthesis. Therefore, there is a
need to employ methods that accelerate the screening of the
necessary parameters in order to create CDs with enhanced
features and applications.

Quantum mechanics methods such as density functional
theory (DFT) provide a reliable computational solution to search a
reasonably designed parameter space.61,62 These semi-empirical
approaches can be used to explore the electronic structure and
chemical reactivity of CDs.63–67 Density-functional-based tight
binding (DFTB) is another semi-parametric method which
approximates DFT in a tight binding framework.68–71 DFTB
requires fewer empirical parameters and is computationally
more efficient than DFT. The mechanism of graphene formation
and single-walled carbon nanotube nucleation are examples
studied using DFTB.72,73 However, these semi-empirical
methods are computationally too costly for a large search space.
The alternative approaches to reduce the entire search space
include optimization and gradient based algorithms. The accu-
racy and computational performance of these methods depend
on the initially determined parameters; hence, they might return
different results from the different initial values and potentially
end up in local minima.

Data-driven approaches based on machine learning (ML)
algorithms provide an alternative to the abovementioned com-
putational methods for the description of the structure and
properties of CDs. As a branch of artificial intelligence, ML
employs statistical and probabilistic methods to learn from a
given dataset by optimizing performance measures for parti-
cular tasks.74,75 Certain methods have the ability to detect the
relationship (correlations/inference) between input variables
and the target variable. Instead of screening the entire para-
meter space, ML methods learn the hidden patterns using a
limited amount of data. These trained algorithms are later
generalized to predict the target variables from previously
unseen input variables. As a result of increasing amount of
experimental data and accessible computational power, ML has
successful applications in a variety of fields including image/
speech recognition, cancer research, chemical synthesis, and
protein structure prediction.76–84

In materials science, ML has attracted a lot of interest in
applications such as materials discovery, materials structure/
property prediction, performance optimization, and accelera-
tion of the protocols for nanoparticle synthesis.85–95 Using ML,
the reaction parameters and their effects on the nanoparticle
synthesis can be revealed objectively,96,97 and the synthesis
process can be made more efficient by choosing appropriate
evaluation criteria including shape, size, polydispersity, and
surface chemistry.98 ML accelerates not only the experimental
protocols but also the search of new semiconductor, metal,
carbon-based, and polymeric nanoparticles with superior
features requiring low computational cost.8 The large amount
of data needed for ML algorithms can be obtained using
computational or experimental methods. Numerous databases
such as the Materials Project, Automatic Flow for Materials
Discovery, Open Quantum Materials Database, Novel Materials
Discovery make it possible to access data of a lot of materials in
addition to using computer simulations to generate it.

In particular, the use of ML in the field of CD has generated
a lot of interest in research in recent years. The proper adjust-
ment of a variety of variables, including precursors, tempera-
ture, and reaction time, is necessary for the successful
preparation of CDs. It is simple to use these elements as input
parameters in ML, which is trained with the available experi-
mental data and generates accurate new predictions. Therefore,
the addition of ML can aid in the relationship between pre-
cursors and desired properties, which may result in the for-
mation of a design principle for further study and significantly
shorten the synthesis cycle and lower the cost of CDs.

Many outstanding reviews on the applications of computa-
tional and ML methods to the nanoparticle synthesis have been
published.98–106 Although some of them focus on CD synthesis,
they partially cover the development of ML methods along with
the experimental techniques.99 The more general reviews
include CDs as a subcategory of nanoparticles,98,100 quantum
dots,103,104 and graphene-based101,105 or polymer-based106

materials. Theoretical methods such as quantum mechanics
and/or molecular mechanics approaches applied to CDs are
also available in the literature.102 To the best of our knowledge,
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a thorough review of ML applications specifically for CD
synthesis is lacking. In this review, we outline the primary
ML algorithms in the context of CD research, discuss recent
studies on ML applications for CD synthesis, and enumerate
potential future directions for this rapidly expanding field of
study (Table 1).

2 Linear regression

Numerous machine learning algorithms have been devised for
diverse learning scenarios, encompassing unsupervised, semi-
supervised, and supervised learning. In scientific and engineer-
ing contexts, supervised learning, also known as predictive
modeling, is widely favored. Of all the supervised learning
methods, linear regression is the most fundamental, having
been extensively studied and applied due to its simplicity and
high interpretability. Given input variables x = (x1,. . .,xp), the
output variable y is predicted by

y = xTb.

