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1 Introduction

Fast and accurate nonadiabatic molecular dynamics en-
abled through variational interpolation of correlated elec-
tron wavefunctions’

Kemal Atalar,** Yannic Rath,%? Rachel Crespo-Otero and George H. Booth*®

We build on the concept of eigenvector continuation to develop an efficient multi-state
method for the rigorous and smooth interpolation of a small training set of many-body wave-
functions through chemical space at mean-field cost. The inferred states are represented
as variationally optimal linear combinations of the training states transferred between the
many-body basis of different nuclear geometries. We show that analytic multi-state forces
and nonadiabatic couplings from the model enable application to nonadiabatic molecular
dynamics, developing an active learning scheme to ensure a compact and systematically im-
provable training set. This culminates in application to the nonadiabatic molecular dynamics
of a photoexcited 28-atom hydrogen chain, with surprising complexity in the resulting nuclear
motion. With just 22 DMRG calculations of training states from the low-energy correlated
electronic structure at different geometries, we infer the multi-state energies, forces and nona-
diabatic coupling vectors at 12,000 geometries with provable convergence to high accuracy
along an ensemble of molecular trajectories, which would not be feasible with a brute force
approach. This opens up a route to bridge the timescales between accurate single-point cor-
related electronic structure methods and timescales of relevance for photo-induced molecular
dynamics.

between the energy levels and their nonadiabatic cou-

Nonadiabatic molecular dynamics (NAMD) is essential
for an ab initio simulation of chemical processes where
nuclei move over reaction pathways involving the par-
ticipation of multiple electronic states™™. These states
are commonly accessed via photo-excitation, but cat-
alytic, thermal and other reactive processes can also in-
volve coupling excited electronic states and the nuclear
motion beyond the adiabatic regime®. These processes
underlie internal conversion and intersystem crossings,
whose rates critically depend on accurate energetic gaps
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pling strengths at the different nuclear geometries. The
presence and location of conical intersections is key to
modelling these nonadiabatic processes®, and an out-
standing challenge in computational chemistry in this
important field.

While there are a number of alternative formula-
tions for efficient propagation of coupled electron and
nuclear motion, for many purposes mixed quantum-
classical approaches can be devised whereby the nu-
clear propagation is still treated classically, relying on
information from all relevant electronic states in the
dynamics. These electronic states can therefore be ob-
tained under the Born-Oppenheimer (BO) approxima-
tion® at each nuclear geometry without explicit cou-
pling to quantum nuclear degrees of freedom. In this
work, we consider the popular ‘fewest-switches surface
hopping’ (FSSH) approach?", although many other ap-
proaches also exist™2. In FSSH, the full electronic state
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is evolved at each timestep as a superposition over
multiple Born-Oppenheimer adiabatic electronic states,
with the nuclei propagated on a single adiabatic elec-
tronic surface. When the simulations are done using
adiabatic states, nonadiabatic stochastic jumps between
the electronic states occur with a probability depending
on the nonadiabatic couplings, whilst ensuring overall
energy conservation. While this approach can be mo-
tivated from higher levels of theory1V, it lacks rigorous
interference and decoherence effects of quantum nuclei
(noting recent work incorporating nuclear decoherence
and tunneling processes into the formulation®?11713)
Provided ad-hoc corrections are incorporated to address
some of these issues, FSSH has proven to be very effec-
tive in the modelling and prediction of photo-chemical
processes over relevant atomic timescales?.

However, the outstanding limitation in the scope of
application of NAMD is the electronic structure problem
at its heart®!% which has found to be generally more
important to the quality of results than the specifics of
different NAMD approximations''®, This is a demand-
ing electronic structure challenge, requiring many con-
secutive calculations as the nuclei are propagated in
time, each with a finely balanced description of mul-
tiple electronic states. Furthermore, nuclear forces are
required for each state to determine the propagation of
the nuclei, as well as nonadiabatic couplings (NACs)
between the states for the propagation of the electronic
part and stochastic hopping. Although it is possible in
some cases to approximate these gradients and NACs
if they are not available analytically from the electronic
structure solver used, this introduces additional approx-
imations, uncertainty and potentially overheads for the
calculation. While density functional theory is almost
ubiquitous for ab initio molecular dynamics on ground
states, the requirement of multiple electronic states lim-
its its applicability to NAMD (noting recent approxi-
mations for DFT-based NAMD, especially in simulations
of transport1®17)  Furthermore, single-reference elec-
tronic structure theory based on linear response (such
as TD-DFT48, cC21® or EOM-CCSD“Y) are also gener-
ally not suitable where transitions to the ground state
are required, due to their explicit formulation as exci-
tations from a single electronic state, which precludes
the critical region around conical intersections where
this gap vanishes and ground and excited states must
be treated on the same footing'#. These descriptions
may not give the required balance in the accuracy of
the ground and excited states, especially where excited
states have significant charge rearrangement compared
to the ground state.

ngurnaI Name, [year], [vol.], 1
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This places a significant burden ‘on multireference

electronic structure methods for the description of these
adiabatic states, in particular state-averaged CASSCF
which can be considered the workhorse of NAMD, and
which has analytic gradients and NACs422 available in
many packages. Unfortunately, there are several draw-
backs in these traditional multireference approaches, in
particular the lack of dynamical correlations, which can
unbalance the description of different states and man-
ifest in e.g. dramatic overestimation of the relative
energy of ionic states?2% Extensions to internally-
contracted MRPT and MRCI methods are more re-
cently available, but they can still underestimate ver-
tical excitations2> and are substantially more expensive
with more challenging gradient theory and NACs202Z,
More fundamentally, these approaches depend signifi-
cantly on the choice of active space?® and require the
definition of a small active space to enable them to
be tractable, which must remain consistent across the
changes in geometry over the trajectory. This can of-
ten be hard or impossible, as relevant orbitals at one
geometry can adiabatically change into an irrelevant
subspace at another geometry, while orbitals crossing
and entering or leaving the subspace can result in a dis-
continuous surface, difficulties with intruder states and
issues with energy conservation during the NAMD sim-
ulations. 22731

This context of NAMD for photochemistry, cataly-
sis and beyond, is a prime motivation for develop-
ments in electronic structure methodology. However,
new wavefunction-based approaches emerging in the
last couple of decades have not yet impacted upon
this field, underlining the challenges faced in this area.
Modern accurate and systematically improvable ap-
proaches such as DMRG3234 selected CIS>2°, and a
number of stochastic methods (including FCIQMC=732,
AFQMC#Y41 and advances in VMC models#242) can in
principle be used as multiconfigurational solvers within
NAMD, at least to extend the size of active spaces and
mitigate the difficulty in their appropriate selection.
However, despite much progress in accurately describ-
ing excited states within these frameworks“34447 as
well as their analytic nuclear gradients2048->1 the com-
munity generally still lack nonadiabatic couplings in
these methods, while stochastic noise in the electronic
structure can often be challenging for precise molecular
dynamics that conserves total energy (noting significant
work®%). More generally, while these methods can be
powerful in obtaining a small number of single-point
energies (often both for ground and excited states),
they are still expensive for the number of calculations
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required in molecular dynamics. Furthermore, they of-
ten lack a robust black-box simulation protocol that hin-
ders the reliable execution of these approaches for sev-
eral thousand consecutive calculations, each relying on
consistent convergence for all prior points for reliable
trajectories, without manual checking of convergence
and simulation parameters. This puts the timescales
necessary to describe realistic photochemical processes
out of their reach (a fact often even true with a CASSCF
description).

