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Synthesis and Characterization of Chlorotriarylbismuthonium 
Salts 
Jennifer Kuziola, Nils Nöthling, Markus Leutzsch und Josep Cornella

This work reports the synthesis and structural study of a family of 
chlorotriarylbismuthonium salts. The abstraction of a chlorine 
atom with NaBArF from triarylbismuth dichloride species leads to 
monomeric and dimeric chlorotriarylbismuthonium species, which 
show a distinct behavior in solution and solid-state in comparison 
to their fluorotriarylbismuthonium analogues.    

The synthesis and design of novel Lewis acids based on cheap 
and more abundant main group elements opens the door to 
sustainable catalysts that can have an impact in organic 
synthesis and applications thereof. Of particular importance, 
are those derived from organopnictonium ions. In this regard, 
numerous fluorophosphonium salts have been synthesized, 
demonstrating their Lewis acidity in a wide range of organic 
transformations (Figure 1A).1–10 The heightened Lewis acidity 
observed in cationic haloorganopnictonium salts is ascribed to 
the low-lying σ*-orbital positioned trans to the halogen 
atom.11–13 In contrast to its lighter congeners, heavier analogues 
in the group 15 have received comparable less attention despite 
their well-documented electrophilicity.14–17 Remarkable 
examples in this front are the monomeric fluorotriarylstibonium 
ions developed by Gabbaï and co-workers where interaction 
between the cationic Sb(V) and a OTf- anion can be observed in 
the solid state (Figure 1A).12 Based on our interest in the study 
of organometallic compounds of bismuth,18–20 our group has 
recently reported a structural study on a series of 
fluorotriarylbismuthonium salts,21 which have shown a 
distinctive behaviour in comparison with its lighter analogues.  

In contrast to the monomeric cationic salts based on P and Sb,12 
we observed the formation of di- and trinuclear 
fluorobismuthonium compounds. This distinct behaviour was 
attributed to the highly electropositive Bi(V) center in 
combination with the strong donor-acceptor interactions 
between the fluorine and Bi atom. Evaluation of the steric 
constraints on the aryl moieties eventually led to the isolation 
of the first monomeric fluorotriarylbismuthonium salt (Figure 
1A). Following this rationale, we realized that in contrast to 
fluoropnictonium salts, few examples of 
chlorotriarylpnictonium salts have been reported,12,17,22–28 

(Figure 1B). Gabbaï demonstrated a remarkable example of a 
monomeric chlorotrimesitylstibonium hexachloroantimonate 
salt, and its application in the polymerization of THF and 
dimerization of 1,1-diphenylethylene (Figure 1B).12 Recently, 
Benjamin et al. enhanced the Lewis acidity by the introduction 
of electron-withdrawing aryl ligands, showing also the potential 
for formation of C–C bonds in a Friedel-Crafts alkylation 
reactions (Figure 1B).28 Moreover, the same group has 
demonstrated the formation of a dinuclear 
chlorotriarylstibonium salt by the use of 0.4 equiv. of 
[Et3Si(C7H8)][B(C6F5)4] as chloride abstracting agent. Based on 
our previous work,21 we present the synthesis and structural 
study of chlorotriarylbismuthonium salts, including the first 
example of a monomeric chlorotriarylbismuthonium salt 
(Figure 1C).

a.Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim 
an der Ruhr, Germany

† Footnotes relating to the title and/or authors should appear here. 
Supplementary Information available: [details of any supplementary information 
available should be included here]. See DOI: 10.1039/x0xx00000x
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Figure 1. A) Representative examples of mononuclear fluorotriarylpnictonium 

salts. B) Examples of mononuclear chlorotriarylpnictonium salts. C) This work: 

Synthesis of high-valent chlorotriarylbismuthonium salts.

Our studies of chlorotriarylbismuthonium salts started with the 
synthesis of triarylbismuth dichlorides. In order to be able to 
compare the chlorobismuthonium cations with the fluorinated 
analogues, unsubstituted and substituted aryl ligands bearing 
tBu and Me groups have been selected. Oxidation of 
triarylbismuth complexes with 1.3 equiv. of SO2Cl2 led to the 
isolation of the corresponding triarylbismuth dichlorides in high 
yields, which have been characterized by NMR, HRMS and SC-
XRD (single crystal X-ray diffraction) (see SI for more details) 
(Scheme 1). Treating Ph3BiCl2 with 1.0 equiv. of NaBArF (BArF = 
B[C6H3-3,5-(CF3)2]4

-) in CH2Cl2 at 25°C indicated the presence of 
a formally monomeric [Ph3BiCl][BArF] (9) species in solution as 
suggested by the integration of the phenyl signals with respect 
to the BArF anion in the 1H NMR spectrum. 

Scheme 1. Synthesis of triarylbismuth dichlorides 5-8 and chlorotriaryl bismuthonium 
salts.