The most common objective function to determine the
coefficients b is the residual sum of squares:

RSSðbÞ ¼
XN

1

ðyi � xi
TbÞ;

where N is the number of data points. Basic expansions of input
variables, such as x2 = x1

2, x3 = x1
3, lead to polynomial regres-

sion. One can also further modify the linear regression models
by shrinking the estimated coefficients to zero. Using methods
like ridge regression and least absolute shrinkage and selection
operator (LASSO), shrinkage of the coefficients reduces the
weight of irrelevant input variables resulting in more inter-
pretable and accurate models.

Applying multiple linear regression (MLR), Armida et al.
explored the relationship between the size, dimensionality,

concentration, doping and other microstructural features of
carbon dots and their thermoelectric performance.107 The
conversion efficiency of a thermoelectric material is quanti-
fied by the thermoelectric figure of merit, ZT = S2sT/k, where S
is the Seebeck coefficient, s is the electrical conductivity, k is
the thermal conductivity, and T is the absolute temperature.
MLR is performed for each ZT, s, T and k using 10 input
variables characterizing size, dimensionality, concentration,
doping and other features. The results revealed a strong
negative relationship between functionalization and S, as well
as a strong positive relationship between the type of carbon
nanostructures and s. Polynomial regression highlighted sig-
nificant impacts of six input parameters on the Seebeck
coefficient, electric conductivity s and thermal conductivity
k, while no combination of parameters significantly affected
thermoelectricity ZT.

Zhang et al. utilized linear and polynomial regression
models to investigate the core synthesis process parameters
of B,N-GQDs (synthesis temperature, H2O2 additional volume,
and synthesis time).108 The models are trained using the optical
properties of B,N-GQDs derived from UV-visible and PL spectra
(i.e. 675/500 peak intensity ratio and PLQY). While the authors
employed other complex models such as bagging regression,
random forest regression, LASSO regression, and ridge regres-
sion, the highest R2-score is obtained using the polynomial
model of degree 7 (R2 = 0.9860). Polynomial and linear regres-
sion models pointed out that high H2O2 additional volume, low
synthesis temperature, and appropriate synthesis time in
the selected process conditions contribute to achieving a high
675/500 peak intensity ratio (see Fig. 1).

Tuchin et al. analysed a dataset on the synthesis parameters
and optical characteristics of carbon dots focusing on their
optical behavior within the red and near-infrared wavelengths.109

A predictive model using multiple linear regression has been
developed to forecast the spectral attributes of these carbon
dots. The validity of this model was confirmed by comparing its

Table 1 Recent studies on applying ML algorithms to carbon dot research

ML models Input Output Samples Ref.

MLR, poly. reg. Microstructural features Thermoelectric performance 322 107
Lin. reg., poly. reg. Synthesis process parameters UV-visible and PL spectra 44 108
MLR, KNN Synthesis process parameters PLQY, PL peak position 227 109
MLR PL characteristics Temperature sensing accuracy 121 110
Random forest Reaction parameters Emission wavelength, Stokes shift, PLQY 480 111
Log. reg., KNN, SVM CD fluorescence sensor array Protein classification 48 112
CNN Synthesis process parameters Spectral properties and FL colors 170 113
ANN Synthesis process parameters Color classification, emission wavelength 407 114
ANN CDs fluorescence variation maps Amino acid classification 90 115
Multilayer perceptron Synthesis process parameters PLQY 30 116
CNN Emission/PL decay data of CDs Ethanol content prediction 597 117
XGBoost Synthesis process parameters PLQY 391 82
XGBoost Synthesis process parameters PLQY 467 118
PCA, XGBoost Synthesis process parameters FL intensity, emission centers 400 119
XGBoost Reaction parameters of CD catalysts Failure/success of oxidation of C–H bonds 652 120
GBDT Biochar preparation parameters Fluorescence quantum yield 480 121
Random forest Precursor combinations PL wavelength intensity 202 122
Random forest, GA Synthesis process parameters Corrosion inhibition efficiency 102 123
PCA, MCR, NMF Wavelengths, pH Unsupervised clustering 401 124
LDA, SVM CD fluorescence sensor array Tetracycline classification 92 125
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predictions with the actual optical properties observed in
carbon dots synthesized in three distinct laboratories.

Doring et al. applied a multiple linear regression model that
combines steady-state and time-resolved luminescence data
from carbon dots to enhance temperature sensing accuracy to
0.54 K.110 This research illustrates the significant advance-
ments in temperature sensing using optical probes through
multidimensional machine learning techniques.