As an alternative paradigm, machine learning (ML)
potentials have been tremendously successful in break-
ing this computational barrier for ground state poten-
tial energy surfaces (PES). However, the application of
ML methodologies to NAMD has various limitations and
challenges (beyond those well-understood in ground-
state ML force fields such as the local energy decom-
position) despite showing great promise by accessing
nanosecond NAMD trajectories for small molecules both
with MR-CISD*® and CASSCF>?% training data. Al-
though progress has been made in predicting excited
state energies and forces in these frameworks®>"?, di-
rect learning of NACs tend to lead to their under-
estimation®2°0 while approximations to them based
purely on energies and gradients can also lead to a
substantial misrepresentation of true nonadiabatic pro-
cesses>801I62  Capturing conical intersections (Colns)
is also a challenge, as small and sharp energy gaps near
Colns tend to be overestimated and smoothened since
they are necessarily poorly represented in the training
set®263 Fyrthermore, all of the same electronic struc-
ture challenges still exist in obtaining appropriate train-
ing data required to build these models®3.

The approach outlined in this work takes a step
to address these shortcomings, in a largely method-
agnostic framework for the robust and compact inter-
polation of accurate wave functions through chemical
space. Initially described in Ref.®¥ for the interpolation
of ground states, we show how this approach can be
extended for the balanced interpolation of both ground
and excited states for ab initio systems over changing
atomic geometries with mean-field cost. Importantly,
we also show how both excited state gradients and
nonadiabatic couplings between the states are straight-
forwardly extracted from the interpolation framework,
allowing application to NAMD. This allows for the first
(to the best of our knowledge) NAMD simulation using
modern DMRG derived electronic states®®, obtaining
high-accuracy molecular dynamics of excited hydrogen
chains — a system for which we believe no other solver
would be effective. We discuss both the convergence
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of the dynamics with respect to increasing number of

training DMRG calculations supporting the interpolated
model, and an approach for efficient selection of these
training geometries. Finally, we end with a perspective
of the use of this framework more generally for practi-
cal NAMD applications.

2 Variational Wavefunction Interpolation

We introduce here the ‘eigenvector continuation’ ap-
proach that we use in this work to interpolate a rep-
resentative set of ‘training’ many-body wavefunctions
through chemical space as the nuclei move. This is es-
sentially a multi-state generalization of the approach
introduced in Ref.®* and we refer the reader to this
for a fuller exposition. That approach was inspired by
developments in the nuclear physics and lattice model
communities® 73 and a highly-related approach was
also developed for interpolating ab initio systems with
quantum computers/%., The method can be motivated
from either a machine-learning perspective or as a sub-
space projection method, and we take the latter ap-
proach here.

We assume that we have a ‘training’ set of M non-
orthogonal many-body states, as vectors in the elec-
tronic Hilbert space, {|C,)} = €\, where a, b, ...
labels these distinct training states and n denote the
occupation number vectors of the orthonormal many-
electron configurations at the nuclear geometry of in-
terest, R. We project the ab initio Hamiltonian at this
nuclear configuration into the space spanned by these
states. We can then consider a valid wave function at
this geometry as resulting from a variational optimiza-
tion within the span of this many-body subspace. This
can be found in closed form as a generalized eigende-
composition of the M x M Hamiltonian in this basis,

(Cal #(R)|Cy) ¥V (R) = Ex(R) (Cu|Cy) XV (R). (D)

The training basis (comprising M elements) is small
enough that this generalized eigenvalue problem can
be completely solved at all geometries of interest, giv-
ing a variational approximation to both the ground state
and excitation spectrum at each arbitrary ‘test’ geome-
try, E4(R). The eigenvectors, x,()A>(R), denote the com-
ponent of the many-body training vector in each in-
terpolated state (these interpolated states are denoted
by upper-case indices A, B, . . . ). Through this scheme,
wavefunctions at arbitrary test geometries and their ob-
servables can be inferred by sampling few wavefunc-
tions at training geometries. As this training subspace
is enlarged, the energies of all states from the subspace
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must necessarily variationally lower towards their ex-
act eigenvalues, as ensured by the eigenvalue inter-
lacing theorem”?. Due to the linearity of the model,
the number of electronic states described remains con-
stant as geometries change, and their energies must
vary smoothly with changes in the nuclear potential
(away from state crossings). The key questions now
are how these training states are chosen such that they
faithfully span the low-energy eigenstates as geometries
change, as well as how the subspace Hamiltonian can
be efficiently constructed without requiring the training
data expressed in the exponentially large many-electron
Hilbert space.

As indicated via the explicit dependence on R for cer-
tain quantities in Eq. [1} the training vectors are defined
such that their numerical values remain fixed in an ab-
stract orthonormal Hilbert space, regardless of the test
geometry R at which we are evaluating the subspace
model. This critically ensures that the overlap metric
between many-body training states, (C,|C,), is indepen-
dent of R. However, if this training basis is to be in-
terpreted as a set of physical wave functions at each
geometry rather than abstract vectors, then it is worth
stressing that their character does indeed change with
R, since the underlying Hilbert space of electronic con-
figurations will change. Therefore, it is essential that
we have a consistent and orthonormal representation
of the Hilbert space at each geometry, such that the
numerically fixed training vectors are transferrable be-
tween geometries and still span a space of relevance
for the low-energy states of interest, rather than them
spanning increasingly irrelevant parts of the many-body
Hilbert space.

To motivate a judicious choice for these training vec-
tors, we assume that they come from the exact (FCI)
solution for a small number of low-energy eigenstates
of the Born—Oppenheimer electronic Hamiltonian at se-
lect ‘training’ geometries of the system. However, we
also need to fix a consistent representation of the or-
bitals, x;(r; R), which define the many-body Hilbert
space for these vectors, such that the probability am-
plitudes of states {|C,)} can be effectively transferred
between geometries. To this end, we choose the orbital
basis of the training states, x;(r; R), to be the symmet-
rically (Lowdin) orthonormalized atomic-orbital (SAO)
basis/®7Z, These are simply and uniquely derived
from an underlying atom-centered atomic orbital basis,

{9a(r; R)}, as

%(r:R) = Y [S(R)],)/” 9a(r: R). )

o

4qurnal Name, [year], [vol.], 1
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where S(R) is the atomic orbital %\O/Erlf)allgsr%gf‘r'[&m%%
Sup(R) = / dr ¢,(x; R) ¢p(r; R). 3)

These SAOs are defined to remain (in a least-squares
sense) as close as possible to the underlying local
atomic orbital basis, while ensuring the required or-
thonormality of this abstract basis at each atomic ge-
ometry [l This choice of representation for the train-
ing states {|C,)} (obtained over a range of geometries)
is motivated by the fact that much of the local charac-
ter of the correlated many-electron state in this basis
will remain similar as atoms move by small amounts.
In addition, nearby atoms with similar chemical bond-
ing will also have common features in their many-
electron quantum fluctuations characterizing e.g. cova-
lent bonding character. Therefore, the numerical values
of the probability amplitudes of the states in this repre-
sentation will plausibly remain ‘close’ to the states of in-
terest at modified geometries, ensuring that the numer-
ical values of the FCI many-electron states change least
between the different electronic Hilbert spaces as the
atomic positions change, and that the states can act as
a general projector into the low-energy space as atoms
move.