Crystals of compound 9 suitable for SC-XRD analysis could not 
be obtained and therefore its structure in the solid state 
remains elusive. However, when Ph3BiCl2 was treated with 0.5 
equiv. of NaBArF in CH2Cl2 at 25 °C, the formation of a dinuclear 
chlorotriphenylbismuthonium salt [(Ph3BiCl)2Cl][BArF] (9a) was 
observed in solution and solid-state as analyzed by NMR 
spectroscopy and SC-XRD (Figure 2). The different formation of 
9 and 9a in solution is in stark contrast to our previous 
observations with the parent difluorotriphenylbismuth, where 
the amount of NaBArF did not affect the reactivity of the 
halogen abstraction step.21 The formation of 9a resembles 
rather its lighter element homologue, the 
chlorotriphenylstibonium cation, which was obtained after 
treating Ph3SbCl2 with 0.4 equiv. of [Et3Si(C7H8)] [B(C6F5)4].28 
Solid-state analysis of 9a reveals no additional intermolecular 
Bi···Cl interactions between the individual units. As illustrated in 
Figure 2, both Bi centres adopt a trigonal bipyramidal geometry 
with chlorine ligands in apical and the phenyl groups in 
equatorial positions. The chlorobismuthonium cation (9a) 
exhibits a bent Bi1−Cl3−Bi2 geometry (Bi1−Cl3−Bi2: 128.10(2)°), 
attributed to packing effects during crystallization and the 
larger atomic size of chlorine compared to fluorine. Whereas 
the terminal Bi1−Cl1 and Bi2−Cl2 bond lengths were 
determined to be 2.4856(7) Å and 2.4996(8) Å, the distances 
between the bridging chloride and the Bi centres are 
characteristically longer (Bi1−Cl3: 2.7995(7), Bi2−Cl3: 2.8274(7) 
Å).21

.

Figure 2. Solid state structure of 9a.29 Ellipsoids are drawn at the 50% probability level. 

H atoms, disordered parts and BArF are omitted for clarity. Selected bond lengths (Å) and 

angles (°): Bi1−Cl1: 2.4856(7), Bi1−Cl3: 2.7995(7), Bi2−Cl2: 2.4996(8), Bi2−Cl3: 2.8274(7), 

Bi1−Cl3−Bi2: 128.10(2); Cl1−Bi1−Cl3: 179.25(2), Cl2−Bi2−Cl3: 177.70(2).

The addition of 1.0 equiv. NaBArF to (m-Xyl)3BiCl2 (6) (m-Xyl = meta-
xylene) in CH2Cl2 for 2 h at 25 °C resulted in the formation of 
mononuclear [(m-Xyl)3BiCl][BArF] (10) in solution, as judged by the 
integration in the 1H NMR spectrum. Crystals suitable for X-ray 
diffraction confirmed the isolation of a mononuclear bismuthonium 
salt as depicted in Figure 3. The solid state structure reveals that the 
Bi atoms adopts a distorted tetrahedral geometry (τ4=0.89).30 The 
Bi−Cl bond length of 2.4028(8) Å is slightly shorter in complex 10 
compared to the terminal Bi−Cl length of complex 9a. Interestingly, 
the presence of the less electronegative chlorine atom prevents 
dimerization or trimerization processes, and stands in contrast to the 
observations for its fluorinated analogues, where sterics controlled 
these processes.21

Figure 3. Solid state structure of 10. Ellipsoids are drawn at the 50% probability 

level. H atoms and BArF are omitted for clarity. Selected bond lengths (Å) and 

angles (°): Bi1−Cl1: 2.4028(8), Bi1−C1: 2.185(3), Bi1−C9: 2.180(3), Bi1−C17: 

2.189(3), C1−Bi1−C9: 121.63(11), C1−Bi2−C17: 111.32(10), C9−Bi2−C17: 

112.55(11).

After treating 6 with 0.5 equiv. of NaBArF a new set of 1H NMR 
signals was observed that is in line with a formally formation of 
a dinuclear bismuthonium [(m-Xyl)3BiCl)2Cl][BArF] species (10a) 
in solution as judged by 1H NMR. However, contrary to our 
expectations, crystallization of this compound led to an SC-XRD 
of (m-Xyl)3BiCl2 (6). We hypothesize that the chloride 
abstraction with 0.5 equiv. NaBArF leads to the formation of a 
monomeric chlorobismuthonium cation 10, which reacts with a 
neutral triarylbismuth dichloride (6) resulting in a reversible 
equilibrium with dinuclear chlorobismuthonium salt (10a) in 
solution (Scheme 2). Further crystallization leads to the 
precipitation of complex 6. A similar equilibrium was observed 
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with the trimeric fluorobismuthonium salt bearing phenyl as 
ligands using 1.0 equiv. of BArF.21 

Scheme 2. Proposed behaviour of 10a in solution and solid state. m-Xyl = 3,5-Me2-C6H3.  