Several machine learning algorithms are dedicated to
classification tasks. Logistic regression considered under the
umbrella of a generalized linear model is specifically designed
for predicting probabilities associated with discrete (categori-
cal) variables. The probability p(x) of a sample belonging to a
particular category is expressed as

pðxÞ ¼ ex
Tb

1þ ex
Tb
:

Here, x represents the input variables and b denotes the coeffi-
cient vector, which is determined through the optimization of

an objective function. The training process for logistic regres-
sion involves minimizing objective functions such as LBFGS
(limited-memory Broyden–Fletcher–Goldfarb–Shanno), Newton,
and stochastic gradient descent. Pandit et al. presented a bio-
molecular sensor utilizing a CD array for the detection of
proteins in both buffer and human serum.112 They anticipated
that introducing analytes to CDs featuring diverse surface func-
tionalities would induce a distinctive fluorescence change
pattern. This pattern could subsequently be examined using
machine learning techniques including logistic regression.
They trained their models with the response of CD arrays of
48 examples from 8 classes of proteins. Logistic regression, in
conjunction with three distinct machine learning algorithms
(namely KNN, gradient-boosted trees, and support vector
machine), attained a perfect accuracy of 100% on the test set
comprising 24 unidentified samples. Hence, the effectiveness
of employing machine learning algorithms for the pattern
recognition of fluorescence signals from the array has been
successfully demonstrated.

Fig. 1 Machine learning-assisted evaluation of B,N-GQDs. (A) Schematic of machine learning-assisted evaluation of the optical properties of B,N-GQDs.
Optical properties of B,N-GQDs in varied synthesis conditions and the corresponding predicted value sets with (B) linear regression, (C) polynomials
1–30, (D) polynomial regression 7, (E) bagging regression, and (F) random forest regression. The R2 scores of linear regression, polynomial regression 7,
bagging regression, and random forest regression models are 0.6751, 0.9860, 0.9473, and 0.9469, respectively. Reprinted with permission from ref. 108.
Copyright 2022 American Chemical Society.
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3 Artificial neural networks

Linear models excel when a linear connection exists between
input and output variables; however, their accuracy diminishes
in the presence of nonlinear interactions between variables.
Artificial neural networks (ANNs) are employed to surmount
these constraints. ANNs are characterized by multiple hidden
layers, excluding input and output layers. Each hidden layer
consists of numerous neurons, employing linear regression
with a nonlinear activation function. Notably, the hidden layers
feature complete connectivity between the neurons of adjacent
layers. It is proven that any continuous function can be
approximated by ANNs with one hidden layer. Convolutional
neural networks (CNNs) stand as a prevalent architecture
within artificial neural networks (ANNs), finding particular
application in the analysis of images and videos. At the heart
of the CNN lies the convolution layer, featuring multiple
convolution filters. Each filter undergoes convolution with
the input from the preceding layer, producing feature maps
subsequently utilized as the input for the following layer. The
streamlined interconnection between layers contributes to the
computational efficiency of CNNs, enabling them to outper-
form basic ANN models, particularly in tasks such as image
classification.

ANNs have found applications in various carbon dot studies.
Wang et al. have used a convolutional neural network (CNN)
model tailored for predicting the optical characteristics of
carbon dots such as spectral properties and fluorescence (FL)
colors under ultraviolet (UV) irradiation.113 The model is
trained with CD synthesis features (precursor, mass, tempera-
ture, solvent, and reaction time) from 170 prototypical studies.
The output layer is a feature vector that indicates spectral
properties and FL color under UV irradiation. Subsequently,
CDs with distinct emission properties were synthesized, and
their experimental data were compared with the predicted
outcomes from the trained model. These synthesized CDs were
employed in cell imaging, demonstrating good performance.
These findings suggest that the implementation of CNNs can
assist researchers in achieving effective CD design without
the need for extensive manual processes. Within the same
study, alternative classification models, such as support vector
machines, K-nearest neighbors, random forests, decision trees,
and extreme gradient boosting, demonstrated inferior perfor-
mance compared to CNNs. These outcomes underscore the
significant potential of CNNs in guiding the synthesis of CDs.

Senanayake et al. conducted a parallel study, employing
ANNs, to characterize the influence of synthesis parameters
on and make predictions for the emission color and wavelength
of CDs.114 The machine analysis indicated that the selection of
the reaction method, purification method, and solvent is more
closely correlated with CD emission characteristics compared
to factors like reaction temperature or time, which are often
adjusted in experimental settings. A total of 407 data examples
were gathered from the literature, with 379 of them constitut-
ing the training database. The remaining 28 data examples
were reserved as an external test set to validate the model.