While this is a heuristic choice, we have the rigorous
conditions that the inferred wave functions are strictly
variational (for all geometries) with respect to increas-
ing training data, as well as the exactness of all inferred
states at test geometries which coincide with training
geometries. From an ML perspective in its application
to MD, the variationality of the model therefore en-
sures an inductive bias away from regions of the phase
space which are poorly represented by the training data.
The inferred states are at all points represented as a
variationally optimal linear combination of the training
states in their SAO representations, as

PAR) =Y Y < (R) €Y n) . &)

No special structure is relied upon for the description of
any of these states (other than the fact that their SAO-
represented FCI vectors over the geometries of interest
remain sufficiently close to a linear combination of the
training states). Indeed, no mean-field information is

« It is possible to work directly with a non-orthogonal AO representation of the

abstract many-electron representation of the training states, but this then re-
quires a rotation of the many-body states at each geometry. This was explored
in Ref.”#, but entails exponential complexity for each inference and therefore it
primarily motivated for application for quantum computers.
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used at any point in the framework. This provides con-
fidence that strong electronically correlated states can
be described, and that the procedure should be rela-
tively unbiased for a description of multiple electronic
states simultaneously, providing those states are equally
represented in the training states. Furthermore, in
contrast to widespread machine-learning derived force
fields now prevalent in molecular dynamics, no local
energy decomposition is employed, and the fact that a
valid many-electron state is propagated to all geome-
tries means that all properties of interest can be pre-
dicted from the same model. This includes analytic nu-
clear forces, which are particularly straightforward due
to the geometry-independence of the subspace defini-
tion and variational formulation®®. Furthermore, as we
shall show in Sec. nonadiabatic coupling vectors
between inferred states are also straightforwardly ob-
tainable, which places the approach as a suitable candi-
date as an electronic structure solver for NAMD. Testing
these assertions is at the heart of this work.

Finally, we note that FCI probability amplitudes in
a local SAO representation are invariant to translation
and rigid body rotations of the molecule (provided a
consistent ordering of the underlying AOs). Further-
more, at dissociation the SAO probability amplitudes
are unchanging for all states regardless of the extent of
the dissociation, ensuring that all inferred wave func-
tions in this important strongly-correlated limit should
be consistently described. The appropriate choice of
training geometries in which to support the model
across e.g. a molecular dynamics trajectory is however
critical to the success of the method. In Sec. [3.3] we
develop an active-learning protocol to greedily update
the training states in a self-consistent procedure across
an MD trajectory, demonstrating convergence to near-
exactness of NAMD over the trajectory.

2.1 Density matrix formulation and training from
DMRG

For a practical implementation of the scheme outlined
above, it is essential that the projected Hamiltonian of
Eq. [1] at each geometry can be constructed efficiently,
without requiring manipulation of the underlying train-
ing states with their exponential complexity The over-
lap of the training states, (C4|Cp) = Yn Cn’ Cn c?, is in-
dependent of geometry and therefore can be precom-
puted for the training states and reused at each infer-
ence point. Similarly, the ab initio Hamiltonian at any
test point can be efficiently projected into the training
space via the one- and two-body transition density ma-
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trices (tRDMs) between all pairs Cof training states, (a,

b). These can be precomputed from the training data
and are denoted 7] and I'/" respectively. We write the
Hamiltonian as

— (1)
= ZZJ. hij (R) ¢

enabling the projection to be found as

(R)

1
(ClAC)R) = L Y ¢ &fn'y i} (R)
l] nn’
R 2
+ = ZZC c j 16, m’) hgﬂzl
tjkl nn’
jj i kl
= Zj ’yc’t{? Zk[ F] lel )
i ij
(6)

Crucially, once these tRDMs and overlaps between
the training states are known, the simulation proceeds
with the subspace Hamiltonian constructed via the con-
traction of Eq. [6in &[M2L*] cost, where M is the num-
ber of training states and L is the number of basis func-
tions in the system. This relatively low polynomial scal-
ing contrasts with the generally exponential costs of ac-
curate wave function solutions to the electronic struc-
ture problem to compute the training states, highlight-
ing the significant speed up in this interpolation when
many calculations are required across chemical space
(and especially where multiple electronic states are re-
quired). Properties can then be extracted from the in-
ferred state via its one- and two-body reduced density
matrices (RDMs) represented in the SAO basis of each
geometry, without any explicit recourse to the training
states, as

M * ..
=L v, @)
a,b
and
T (A)* ijkl _(A)
Ty =Y x Tg'x . 8)
a,b

This framework is demonstrated in Fig. where
we show a simple proof-of-principle for the one-
dimensional phase space corresponding to the symmet-
ric stretch of four Hydrogen atoms. The six lowest-
energy FCI solutions are shown, including a state-
crossing, and the training states supporting the inter-
polation in each panel indicated by orange crosses. For
the interpolated state, the span of the training space can
be enlarged systematically by including either a larger
number of higher-lying eigenstates at each geometry

Journal Name, [year], [qu@] |5
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Adding more
geometries

Training
e Obtain correlated training wavefunctions,
{|C.)}, at selected geometries in an
orthonormal local atomic basis

— FCI

Construct transition density matrices
between their probability amplitudes,
C’,(,a)7 transferring the configurations,
n, between geometries

---- Continuation
X Training WFs

Continuation

e Find a variationally optimal linear
combination of these fixed training
probability amplitudes at an arbitrary
test geometry R

By solving the generalized eigenvalue
problem

Hab 2o = E(R) Qap Tp

O(N*) scaling to obtain this correlated
state at any test geometry regardless
of training state complexity

Adding more
states

Fig. 1 Demonstration of the eigenvector continuation scheme for interpolating the lowest three states of a symmetrically stretched

linear four-atom hydrogen chain in an STO-3G basis compared to FCI results (black). Orange crosses represent the training wave

functions used for each panel.

(which will necessarily be orthogonal at the same ge-
ometry), or a larger number of geometries (which will
be non-orthogonal between different geometries). We
show that the three lowest lying states can be smoothly
interpolated to near-exactness (including a state cross-
ing) with just three geometries, each contributing three
states to the training space. This system is further
benchmarked in Fig. |2| In all results of this work, we
select the same number of training states at each geom-
etry as the number of low-energy states of interest for
the interpolation unless stated otherwise.

Finally, we note that while the framework was de-
scribed with the use of exact (FCI) training states,
other approximate electronic structure methods could
also be used to define these training states. As long
as N-representable tRDMs corresponding to physical
wave functions, as well as overlaps, are defined in the
method, then any approach could be used within the
scheme and a variational state would be inferred at all
points, motivating the framework as a tool to acceler-
ate many different electronic structure methods. For
the larger systems in Sec. |4, we therefore use the den-
sity matrix renormalization group (DMRG)Z8, which
defines training states as matrix product states.

6qurna| Name, [year], [vol.], 1

2.2 Ground and excited state forces

The propagation of nuclear trajectories in molecular dy-
namics relies on an accurate and efficient evaluation of
nuclear forces. For nonadiabatic MD, this also requires
energy derivatives for the excited state potential energy
surfaces. This follows a similar derivation to the ground
state energy gradients which were introduced within
the framework of the interpolation scheme in Rath et
al’®4 and which can be readily generalized to excited
states. We partition the force into nuclear and electronic
contributions as

_aEt(cﬁ) _ _(aEnuc i aEA)7

Fa(R) = ——¢ JR | OR

9
where E,, is the nuclear contribution to the energy.
The variationality of the inferred state along with the R-
independent subspace projectors allow a state-specific
electronic contribution to the force to be written using
the Hellman-Feynman theorem? as

%LI: _ % (x4 x0) = x4 % @, (10)

where x(*) is the eigenvector of Eq. |1| corresponding to
the Ath inferred state. Substituting in the Hamiltonian
of Eq. |5} the electronic contribution to the force can be
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evaluated for any state A as

(1> on'®

8EA L Z ljkl tjkl (11)

ZV

This requires the derivative of the 1- and 2-electron
Hamiltonian matrix elements in the SAO basis. The AO-
basis integral derivatives are widely available and we
use the Libcint library®Y within the PySCF package®1¢2,
It is then necessary to consider the nuclear derivative of
the AO to SAO transformation matrix. This does not re-
quire the overhead of coupled-perturbed Hartree-Fock
for the derivative of mean-field molecular orbital trans-
formations, and can instead be simply constructed from
first-order perturbation theory®3, described in more de-
tail in the Supplementary Information of Rath et al.®4,

2.3 Nonadiabatic Coupling Vectors

Transitions between different potential energy surfaces
in mixed classical-quantum NAMD is governed by the
nonadiabatic/derivative coupling vectors (NACs) be-
tween states. These describe the strength of the cou-
pling and therefore the probability of transitioning.
They are crucial for obtaining accurate internal conver-
sion in NAMD (with intersystem crossing processes able
to be described from the spin-orbit coupling in a simi-
lar framework), yet are often approximated due to the
scarcity of analytic NACs in many electronic structure
methods. The continuation scheme of this work allows
for the extraction of these important quantities at all
inferred geometries with little overhead.