Increasing the steric bulk by replacing the Me groups by tBu, a 
different behaviour in the formation of the bismuthonium salt could 
be observed. The addition of 1.0 equiv. of NaBArF to complex 7 leads 
to a new set of 1H NMR signals that are in line with a formally 
monomeric chlorotriarylbismuthonium salt [tBuAr3BiCl][BArF] (11). 
However, crystallization of complex 11 revealed the formation of a 
dimeric chlorobismuthonium salt (11a) as illustrated in Figure 4, 
resembling the product and structure of reported fluorine 
analogue.21 The solid-state structure of 11 reveals that both Bi atoms 
adopt a trigonal bipyramidal geometry with two chloride ligands in 
apical positions and aromatic rings in equatorial positions (Figure 
4A). Both Bi atoms are united by a bridging chloride ligand, 
generating a Bi1−Cl2−Bi1 angle of 180.0°. Whereas the terminal 
Bi1−Cl1 bond lengths are shorter compared to the neutral parent 
complex 7 [11, Bi1−Cl1: 2.4857(7) Å; 7, Bi1−Cl1: 2.5954(5) Å] (see SI 
for more details), the bond length between the bridging chlorine and 
both Bi atoms are increased to 2.80068(13) Å. While the Bi1−Cl2−Bi1 
axis displays an angle of 180.0°, the angle of a single tBuAr3BiCl2 unit 
is slightly deviated from linearity [Cl1-Bi1-Cl2: 173.722(17)°]. 
Moreover, the presence of the chlorine atoms in the bismuthonium 
salt 11 allows the aromatic ligands a greater flexibility due to the 
longer Bi1-Cl2 bond lengths [Bi1-Cl2: 2.80068(13) Å] compared to the 
fluorinated analogue [Bi1-F1: 2.282(3) Å]21, leading to a propeller-like 
conformation of the aromatic ligands (Figure 4B). The addition of 0.5 
equiv. of NaBArF to 7  resulted in a dimeric bismuthonium salt 11a 
[(m-Xyl)3BiCl)2Cl][BArF] in solution and solid state (see SI for more 
details).

When comparing the formation of complexes 10 and 11a in the solid 
state, it can be observed that the meta tert-butyl groups might exert 
an attractive effect as a consequence of the London-dispersion 
forces. Although the m-tBu substituents are more sterically 
demanding in comparison to the m-Me groups, they serve as 
dispersion energy donors,31 leading to the formation of a 
thermodynamically more stable dimeric species 11a in solid state. 
The influence on the stability by m-tBu groups through attractive 
dispersion interactions has been previously observed in the 

literature.31 

Figure 4. (A) Solid state structure of 11a.29 Ellipsoids are drawn at the 50% 

probability level. H atoms and BArF are omitted for clarity. Selected bond lengths 

(Å) and angles (°): Bi1−Cl1: 2.4857(7), Bi1−Cl2: 2.80068(13), Bi1−Cl2−Bi1: 180.0, 

Cl1−Bi1−Cl2: 173.722(17). (B) View along the Cl−Bi−Cl−Bi−Cl axis. 

Increasing the sterics at the ortho-position by adding Me 
substituents, resulted in the formation of a monomeric 
chlorotrimesitylbismuthonium salt 12 in solution. Despite 
several crystallization attempts, suitable crystals could not be 
obtained. In order to get more insight into the potential 
structure, we reacted 12 with 1.0 equiv. of pyridine-N-oxide for 
2 h at 25 °C in CH2Cl2. This reaction led to the isolation of 
complex 13 which was confirmed by NMR and SC-XRD (Scheme 
3). 

Scheme 3. Synthesis of complex 13.

A broadening of the 13C NMR signals of the pyridine ring  and the 15N 
NMR shift (δ = −108.0 ppm) indicated a weak Bi−O bond which was 
also supported by the results of the HRMS data, as only the 
chlorobismuthonium salt has been detected. The solid-state 
structure of 13 displays a coordination of the pyridine-N-oxide via the 
O atom to the Bi centre, displaying a Bi−O bond length of 2.404(6) Å 
(Figure 5). Moreover, the Bi center adopts a trigonal bipyramidal 
geometry with the chlorine and oxygen atom in apical positions as 
well as Mes ligands in equatorial positions. Complex 13 exhibits a 

Cl−Bi−O angle of 173.5(2) °.

Figure 5. Solid state structure of 13. Ellipsoids are drawn at the 50% probability level. H 

atoms and BArF are omitted for clarity. Selected bond lengths (Å) and angles (°): Bi1−Cl1: 

2.507(7), Bi1−O1: 2.404(6), Bi1−C1: 2.229(6), Bi1−C10: 2.226(5), Bi1−C19: 2.236(6), 
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N1−O1: 1.334(8), C1−Bi1−C10: 117.9(2), C1−Bi1−C19: 121.7(2), C10−Bi1−C19: 119.3(2), 

Cl1−Bi1−O1: 173.5(2), N1−O1−Bi: 136.7(4).

In conclusion, we have reported a series of 
chlorotriarylbismuthonium salts with BArF as a weakly coordinating 
anion and extended the library of halotriarylbismuthonium salts. 
Contrary to our previous work on fluorobismuthonium salts, where  
the formation of either mono-, di- and trinuclear formation were 
controlled by steric factors, the use of a chloride ligand has displayed 
a distinctive behaviour, leading to fast dynamic exchanges in 
solution. The less electronegative chlorine ligands generate more 
labile bismuthonium units, allowing easier access to monomeric 
halobismuthonium salts. However, London dispersion forces assist in 
the formation of dimeric species in solid-state.  
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