The color prediction from the classification model, which does
not include reaction temperature and time as features, attained
a training accuracy value of 0.94. The accuracy of emission
prediction is enhanced from MAE = 38.4 to 25.8 when a
combination of both classification and regression methods is
employed. To overcome the limitations associated with a small
dataset in an ANN model, the authors used an ANN k-ensemble
model which outperformed XGBoost, K-nearest neighbor
(KNN), and support vector machine (SVM). The hybrid models
employed a two-step approach: initially, a classification model
was utilized to predict the color, and subsequently this pre-
dicted color (combined with the actual color during training)
served as an input to predict the emission wavelength using a
regression machine learning model. The tools developed in this
study, particularly the hybrid models, are expected to be valu-
able in predicting the emission of novel carbon dots (CDs). This
approach allows for the selection of promising reaction exam-
ples from the model, streamlining the synthesis of CDs with
specific colors and significantly reducing the effort required in
the optimization process.

In another classification problem, Tuccito et al. employed
CD fluorescence as a nanochemosensor to detect different
amino acids.115 The modification of CD surfaces can alter
fluorescence properties, including emission intensity and
excitation and emission wavelengths. In this study, carboxyl
groups on nanoparticle surfaces were activated and subse-
quently reacted with various amino acids. The nanochemosen-
sors demonstrated the ability to distinguish between amino
acids within a mixture, showcasing their potential in complex
amino acid analyses. ANNs were trained with fluorescence
variation maps of activated CDs to predict if the amino acid
is alanine (ALA) or not alanine. The resulting model had 0.8
sensitivity and 0.91 specificity. These discoveries will contribute
to the advancement of cost-effective nanochemosensors for
investigating specific diseases that are presently diagnosed
through basic amino acid detection methods.

In a regression task, Pudza et al. applied multilayer percep-
tron (MLP) to predict the photoluminescent quantum yield
(PLQY) of fluorescent carbon dots synthesized from tapioca
powder.116 The training data (n = 30) were collected from the
experiments. MLP trained with temperature, time, dosage
and the solvent ratio predicted the PLQY with high accuracy.
The optimization and prediction processes have yielded sus-
tainable, efficient, and reliable fluorescent carbon dots. This
approach not only saves energy within a manageable timeframe
but also reduces the required dosage while maintaining an
optimal quality output.

Doring et al. applied CNNs and deep neural networks on the
emission/PL decay data of CDs to improve ethanol content
determination in ethanol/water mixtures (n = 578) as well as
in alcohol-containing beverages (n = 19).117 The models are
trained by PL excitation/emission maps, PL decay spectra, and
extracted features (i.e. PL intensities, PL peak positions, and PL
lifetimes) to predict the ethanol content. The utilization of
time-resolved spectral information (PL decays and lifetimes)
as the input for CNNs enables more accurate prediction of
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ethanol content compared to steady-state emission data. Using
entire optical spectra, namely PL decays and PL excitation/
emission maps, advanced deep learning models demonstrated
their applicability in the analysis of beverages. In contrast
to CNN models with only a few predictor variables, which
struggled due to autofluorescence of the beverages, advanced
deep learning models enabled better predictions of ethanol
content. Although CDs serve as excellent candidates for show-
casing deep learning in optical sensing, the methods outlined
in this study hold promise for enhancing chemical sensing
across a range of luminescent materials (see Fig. 2).

4 Gradient boosting

Traditional gradient boosting techniques have long served as
stalwarts in the realm of machine learning, providing a robust
framework for constructing powerful predictive models. The
foundational concept behind gradient boosting involves the
sequential training of weak learners, such as decision trees,

with each subsequent learner aiming to correct errors made by
the ensemble of preceding ones. This iterative process enables
the algorithm to progressively refine its predictive accuracy,
making gradient boosting a popular choice for regression and
classification tasks. Despite its success, traditional gradient
boosting is not without its limitations. The absence of explicit
regularization mechanisms can lead to overfitting, especially in
the presence of noisy or high-dimensional datasets. Recognizing
these challenges, the advent of extreme gradient boosting
(XGBoost) marked a significant evolution in the field, addressing
these limitations and introducing innovations that have pro-
pelled it to the forefront of machine learning algorithms.126

Extreme gradient boosting (XGBoost), a powerful ensemble
learning algorithm, has emerged as a dominant force in the
realm of machine learning, demonstrating remarkable success
across various domains. Developed as an extension of tradi-
tional gradient boosting techniques, XGBoost has garnered
widespread popularity due to its efficiency, scalability, and
superior predictive performance. At its core, XGBoost operates
by sequentially training a series of weak learners, typically