The first order nonadiabatic coupling vectors be-
tween inferred states A and B are given, in its usual
form, as

aw(R) = (R ZWR) . (2)

The derivative of both the subspace expansion coef-
ficients, xlgA) and the orbital basis need to be accounted

for with two separate terms,

dAB — dcocf + dorb (1 3)

The coefficient dependent term can be found using
the subspace expansion in Eq. the orthonormal-
ity condition between the inferred states, x&)Q X(B)
O0ap (Where Q = Qg = (C,|Cp) is the overlap ma-
trix between the training states), and the generalized
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Hellman-Feynman theorem, as

oxP) P
ass’ = Zxa (CalCo) S = X[, Q 5 (14

- EBiEA [ T %f )} (15)

= Z l]k]) t(jzlzl}

(16)

T Ep—Ea EA [Z VAB)

where the transition-RDMs between two different in-
ferred states A and B are computed as:

Z"a : ubxb ’ 17

and
,Yl_]kl (B) . (18)

Following a similar procedure to analytic CASSCF
nonadiabatic coupling vectors#t22, the orbital contri-
bution, d3? is formulated as:

8
orb Z ,yIAB x] (1 9)

99p

N 97
= ¥ Vony | ZaiSep alij + Zai (9ol 50 Zg] (20)
ij

where Z,; is the rotation matrix from AO, ¢, to SAO, yx;
representation. These quantities are already computed
during the evaluation of forces with the main difference
being the contraction with t-RDMs, )/(/" B) instead of the

RDMs, %j), of the inferred states. The only additional
quantity that is needed are the AO derivative coupling
integrals, (@y| %f% for the orbital contribution to NACs,
which are readily available within the Libcint library®"

2.4 Proof-of-principle

The evaluation of interpolated multi-state energies,
forces and NACs are particularly efficient in this
scheme, given both the variationality of the inferred
states as well as the required tRDMs between train-
ing states. To validate the accuracy of this approach
in a small system, we map out the multi-state potential
energy surface of the four-atom linear hydrogen atom
chain for the symmetric stretch in Fig. In addition
to energies, both the state-specific forces and NACs are
computed, and their absolute error compared to FCI for
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Fig. 2 Smooth interpolation of ground and excited state energies,

forces and nonadiabatic coupling vectors for the linear equidistant

4-atom hydrogen chain, with just three equally-spaced training FCI calculations (STO-3G basis). Red crosses represent the energies
of the training wavefunctions used in eigenvector continuation (dashed lines), compared to FCI (solid lines). The absolute error of

the eigenvector continuation for these properties is displayed in the bottom panels.

all states. It should be noted that eigenvector continua-
tion is exact with respect to FCI (to numerical precision)
for all observables at the training geometries. At these
points, the approach will simply select the interpolated
wavefunction to directly be the FCI training point at
that geometry, which minimizes the energy by defini-
tion. In addition, the energies computed from eigen-
vector continuation can never be lower than the FCI
energies due to its variational nature. The absolute er-
rors shown in bottom panels of Fig. [2|also highlight the
smoothness of the properties in the proposed scheme
as there are no pathological sharp spikes in their error.
With just three FCI calculations chosen from equally-
spaced training geometries, the whole potential energy
surface is predicted to well below chemical accuracy.
The fact that the Sy force does not go to zero at the
minimum is just a reflection of the fact that only the
symmetric stretching coordinate is considered. Further-
more, this coordinate exhibits a state crossing between
S and S,, which is indicated by the appropriate diver-
gence of the NAC between these states (d;»).

8qurna| Name, [year], [vol.],

T

3 Nonadiabatic Molecular Dynamics on
Interpolated Potential Energy Surfaces

The motivating example of to justify the development
of this multi-state interpolation scheme was for NAMD
(though certainly not the only application that can be
envisaged). In this section we consider the use of these
interpolated energies, forces and NACs in order to prop-
agate nuclear coordinates through time from initially
excited electronic states. In this section, we rigorously
benchmark against exact (FCI) dynamics, using this
comparison to develop an active learning scheme for
a selection of a compact training set to minimize the
number of high-level calculations required across the
trajectory.

3.1 Fewest-Switches Surface Hopping

We briefly review FSSHZ as our NAMD method of
choice, and one of the most widely used mixed
quantum-classical dynamics approaches for studying
photo-induced dynamics. The scheme allows electrons
to relax through different electronic levels and transfer
their energy to nuclear motion. The approach still re-
lies on the adiabatic representation of potential energy
surfaces, with the time-dependent electronic wavefunc-
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tion described as a superposition over these low-energy
states. The adiabatic states can be transformed into
diabatic states via different diabatisation approaches if
the propagation is done using the diabatic representa-
tion, but we will focus on the use of the adiabatic one,
which is the most popular approach. The nuclear prop-
agation is nevertheless performed according to a single
electronic state, but this choice of state varies according
to a stochastic hopping to introduce the nonadiabaticity
in this propagation. Nuclear and electronic degrees of
freedom therefore remain separated, with the nuclear
dynamics propagated classically according to the force,
F4(R) due to potential generated by the adiabatic state
E4.

The electronic dynamics are propagated by the time-
dependent Schrédinger equation as a superposition
over the adiabatic surfaces at a given nuclear geome-

try as

d
<P~ Eaga+ih Y dag-vop =0, (21)
B

where ¢4 are the expansion coefficients of the nonadi-
abatic electronic wavefunction in the basis of adiabatic
states, E, is the energy of adiabatic state A, dp is the
nonadiabatic coupling vector between the states as in-
troduced in section [2.3]and v is the current nuclear ve-
locity. The coefficients @4 are updated at each step to
account for decoherence corrections!. The population
of the adiabatic state A in the nonadiabatic wavefunc-
tion is given by |@a()|?> at a given timestep. The prob-
ability of hopping between different adiabatic surfaces
for the nuclear propagation is given by

2At "
PAA)B = max O7 —W Re((PB(PA) dAB -V (22)

where Ar is the timestep used in the integration of
the nuclear propagation. This probability is realised
stochastically, with the hopping between state A and
B occurring according to the uniform random number
n €[0,1)if

B-1 B
Z Pysc<n < Z Pysc. (23)
fos c=1

The nuclear velocities are rescaled according to their
NACs after hopping to conserve the total energy over
the trajectory®.