Fig. 2 Multi-channel deep learning model: (a) structure of the PL decay channel. The input layer takes 1024 intensity integers as the input. After
normalization, data are passed through a dense layer (64 neurons), a dropout layer (dropout = 0.01), and a second dense layer (16 neurons). (b) Structure
of the PL map channel. The input layer takes a 16 � 217 � 1 matrix as the input. It is passed through a series of convolution, maximum pooling, and
dropout layers before it is flattened and fed through another dropout layer and dense layer (32 neurons). (c) Example of a multi-channel model with
9 inputs. The respective input data are passed through either a PL decay channel or a PL map channel. These channels are concatenated before being
passed through a dense layer (32 neurons) and a dropout layer (dropout = 0.3) to predict the ethanol concentration as the target variable. Reprinted with
permission from ref. 117. Copyright 2022 American Chemical Society.
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decision trees, and iteratively refining their predictive cap-
abilities. Unlike traditional gradient boosting, XGBoost incor-
porates a regularization term and employs a second-order
Taylor expansion to optimize the objective function, enhancing
its ability to capture complex patterns within the data.

One of the defining features of XGBoost is its versatility,
making it applicable to both regression and classification tasks.
The algorithm excels in handling large datasets and high-
dimensional feature spaces, showcasing robustness in the face
of noisy or missing data. Moreover, XGBoost provides a com-
prehensive set of hyperparameters that can be fine-tuned to
accommodate diverse modeling scenarios, fostering adaptabil-
ity to different applications. The success of the algorithm is
further underscored by its ability to balance bias and variance,
mitigating overfitting and ensuring generalizability across
unseen data. As a result, XGBoost has become a method of
choice in various fields, ranging from finance and healthcare to
image processing and natural language processing, showcasing
its broad utility and effectiveness in extracting meaningful
patterns from complex datasets.

XGBoost has demonstrated considerable efficacy in numer-
ous CD studies. Han et al. reported a machine learning-assisted
approach for synthesizing highly fluorescent CDs using a hydro-
thermal route.82 XGBoost outperformed multilayer perceptron,

support vector machine, and Gaussian process regressor in
predicting the QY using five input variables: the volume of
ethylenediamine, the mass of precursor, reaction temperature,
ramp rate and reaction time. The data were collected from 391
experiments with different combinations of growth parameters,
and respective QYs ranged from 0 to 1. XGBoost unveiled a
noteworthy correlation between outstanding optical properties
and the mass of the precursor and the volume of the alkaline
catalyst. This observation aligns well with experimental findings.
The methodology introduced in this study serves as a founda-
tional step toward the advancement of artificial intelligence
techniques for the analysis and optimization of material prepara-
tion methods (see Fig. 3).

Tang et al. developed a regression model to improve the
PLQY of carbon quantum dots (CQDs) grown through hydro-
thermal methods.118 Six hydrothermal parameters were identi-
fied as input features: the pH value (pH), reaction temperature
(T), reaction time (t), the mass of precursor A (M), ramp rate
(Rr), and solution volume (V). A total of 467 experimental
records were used with different growth parameters and respec-
tive PLQYs ranged from 0 to 1. In order to best infer the PLQY
from the features, several regression algorithms are evaluated
with nested cross validation, including XGBoost regressor,
support vector machine regressor, and Gaussian process regressor.

Fig. 3 Application of ML for guided synthesis of CDs. (a) Design framework for the guided synthesis of CDs with a large QY based on ML and
hydrothermal experiments. (b) The heat map of the Pearson correlation coefficient matrix among the selected features of hydrothermally grown CDs.
(c) Feature importance retrieved from XGBoost-R that learns from the full data set. The most important features are EDA and M. (d) Predictions from the
trained model, which is represented by the matrix formed by the two most important features. Reprinted with permission from ref. 82. Copyright 2020
American Chemical Society.
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XGBoost demonstrates superior performance, surpassing the
other algorithms by a significant margin, as indicated by its R2

value of 0.8402. The most critical factor influencing the PLQY
is shown to be the pH value, with reaction temperature and
reaction time following closely in significance. The trained
XGBoost model is then employed to predict the PLQY for a vast
array of 1 555 840 potential synthesis conditions generated from
various combinations. Eleven synthesis conditions are recom-
mended by the model attributed to their highest predicted
PLQY. Subsequent experiments conducted in the laboratory
yielded a remarkably high photoluminescence quantum yield
(PLQY) of 55.5%. This achievement is particularly noteworthy
given the ultra-low heteroatom doping precursor ratio employed,
making it one of the highest reported PLQY values under such
conditions. The findings support the promising potential of ML
in optimizing and expediting the material synthesis process.
This endorsement suggests that ML has the capability to facili-
tate the development of advanced inorganic materials, contri-
buting to practical applications through reduced processing time
and enhanced material properties.

Hong et al. utilized the XGBoost model for predicting the
maximum fluorescence (FL) intensity and emission centers of
CDs synthesized under room temperature conditions using
p-benzoquinone (PBQ) and ethylenediamine (EDA) as starting
materials.119 They successfully synthesized a variety of CDs
with tailored optical properties. These CDs were effectively
employed for applications such as detecting Fe3+, facilitating
sustained drug release, enabling whole-cell imaging, and con-
tributing to the preparation of poly(vinyl alcohol) (PVA) films.

The input dataset comprises four hundred types of CDs pre-
pared under different reaction conditions, encompassing
the mass of p-benzoquinone (VEDA), volume of ethylenediamine
(VEDA), reaction duration, and solvent types. For output, the
predicted target variables are the FL intensity and the location
of emission centers. Principal component analysis (PCA) was
employed to create new variables characterized by relative
independence. Subsequently, PC1 and PC2 were utilized as
novel input features for the training of the model. XGBoost
showed superior performance compared to K-nearest neighbor,
decision trees, random forest, support vector machine and
convolutional neural networks. Leveraging the significant
features and parameters (i.e. VEDA and MPBQ) extracted from
the XGBoost model, the authors successfully fabricated a series
of novel carbon dots (CDs) with customizable fluorescence (FL)
intensity and emission center properties. This study demon-
strates that the XGBoost algorithm, as a machine learning
approach, is effective in identifying crucial factors in CD
synthesis. It provides chemists with a rapid and reliable means
to access optimal reaction parameters for synthesizing desired
CDs (see Fig. 4).

Using ML, Wang et al. successfully predicted and synthe-
sized metal-free CD homogeneous catalysts for the oxidation of
C–H bonds.120 The dataset for cyclohexane oxidation was
compiled from literature sources and laboratory notebooks,
comprising a total of 652 entries. This dataset consists of 113
positive samples (17.3%) and 539 negative samples (82.7%).
The boundary between success and failure in this context is
characterized by achieving a 10% conversion of cyclohexane

Fig. 4 Schematic illustration of machine learning guiding the synthesis of CDs. (a) Synthetic process of CDs. (b) Prediction of CD optical properties using
machine learning models. Reprinted with permission from ref. 119. Copyright 2022 American Chemical Society.
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and a 70% selectivity towards the production of adipic acid
(AA). The input features are selected as O (content of oxygen),
Mw (weight-average molecular weight of the nonmetal catalyst),
G (O2 or not), p (homogeneous catalysis or heterogeneous
catalysis), T (catalytic temperature), P (pressure), and t (reaction
time). Out of the four classical models considered (multilayer
perceptron, naive Bayes, SVM, and XGBoost), the XGBoost
model was chosen due to its high performance. The analysis
of feature importance derived from the XGBoost model
indicates that the molecular weight (Mw) takes precedence over
other features. The order of importance follows Mw, followed by
O, T, P, and t. Subsequently, the established XGBoost model is
employed to apply the unexplored conditions, predicting the
probability of success or failure. All predictions align with
the actual outcomes of ‘‘success’’ in the conducted true experi-
ments, affirming the accuracy of the model. This study dis-
tinctly illustrates a novel approach to C–H bond activation,
employing metal-free CDs as quasi-homogeneous catalysts.

Chen et al. explored the relationship between biochar pre-
paration parameters and the fluorescence quantum yield of
CDs in biochar, employing six machine learning models includ-
ing decision trees (DT), random-forest (RF), gradient-boosting
decision-trees (GBDT), extra-trees (ET), K-nearest-neighbor
(KNN) regression, and XGBoost, where the dataset consisted
of 480 samples.121 The input parameters for the biochar
production experiment were determined, encompassing the
type of farm waste, as well as characteristics such as cellulose,
hemicellulose, lignin, ash, moisture, nitrogen (N), carbon (C),
and carbon-to-nitrogen ratio (C/N) contents of the samples.
Additionally, parameters related to the pyrolysis process,
including pyrolysis temperature (T) and residence time (t), were
considered. The GBDT model had the best performance among
the other models, as GBDT exhibit resilience to missing values
and outliers, are less susceptible to the impact of extreme values,
and demonstrate effectiveness in handling high-dimensional
sparse data. It was identified that four features, namely, pyrolysis
temperature, residence time, nitrogen (N) content, and carbon-
to-nitrogen (C/N) ratio, had the most significant impact on
enhancing the accuracy of QY predictions. The methodology
introduced in this study can serve as a foundation for the
advancement of new techniques leveraging artificial intelligence
for the analysis and prediction of CDs generated in the process
of biochar production.