In this work we used the Newton-X©>8¢ package to
perform the FSSH simulations, interfaced to our eigen-
vector continuation code which was called to obtain all
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interpolated electronic structurerOrlbl}gel?tzi%stg%oc? RACs
between all pairs of interpolated states were included
for the propagation of the electronic wave function and
stochastic hopping. This also relied on PySCF for the
computation of the required Hamiltonian, derivative in-
tegrals and FCI training data where used®82, This
workflow was also initially benchmarked against the
FCI Newton-X interface to OpenMolcas®287, A 5t or-
der multistep integrator of Butcher®® was used to in-
tegrate Eq. with 20 multisteps. Decoherence cor-
rections were applied through the simplified decay of
mixing approach! with a decay parameter of 0.1 Ha.
All trajectories were checked for energy conservation.

3.2 Benchmarking against exact trajectories

We first consider a NAMD trajectory of four Hydrogen
atoms in a linear configuration, released from an initial
equilibrium equidistant nuclear configuration with zero
velocity of all nuclei and in the first electronically ex-
cited state (Fig[3). Three electronic states (Sp, S; and
S,) were interpolated in the simulations. The electronic
wavefunction started in S; and the trajectory was prop-
agated with a timestep for the nuclear dynamics of 0.05
fs in a minimal STO-3G basis. The §; state is fully disso-
ciative, ensuring that all atoms initially move apart from
each other (albeit at different speeds, and with the mid-
dle atoms initially moving closer). At ~ 8.5 fs, it can be
seen in Fig. [3|that a jump to the ground state occurs, the
nuclear velocities are rescaled, and the ground state po-
tential surface is one that promotes dimerization. How-
ever, the velocity of the end hydrogen atoms is already
too high for the attractive potential to overcome and
they continue to dissociate, increasing the length of the
chain linearly with time. In contrast, the middle two
hydrogens are able to come back together an dimerize,
as seen in Fig. [3|(c). The end product is a vibrating
H, molecule (with period ~ 13 fs) in the middle, with
two individual atoms fully dissociating from the chain,
rather than the perhaps anticipated scenario of two hy-
drogen dimers as the end result.

We now consider the performance of the eigenvec-
tor continuation compared to the exact propagation in
this toy system, where we select FCI training states only
at the same three equidistant and evenly-spaced geome-
tries as shown in Fig. |2l The key question is whether
these non-equidistant, semi-dissociated nuclear geome-
tries visited in the trajectory are well described in the
scheme compared to FCI with these somewhat unrep-
resentative training points. On top of that, we want to
see if it can capture the correct internal conversion time
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Fig. 3 Comparison of the interpolated trajectory (dotted lines) against the exact results (solid lines) of a four-atom hydrogen
chain starting in the equilibrium equidistant S| state of a STO-3G basis. (a) Adiabatic energies along the trajectory (shown with
black stars) with a nonadiabatic hop to the ground state. Insets showing the nuclear geometries. (b) Populations of propagated

electronic wavefunction over the low-energy adiabatic states considered. (c) The average interatomic distance of the full chain
(R1,Nyn/(Natm — 1)) and the distance between the middle hydrogens (R 3). (d) The transition probability from the current state of
the trajectory to the other two states. The training wavefunctions used in the interpolation are taken from the three equidistant

geometries shown in Fig.

to the ground state as small changes in the stochastic
hopping transition can result in significant differences
in the dynamics. Fig. [3| demonstrate the success of the
continuation even without any particular care in the
training geometry selection. Despite the simplicity of
this four-electron system, nine FCI training wavefunc-
tions computed at three equidistant geometries seem to
represent the low-energy Hilbert space (with a total of
256 Slater determinants) at all the relevant geometries.
In addition to the energies, populations and nuclear ge-
ometries, the transition probabilities between different
adiabatic states in Fig. 3| (d) are also captured to a very
high quantitative accuracy. This indicates the methods
capabilities to extract accurate statistical averages over
multiple surface hopping trajectories. It could perhaps
be argued that the success here is only reflective of the
simple ratio of the Hilbert space size to number of train-
ing states. We therefore address this question for larger
systems in Sec.

3.3 Active learning of training geometries

Before extending to more complex systems, it is worth
revisiting the determination of the optimal geometries

1Jro‘urnal Name, [year], [vol.], 1

from which electronic wave functions should be in-
cluded as training states in the interpolation. This is
an important step to maintain a compact representation
of the relevant low-energy electronic space through MD
trajectories and extend the prospects of the scheme to
more realistic and complex systems over larger nuclear
phase spaces. To achieve this, we iteratively add states
from different training geometries to achieve a ‘black-
box’ procedure which can systematically converge the
interpolated electronic surfaces of the relevant phase
space in a self-consistent fashion, without relying on ex-
ternal guidance or information. This is done by starting
from a single (or small number of) initial geometries in
the training set, running an MD trajectory interpolating
from this data and selecting the next geometry to add
based on some heuristic estimation of the changing er-
ror for the geometries visited over the run. This process
can be repeated until a desired level of convergence.
This iterative process is usually referred to as ‘active’ or
on-the-fly learning as new geometries are chosen based
on the information obtained from existing geometries.

The crucial component of any active learning strategy
is the selection criteria for the new data for the training
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set at each iteration. It is common to use a distance
metric to choose the data that is most different from
the ones in the training set. Since the main inputs for
our inference are the 1- and 2-electron integrals at the
geometries of interest, which determine all electronic
states, we employed this ‘Hamiltonian distance’:

mm( ) R,rgtlrlr}m lZ | ij ( l)|
+3 Z |hz]kl z(lel(Rl)‘ ’ (24)
ljk[

as our distance metric where R, are the geometries in
the existing training set and, h,(j]) and hl% are the elec-
tron integrals. This can be simply evaluated along with
the inference over the MD trajectory, and satisfies the
important property that the metric is zero for the inter-

polation at existing training geometries.

This metric was applied in a previous publication to
converge the training states for ground state dynam-
ics with eigenvector continuation, where the geometry
with largest Dy, over the trajectory was solved with
the electronic structure solver and added to the training
data for the next MD run, iteratively improving the tra-
jectory until convergence®®. This ensures that geome-
tries from the trajectory are added to the training set
that are ‘furthest’ (in this Hamiltonian distance sense)
from the nearest training state. However, simply tak-
ing the maximum D,,;, over the entire trajectory doesn’t
yield the fastest convergence, as these points tend to
correspond to the final geometries visited in the trajec-
tory, where the furthest parts of the phase space are be-
ing explored. A better measure is to consider the turn-
ing points, i.e. peaks in the Hamiltonian distance, over
the trajectory, as they signal two important scenarios.
Firstly, they can point to true dynamical extrema such as
the minimum and maximum separation of a nuclear os-
cillations. For an optimal interpolation (rather than ex-
trapolation) of that motion, inclusion of these extrema
is beneficial. The second scenario is when the continu-
ation trajectory is in an explorative phase (i.e. we are
searching for additional training geometries required,
rather than running the final converged trajectory). As
the scheme introduced in this paper necessarily over-
estimates the energies of atomic geometries in regions
of phase space far from the training data due its varia-
tional nature, the MD has an inductive bias away from
these spuriously high-energy regions. Following this,
the trajectory hits an overestimated energy barrier as it
moves towards these poorly described geometries and
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bounces back to a known part of t %ggg/gﬁgggoofﬁ%s
peaks in Hamiltonian distance also h1nt at these regions
of the nuclear phase space where the addition of train-
ing data would be particularly beneficial to optimally
improve the overall accuracy of the interpolation.

As the nuclear phase space explored during the dy-
namics changes as more training data is added to the
model (since the inferred electronic potential changes),
consideration needs to be made as to the trade-off
between exploration and exploitation in the learning.
Therefore some bias needs to be included to the heuris-
tic metric for the choice of the training geometry to in-
clude, to preferentially select geometries from earlier
times in the trajectory, before it has diverged too much
from the exact converged path. This avoids unnecessary
additional electronic structure calculations to include
training geometries which may be unrepresentative of
the phase space explored in the final converged trajec-
tory. To account for this, the peaks in D,,;, are weighted
according to equation [25] to bias the selection of train-
ing geometries that occur earlier in the trajectory,

Dmin(Ri)

— 25
it I (25)

R.yg = argmax
R; € peaks

where R; is a nuclear geometry that corresponds to a
peak in Dy, t; is the time that geometry occurs in the
trajectory and fg, is the total length of the trajectory.

Here, the exponent x is a hyperparameter that deter-
mines the degree of weighting towards earlier geome-
tries. At its limiting cases, it can reduce to either select-
ing the highest peak (x = 0) or the first peak (x — o0)
in the Hamiltonian distance, Dy,,. We found x = 3 to
result in a reasonably fast convergence, for the hydro-
gen chains studied in this work, providing a good bal-
ance between exploring the most unfamiliar geometries
and including earlier peaks to ensure systematic conver-
gence of the true trajectory from earlier to later times.

This learning strategy is demonstrated in Fig. [4]
for converging the NAMD trajectory over five inferred
states with respect to number of geometries used in the
training (N) of an eight-atom hydrogen chain, using the
five lowest-energy FCI states from each training geome-
try. The interpolated surfaces with the shown number of
training geometries (N) are shown with orange dashed
lines in panels (a)-(e), reflecting both the error in the
interpolation and the divergence of the trajectories as
a result, compared to the exact adiabatic surfaces from
FCI (solid blue lines). All adiabatic surfaces were re-
stricted to be from the same spatial symmetry as the
ground state. The trajectory was started from the third
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Fig. 4 Convergence of the active learning scheme for the nonadiabatic molecular dynamics trajectory of an eight-atom hydrogen

chain with respect to number of geometries selected for training the model (N). Top panels (a-e) show the adiabatic energies along

this trajectory (exact as blue solid lines, interpolated from N training FCI calculations as orange dashed lines). Bottom panels
(k-0) display the scaled end-to-end distance of the chain, Ry, /(Nam — 1) and the distance between the 2" and 3™ hydrogen
atoms along the chain, R, 3. Middle panels (f-j) show the minimum Hamiltonian distance (Eq. over the geometries along the
continuation trajectory with respect to the training geometries available at that iteration. The vertical lines in this panel represent
the next geometry along the trajectory selected for inclusion in the model, based on the metric discussed in Eq.

excited state, S3, at the equilibrium equidistant linear
chain geometry with zero nuclear kinetic energy and
propagated with a timestep of 0.1 fs in the minimal
STO-3G basis. The interpolated trajectory agrees al-
most exactly with the FCI trajectory by the time N = 14,
as shown in [4f(e). In this, the propagation follows S;
for around 20 fs which pushes the system to form two
separate Hy clusters, before the trajectory hops to the
S| state pushing the middle hydrogens of each of these
Hy clusters to form energetic dimers while ejecting the
end hydrogens in opposite directions. Both of these can
be seen in [4(0) where the dimerization of the second
and third hydrogen atoms and the rapid increase in the
end-to-end distance is observed just after 20 fs. After
this, the system stays in S; for 15 fs before jumping to
the ground state around 35 fs. This, in turn, stabilises
the dimers and allow the formation of another dimer in
the middle between the fourth and fifth hydrogens that
were ejected from their respective clusters. This leads
to a final configuration of three vibrating H, dimers in
the middle with two atomic hydrogen atoms dissociat-
ing from the chain. This complex NAMD trajectory ex-
plores a lot of different regions of the nuclear phase
space that would be difficult to select as training states
a priori.

We can also use this to analyze the convergence of
the active learning scheme for selected numbers of ge-

1Jqurna| Name, [year], [vol.], 1

ometries up to the converged N = 14 trajectory, with
the Hamiltonian-distance metric of Eq. shown in
Fig. 4| panels(f)-(j). The geometries selected for sub-
sequent inclusion in the training set from the path of
the inferred trajectory are indicated by vertical lines in
these panels, according to Eq. It can be seen that
the peaks in the Hamiltonian distance serve as quali-
tative indicators for points of divergence between the
trajectory on the inferred potential and the FCI trajec-
tory. This is especially evident for N = 5 and N = 8
trajectories where the data selection in Fig. [4(g) and
Fig. [4(h) corresponds to the geometries where the di-
vergence starts in Fig. [4{(b) and Fig. [4)(c), respectively.
Notably, the N = 5 trajectory underscores the signifi-
cance of weighting the selection to earlier times since
selecting the maximum D,,;, would have lead to con-
figurations unexplored within the true trajectory. This
allows for a systematic convergence of data selection
towards the true trajectory from earlier to later times.
Moreover, prioritizing geometries in this way also facil-
itates the exploration of relevant regions in the phase
space at later times in the MD, as illustrated for N = 11
in Fig. @(d).

The focus on improving the accuracy of the model ini-
tially for earlier times ensures that the transition region
between S; — Sy can be predicted correctly before try-
ing to iteratively improve the later time sampling of the
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relevant post-transition ground state dynamics. These
are targeted from N = 11 onwards (see the data se-
lection at 35 fs in Fig. (i)) when relevant parts of the
phase space in these trajectories are being sampled.

Overall, the proposed heuristics appear to address
the challenges of selecting a compact set of training ge-
ometries in a black-box and rapidly convergent fashion,
minimizing the number of explicit electronic structure
calculations required. This balances the challenges of
considering both the time and the magnitude of the
peak in the heuristic error estimate in the interpolated
energy surfaces over the trajectories sampled. Overall,
in this system qualitative convergence is achieved by
the 11 training geometry, with quantitative accuracy
attained after a total of 14 training geometries. Consid-
ering both the nuclear phase space explored and elec-
tronic complexity of this trajectory, the proposed learn-
ing scheme can train and replicate the true trajectory
with remarkably few FCI training points. We anticipate
however that further improvements could be made by
including a description of the inferred states themselves
in these heuristics since only the Hamiltonian distance
to a single training point is considered. This will be in-
vestigated in future work.

4 Beyond Exact Methods: Hydrogen
Chain Dynamics with DMRG Contin-

uation

With the experience of previous sections benchmark-
ing on exactly solvable hydrogen chains, we move on
to larger lengthscales and timescales, where we can
no longer compare to exact FCI results over timescales
which would require a prohibitive number of calcula-
tions. Furthermore, accessing larger lengthscales re-
quire the use of approximate solvers for the training
states. Nevertheless, we show that we can still have
confidence and provable quantitative convergence to
near-exactness in both the inferred electronic states
and nonadiabatic trajectory based on the developed
heuristics. Matrix product state wavefunctions opti-
mized through ab initio density matrix renormaliza-
tion group (DMRG) methodology present itself as an
highly accurate, systematically improvable approach to
obtain near-exact potential energy surfaces for system
sizes beyond the reach of FCI®>® By continuing our
investigation of the nonadiabatic dynamics of longer
hydrogen chains, we can explore larger nuclear phase
spaces, while the quasi one-dimensional topology of the
strongly correlated electronic structure is particularly
efficient for DMRG solvers. These linear hydrogen sys-
tems have recently come to the fore as paradigmatic
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benchmark systems for a wide range of eléctronic struc-

ture methods, as a step towards extended condensed
phase systems exhibiting a surprisingly rich phase di-
agram.®??Y We argue that their nonadiabatic dynam-
ics would be unable to be explored in any other way,
with other electronic structure methods unsuitable due
to the lack of an obvious CAS, or unable to access the
required time or lengthscales in this study.