5 Random forest

Random forest (RF), a versatile and robust machine learning
algorithm, has emerged as a cornerstone in data-driven decision-
making across diverse scientific and industrial domains. Born out
of the ensemble learning paradigm, this algorithm is particularly
well-suited for applications where the accuracy and reliability of
predictions are paramount. The metaphorical ‘‘forest’’ comprises
a multitude of decision trees, each contributing its unique
insights to the collective wisdom of the algorithm. As a result,
random forest is known for its resilience against overfitting and

its ability to produce accurate and stable predictions. The integra-
tion of random forest algorithms in the study of carbon dots
opens up new avenues for predicting and understanding their
behavior.

Chen et al. explored the relationship between reaction
parameters and the photoluminescence characteristics of
CDs, achieving controllable synthesis of multi-color CDs with
the aid of ML.111 Five input parameters are used, including
varied precursor types and quantities such as p-phenylenedi-
amine with urea, p-phenylenediamine with citric acid, and
diverse solvent types (anhydrous ethanol, water, and N,N-di-
methylformamide), along with reaction time and temperature.
270 experiments with different parameter combinations are
conducted to feed the ML algorithms. The 3D fluorescence
spectra (maximum emission wavelength, Stokes shift) and
fluorescence quantum yield were used as the output variables.
The RF model demonstrated superior predictive performance
compared to other models, including extreme gradient boost-
ing (XGBoost), light gradient boosting machine (LGBM), ridge
regression (ridge), least absolute shrinkage and selection opera-
tor (LASSO), and support vector regression (SVR), specifically in
predicting the maximum emission wavelength, the fluores-
cence quantum yield and the Stokes shift of multicolor CDs.
The authors also implemented a computer algorithm for rank-
ing importance, utilizing a method to calculate the significance
of features. The outcomes revealed that the solvent was the
primary factor influencing the maximum emission wavelength
of multicolor CDs. The key determinant influencing the fluores-
cence quantum yield was identified to be the precursor ratio
and the precursor type was the main influencing factor of the
Stokes shift.

Xing et al. employed RF to facilitate the synthesis of CDs
with predictable photoluminescence (PL).122 In contrast to
treating the precursors as constants, the variables in this
context involve randomly chosen 202 combinations of precur-
sors, specifically three-precursor combinations of 24 precur-
sors. The wavelengths of the peaks with the strongest intensity
and the longest wavelength under excitation wavelengths of
365 and 532 nm were used as output parameters. The other
reaction parameters were fixed to 200 1C and 10 h. The RF
model demonstrated the highest performance among the six
models including KNN, AdaBoost, bagging, DT, RF and SVM.
It is shown that, utilizing prediction data that encompass the
entire precursor combination space, the screening of CDs with
specific PL wavelength features can be conducted much more
effectively than through random trials.

He et al. established an RF regression model for corrosion
inhibitors based on hydrothermally synthesized CDs to predict
the inhibition efficiency.123 This model unveils the relationship
between different synthesis parameters and the inhibition
efficiency of the CDs. The dataset was created by combining
102 data points on CD synthesis and inhibition efficiency,
drawing from reported studies and the authors’ own experi-
mental findings. Typical input parameters such as CD concen-
tration in HCl, precursor type and quantity, solvent type
and volume, and reaction time and temperature were selected.
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The inhibition efficiencies of CDs, calculated through potentio-
dynamic polarization (PDP), served as the output variable in the
analysis. Utilizing the feature importance derived from the RF
model, critical factors in the synthesis of CD-based corrosion
inhibitors were identified. The concentration of CDs in HCl
emerges as the most influential factor affecting the inhibitory
behaviors of the synthesized CDs, followed by N atomic content
and reaction time. Additionally, the synthesis route is intelli-
gently optimized using the genetic algorithm (GA), which is
an optimization technique inspired by natural selection and
genetics, utilizing a population-based approach with genetic
operators to iteratively evolve solutions for a given problem.
Successful controlled preparation of CD-based corrosion inhi-
bitors was achieved. By identifying and filtering out unsatisfac-
tory synthesis conditions, this approach significantly enhances
the synthetic efficiency of CD-based corrosion inhibitors
(see Fig. 5).