In recent years, there has been progress in obtain-
ing approximate DMRG-SCF excited state gradients and
NACs2*21 as well as quantum dynamics simulations
of realistic vibronic Hamiltonians with time-dependent
DMRG?24, However, running full NAMD simulations
with ab initio DMRG has practically been out of reach
due to difficulties with exact analytical NACs, high com-
putational cost and difficulty in ensuring a fully black-
box and robust workflow over the many calculations.
Here, we present the first NAMD simulation with fully
ab initio MPS wavefunctions accelerated through the
eigenvector continuation. We obtain DMRG training
data via the spin-adapted and multi-state implemen-
tation in the block2 library, which can also straight-
forwardly obtain the required tRDMs and overlaps be-
tween the MPS training states©022:90,

We consider the 28-atom one-dimensional hydrogen
chain in a STO-6G basis with FSSH, where we initial-
ize the chain with an equilibrium equidistant nuclear
configuration with zero nuclear kinetic energy, photo-
excited to the first excited electronic S; state, and we
consider the electron and nuclear dynamics over these
two interpolated states. The training MPS wavefunc-
tions were optimized to near-exact accuracy by expo-
nentially increasing the bond dimension at each train-
ing geometry while decreasing the noise during the
DMRG sweeps, simultaneously optimizing the ground
and S, state. A timestep of 0.5 fs was used for the FSSH
trajectories.

The active learning scheme described in Section
was applied to converge a single nonadiabatic molecu-
lar dynamics trajectory of the Hyg system that explores
the relevant phase space and samples the dynamics on
both Sy and S; potential energy surfaces. It should be
stressed that the training points selected by the scheme
will not (in general) be featured in the final trajectory,
since they are taken from different potential energy sur-
faces as the inferred model is iteratively improved. This
suggests that while it converges the trajectory from a
single seed, it should exhibit little bias towards this sin-
gle trajectory in the final data selection. Similar accu-
racy should be found over a stochastic ensemble of tra-
jectories, with the selection relatively insensitive to the
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Fig. 5 (a) Average variational energy of the Sy and S| interpolated states over all geometries accessed in the final converged

NAMD trajectory of the 28-atom hydrogen chain, as a function of number of DMRG training geometries used for the interpolated

state. We can see smooth and systematic convergence of the DMRG-interpolated potential to mE;, accuracy, with Hartree—Fock

theory accuracy shown for comparison. The inset shows the convergence of the Sy — S excitation energy. (b) Absolute energy

error computed at the training geometries compared to the explicit DMRG used in the training. Dashed-dotted and dashed lines

correspond to Hartree-Fock and CCSD comparison values for the ground state energies at these geometries. The error compared

to the interpolated energy at the training geometries is close to numerically zero.

precise details of the trajectory. The convergence was
achieved with N = 22 geometries as shown in Fig. (a).
In this we show the convergence of the average varia-
tional energy of the Sy and S; states with respect to N
over all geometries of the same final converged trajec-
tory. We find that the addition of the final two training
points changes this metric for both states by less than
chemical accuracy (1 kcal/mol) across the entire trajec-
tory, indicating confidence in convergence with respect
to the training data. It is also worth noting that only
two training geometries were sufficient to surpass the
variational energy of Hartree-Fock over the trajectory,
despite no mean-field information considered in the in-
terpolated states. The all-important Sy — S; average ex-
citation energy over the trajectory also converges faster
than the absolute energies of the states, as shown in the
inset.

For some context as to the accuracy of the interpo-
lated surfaces, Fig. [5|(b) illustrates the error in the in-
terpolated Sy and S| energies at the final N = 22 train-
ing geometries, compared to the explicit DMRG used in
its training, along with additional Sy energy comparison
to Hartree-Fock and Coupled Cluster Singles and Dou-
bles (CCSD) theory. We find that the interpolated en-
ergies are exact (to numerical precision) compared to
the DMRG calculations, as expected. However, at two
geometries, the continuation scheme yields a slightly
lower variational energy than the DMRG training en-

1Jqurna| Name, [year], [vol.], 1

ergies for the §; state, indicated that a small further
optimization of this state with DMRG would be pos-
sible by increasing bond dimension. The Hjg system
is close to an ideal system for DMRG due to its one-
dimensional nature, so suboptimal convergence behav-
ior was rare in this case. However, this showcases that
convergence difficulties in the training for a particular
geometry is not as problematic for the performance of
the continued model, as it would likely be during a tra-
ditional MD trajectory. This is because the model will
‘borrow’ electronic character from other training states
to ensure that the surfaces remain smooth and therefore
variationally improve upon unoptimized training states
even at the training geometries themselves. This behav-
ior was more evident when applied to the ground state
dynamics of the Zundel cation reaction in the previous
work®%,

This unreliability in convergence of multiple single-
point calculations can even be evidenced in comparison
CCSD energies at the training geometries — generally
quite a robust electronic structure method, shown in
Fig. [5|(b). Although it is well known that CCSD will
struggle to capture the multi-reference nature of the
more dissociative geometries due to its intrinsic single-
reference formulation (geometry 2), it can also con-
verge to the wrong state (geometry 17) or fail to con-
verge at all (geometry 22) with simple default simu-
lation parameters in widely used software packages.
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Isolated convergence issues are common when run-
ning lots of single-point calculations with different elec-
tronic character as are necessary in MD with many-
body methodologies, and the proposed scheme ensures
the smoothness of the potential energy surface and
thus the physicality of dynamics. Even without these
points however, CCSD would not reach chemical accu-
racy (even for energy differences) across the trajectory.

Using these DMRG training wavefunctions for Hpg we
find the dynamics over 60 fs for an ensemble of 100 tra-
jectories with different random seeds, all starting at the
equilibrium geometry with equally separated hydrogen
atoms, in the S; electronic state. This is a total of 12,000
single-point calculations, all inferred from the same 22
DMRG training calculations. The averages over this en-
semble of trajectories for the electronic population of
each state and atomic distances are shown in Fig. [f] to
better understand the nature of the nonadiabatic molec-
ular dynamics in this Hpg system.

The average electronic state populations are shown
in Fig. E](a), with the fastest rate of internal conver-
sion between 30-50 fs after release, indicated in par-
ticular by two sharp jumps, with almost all trajecto-
ries in the ground Sy state after this time. In addition,
there exists a handful of trajectories that hop back to
the higher-energy S state after hopping to Sy, espe-
cially among the trajectories that transition to Sy early
(before 10 fs), which can be seen by the dips in Sy pop-
ulation around 5-15 fs. Considering the nuclear geome-
tries along the trajectories, it is clear that the hydro-
gen atoms at the ends of the chains rapidly dimerize
for all trajectories, which is shown in Fig. [6|(b). This
contrasts with the Hy and Hg systems, where their ter-
minal atoms were ejected before being able to dimerize.
In the longer chain dynamics, the frequency and ampli-
tude of these terminal dimer vibrations also seems to
change with time, which differ from the ground state
behaviour where a constant frequency and amplitude is
maintained throughout the dynamics. This might imply
that the first excited state of Hyg is not as rapidly disso-
ciative (or dissociative at all) unlike the smaller chains,
or that the smaller excitation energy in this longer chain
leads to faster decay to the ground state which favors
dimerization.

The end-to-end distance of the 28-atom hydrogen
chain increases linearly with time as seen in Fig. E](c)
with relatively little scatter in this rate over the differ-
ent trajectories. The rate of this increase is very similar
to the one observed in ground state hydrogen chain dy-
namics in Rath et al.®%, Note that the dynamics in that
work started from a geometry that was 10% stretched
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first excited state of the equilibrium equidistant geom-
etry. This suggests that the electronic energy gained by
that initial stretch results in a equivalent chain length
behaviour as a photo-excitation to S;. Fig. E](e) shows
the maximum distance between any two neighbouring
hydrogen atoms, which essentially describes the dis-
tance between the terminal dimers in the chain which
move apart from each other at the fastest rate (i.e. the
H,-H; distance).

Unlike the consistent dimerization behavior at the
ends of the chain, the behaviour in the middle of the
chain seems to vary significantly depending on the tra-
jectory, as seen in Fig. [f)(d), exploring a large phase
space. Continuous oscillations of some trajectories
about 1.5 ay are visible, indicating that a portion of
trajectories form dimers between the 14" and 15% hy-
drogen atoms. This would result in a frustrated dimer-
ization of the overall chain, as full dimerization would
require the 14™ and 15" hydrogen atoms to dimerize
with their other neighbours, not with each other. This
therefore requires other non-dimer configurations in
the chain for those trajectories, either forming trimers,
unbound hydrogen atoms, or other larger hydrogen
complexes.

We analyze the geometries that emerge in the last 5 fs
of the 100 trajectories computed in this work, to iden-
tify different nuclear configurations that result. Of these
trajectories, 27% form perfect dimerization throughout
the chain, where the distance within dimers is always
smaller than the distance to their next neighbour, leav-
ing the majority without this expected order. 39% of
all trajectories have hydrogen atoms being shared with
two separate dimers where the bond separation within
both of these dimers is less than the distance to their
other neighbours. Only 9% of trajectories can be char-
acterized as having a ‘free’ hydrogen where the distance
to its neighbours is always more than the distance be-
tween the next consecutive hydrogens. Finally, the rest
of the trajectories (25%) don’t fit any of these criteria
and can be thought of as transition states between these
configurations. Videos showcasing representative tra-
jectories are available in the Electronic Supplementary
Information.”

The variation in the trajectories all appears simply
due to the stochastic nature of the hopping to the
ground state in the FSSH approach, which can result in
significant deviations in this system and the exploration
of different local minima in the nuclear phase space.
A consideration of nonadiabatic models beyond FSSH
would be interesting to see whether these differences
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Fig. 6 Nonadiabatic molecular dynamics simulations of a 28-atom hydrogen chain, starting from a stationary equally-spaced
equilibrium configuration in the electronically excited S; state in a STO-6G basis. This required 12,000 energy, force and NAC
calculations, inferred from 22 explicit DMRG training states. (a) Average electronic state population, (b) distance between the two
end hydrogen atoms, (c) scaled end-to-end distance of the chain, (d) distance between the middle (14" and 15™) hydrogen atoms,
and (e) maximum separation between any two consecutive hydrogen atoms along the chain. The bold straight lines represent the
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average property over 100 trajectories while the thin dashed lines represent individual trajectories.

persist, as well as further insights into the electronic
behaviour over time (e.g. (transition) dipole moments
and absorption spectra), which are all accessible from
the interpolated states. In addition, there are a number
of other physical mechanisms to consider, in particular
the effect of proton tunnelling, as well as the incom-
plete nature of the basis set for the electronic states,
which will be considered in future work. While the elec-
tronic phase of the clamped equidistant hydrogen chain
was found to exhibit surprisingly rich physics®?, it ap-
pears that the nuclear dynamics similarly exhibits sig-
nificant intriguing and subtle physics. We suggest that
this system could also be used as an effective bench-
marking test bed for nuclear dynamics developments in
correlated electron systems, as well as for the electronic
structure solvers on which they so heavily depend.

5 Conclusions and Outlook

In this work, we have extended the powerful interpo-
lation scheme for many-body wavefunctions to a multi-
state approach, and demonstrated that this can be used
to easily find analytic excited state gradients and nona-
diabatic couplings between inferred states. This makes
the approach ideal for accelerating nonadiabatic molec-
ular dynamics calculations, and to straddle the gulf in
accessible timescales which hinders the application of
emerging electronic structure methods in this important

1Jro‘urnal Name, [year], [vol.], 1

domain. Crucially, the electronic structure interpolated
through chemical space is necessarily smooth and sys-
tematically improvable, and we develop an active train-
ing protocol to iteratively ensure a compact and rapidly
convergent number of training wavefunctions required
for a subsequent MD. While the cost of each electronic
structure training calculation is high, the subsequent in-
ference is possible over significant timescales due to the
non-iterative quartic scaling with system size in evalu-
ating the properties of the inferred electronic model.

We demonstrate the approach with fewest-switches
surface hopping on one-dimensional hydrogen chains,
which exhibits a surprisingly rich dynamical behaviour
and wide range of trajectories. For the largest Hyg sys-
tem, we use 22 training states as matrix product states
from single-point DMRG calculations, and infer 12,000
points on a smooth multi-state electronic surface con-
verged to chemical accuracy from this DMRG training
(including their analytic atomic forces and NACs) to
sample the nuclear trajectories at (hybrid) mean-field
scaling. The electronic wavefunctions at each point are
represented as variationally optimized linear combina-
tions of the training states, which are themselves opti-
mized in the training phase at selected nuclear geome-
tries. This relies on a consistent and transferable rep-
resentation of the many-body probability amplitudes,
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described in an atomic-local representation to facilitate
this transferability of the low-energy probability ampli-
tudes to different nuclear configurations. We discover a
surprisingly broad spectrum of surface-hopping trajec-
tories for this hydrogen chain, where the simple dimer-
ization of all atomic pairs represent only a minority of
the observed trajectories. While nuclear quantum ef-
fects are likely to contribute in this system and be an
interesting direction for future work, the transitions are
below the total initial energy and proceeds energeti-
cally downhill therefore unlikely to be a leading order
effect. The nonadiabatic dynamics of this simple system
could therefore represent an effective sandpit in the fur-
ther development and comparison of hybrid classical-
quantum molecular dynamics schemes as well as their
dependence on underlying correlated electronic struc-
ture methodologies.

From a machine-learning perspective, this approach
circumvents many of the traditional approximations
and assumptions of local energy based decompositions
for machine-learned force field parameterizations. The
presence of an explicit many-body wavefunction and
variational energy at each nuclear configuration en-
sures an inductive bias away from poorly represented
regions of phase space. All desired observables are ac-
cessible within the same model, with a smoothly vary-
ing and physical electronic state at all times. The scope
for accelerating the numerous situations where multiple
sequential electronic structure calculations are required
is clear — from molecular dynamics to geometry or tran-
sition path optimization, vibrational spectroscopy and
beyond.

Of course, many questions still remain. Chief
amongst them is the question of how the number of
training points required for a given accuracy scales
with the nuclear phase space sampled. While this is
likely to be system-dependent, it builds on the fun-
damental question of how transferable the low-energy
physics is between these locally represented many-body
states. While the nuclear phase space of the Hyg was
relatively small (R!#4) given the one-dimensional and
inversion-preserving configurations sampled due to the
initial conditions, it was still large enough to make this
a highly non-trivial interpolation from just 22 training
points. This question of training set size must also nec-
essarily consider the effect of more realistic basis set
sizes. Currently, limitations still exist in obtaining the
training data, and more approximate methods will need
to be investigated, as well as circumventing the quar-
tic scaling memory costs for the 2-tRDMs which are re-
quired. These are all critical questions for the long-term
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efficient acceleration of a wide number of correlated
electronic structure methods.
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