6 Other ML algorithms

Here we mention other ML algorithms used in CD studies.
Dager et al. detailed the production of monodisperse carbon
quantum dots (C-QDs) through a single-step thermal decom-
position procedure employing fennel seeds.124 They employed
ML techniques such as PCA (see ref. 127 for more details on
PCA), multivariate curve resolution (MCR),128 and sparse non-
negative matrix factorization (NMF)129 to assess the PL of
synthesized C-QDs with a focus on addressing two key ques-
tions: (i) the ability of ML to classify pH-dependent PL measure-
ments, including spectra obtained at different pH levels and
excitation wavelengths, and its capacity to suggest optimal
excitation wavelengths for a comprehensive pH-dependent
study; and (ii) whether ML can aid in identifying the source of
the PL mechanism, considering that multiple PL measurements

at varying pH levels and excitation wavelengths may activate
different types of surface states. PL data were obtained through
excitations at wavelengths of 200, 220, 240, 260, 280, 300, 320, and
340 nm, corresponding to pH values of 3, 5, 7, 9, 11, and 13.
A total of forty-eight (48) PL measurements were conducted, each
representing a single spectrum for 401 data points acquired in the
spectral range of 300–750 nm. PCA, MCR, and NMF were
employed to identify the underlying mechanisms contributing
to the PL behavior of the synthesized C-QDs.

Xu et al. used linear discriminant analysis (LDA)130 and
support vector machine (SVM)131 to analyze multidimensional
data of a CD-based sensor array fabricated for the detection and
differentiation of four tetracyclines (TC), including tetracycline
(TC), oxytetracycline (OTC), doxycycline (DOX), and metacycline
(MTC).125 A training data set comprising a matrix of 2 CDs,
4 TCs, and 5 replicates was created through the utilization of
I/I0 values. The reliability of the established fluorescence sensor
array was confirmed by studying 52 unknown samples. At a
concentration of 1.0 mM, four different TCs can be effectively
clustered by SVM and LDA. Furthermore, the sensor array
demonstrates the capability to effectively differentiate between
individual TCs as well as binary mixtures of TCs and DOXs. The
utilization of SVM presents an innovative option for array
sensing systems in handling diverse data sets. The research
illustrates the potential of the fluorescence sensor array
in environmental monitoring and quantifying antibiotics
(see Fig. 6).

7 Summary and future perspectives

This comprehensive review explores the latest advancements in
utilizing machine learning for CDs. We provide a concise
summary of prevalent ML algorithms and examine recent
research employing ML models for the prediction of the

Fig. 5 Application of ML for controlled synthesis of CD-based corrosion inhibitors: (a) establishment of the dataset; (b) modelling for inhibition efficiency
prediction; and (c) synthetic optimization of CDs. Reprinted with permission from ref. 123. Copyright 2023 Elsevier.
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properties of CDs. ML models were employed to investigate
the parameter space of CD experiments and generate optimal
input parameters for CDs. By leveraging the optimal para-
meters derived from ML for various CD challenges, one
can explore design strategies aimed at achieving high-
performing CDs. While ML models are frequently perceived
as ‘‘black box’’ models, the identified strategies can offer
novel insights into enhancing the performance of CDs in
various applications.

While artificial neural networks and gradient boosting algo-
rithms have shown superior performance in several studies,
research indicates that the optimal machine learning model
can vary, even under identical input and target feature condi-
tions. Hence, future research is needed to understand the
performance, either theoretically or numerically, of various

ML applications for CDs. Although achieving the true optimal
experimental parameters remains a challenge in the field, there
is optimism that ML will play a promising role in addressing
this problem in the future. A promising avenue for enhance-
ment involves establishing a more comprehensive model that
incorporates both synthesis process-related and chemistry-
related features.

The median of the sample size in the studies covered in this
review is 357. For the gradient boosting algorithms, this
number is 467. To enhance the accuracy and applicability of
the ML approach, future endeavors should focus on collecting
high-quality data for refining and updating the currently
employed models. This continual improvement is crucial for
advancing the development of more efficient CD synthesis
strategies.

Fig. 6 Two-dimensional LDA score plot of the fluorescence sensor array for the discrimination of the four TCs at different concentrations: (a) 1.0 mM;
(b) 10 mM; (c) 25 mM; (d) 50 mM; (e) 100 mM; and (f) 150 mM (QR-CDs, 13.3 mg mL�1; CPC-CDs, 60 mg mL�1). Reprinted with permission from ref. 125.
Copyright 2020 Elsevier.
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