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Recent progress in ammonia synthesis based on
photoelectrocatalysis

Pengyan Li,? Yumin Liu, ©22 Muhammad Asim Mushtag®® and Dongpeng Yan (&) *&°

Photoelectrocatalytic (PEC) ammonia synthesis from nitrogen and water is a promising approach for
energy development and N-neutralization goal under mild conditions. Although significant progress has
been made in the past few decades, the mechanisms underlying the synergistic effect between light and
electricity are still challenging. One particular line of study is to improve the performances of PEC cata-
lysts, such as selectivity, yield, and stability, etc. Here we review the recent progress in PEC ammonia syn-
thesis. We first provide a systematic description of the driven bias in PEC ammonia processes, involving
electrochemical apparatus, photovoltaic voltage, and chemical potential. The various strategies, including
vacancy engineering, ion doping, frustrated Lewis pair design, heterojunction construction, cocatalyst
loading and single atom synthesis to fabricate new catalysts, are then outlined. The performance and
mechanism of PEC N, reduction are further summarized, followed by the current challenge and future
prospects. This would guide both the productiveness and mechanism of NHz synthesis based on
advanced PEC systems.

1. Introduction

Ammonia synthesis provides an effective pathway to obtain fer-
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In nature, microorganisms depend on Mo-Fe protease to
achieve the conversion of atmospheric N, to multipurpose
NH,.? However, azotase is extremely sensitive to environmental
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oxygen, so the evolution of rhizobium cultivation technology
became the key to industrialization of biological N,-fixing. As a
paragon of artificial nitrogen fixation, the Haber-Bosch (H-B)
reaction has contributed to the global economy in which Fe-
based compounds show excellent catalytic performances
under harsh conditions (temperatures: 300-500 °C, pressures:
150-300 atm) with N, and H, as feed gases. However, catalytic
N, hydrogenation consumes mass heat, and the production of
feedstock H, derived from methane steam reforming results in
serious carbon emissions with more than 1% of global emis-
sions,* furthermore, the whole H-B craft requires a large plant
infrastructure. Therefore, it is essential to find alternative
approaches for sustainable N-neutralization under ambient
conditions.>™® Electrocatalysis and/or photocatalysis has
become one of the promising strategies for realizing the N
cycle due to its cost advantage, environmental friendliness,
and significant N, conversion efficiency.

Electrocatalytic N, reduction in water involves electron-
coupled proton transfer along with various product distri-
butions (NHj;, N,H,, N,H,, and H,)."*™* Generally, the bias
can induce the first electron transfer progress (N, + e~ < N, ™:
—3.37 Vvs. RHE, pH = 14) and the first-H addition reaction (N,
+H" + e < N,H": —3.20 V vs. RHE) that are not favourable
thermodynamically, and accomplish continuously the follow-
ing reduction."*"® However, the deficient sites and hydrogen
evolution reaction (HER) result in minimal yield and low
Faradaic efficiency (FE) in electrocatalytic ~ammonia
synthesis."®"® Most studies have proved that Bi-based
materials and layered double hydroxides (LDHs) have the
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Fig. 1 Schematic diagram of multiform PEC nitrogen fixation driven by
an external bias, solar energy, chemical potential under irradiation, and
coexistence of photocatalytic and electrocatalytic N, reduction.

ability to undergo photocatalytic N, reduction even if the band
structures do not meet the requirements of the first electron
transfer and the first-H addition, which contribute to consider-
able N, activation, accelerated charge separation, and desired
electron generation with strong reducibility.”® Currently, the
integration of electrocatalysis and photocatalysis serves as an
effective way to improve the yield and selectivity of NH; by
virtue of the bias of electrocatalysis and the abundant sites of
photocatalysts (Fig. 1).>'%*

PEC N, reduction is a process in which catalysts are excited
under irradiation to generate carriers, and then carriers are
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separated into electrons and holes, finally, electrons migrate
rapidly and participate in N, reduction on the surface sites
assisted with the bias. In addition, the photoelectric synergy is
reflected in the coexistence of photochemical and electro-
chemical reactions. Therefore, PEC NH; synthesis is con-
sidered as a promising approach that possesses advantages
from photocatalysis and electrocatalysis simultaneously to
efficiently complete N, conversion.”*® A classical double
chamber contains a photocathode (i.e. catalysts), anode (i.e.
counter electrode), electrolyte, N, and proton exchange mem-
brane for PEC N, fixation. Candidate photocathodes include
inorganic semiconductors with suitable bandgaps (g-CsNy,
BiOI, TiO,, Cu,0, W;50,0)*"*® and metal modifications,>*°
metal-organic frameworks with adjustable structures,®® and
single atoms with remarkable active sites.>” In consideration
of the fact that the more negative position of the conduction
band (CB) minimum and the enhanced capacity of electron
reduction are favourable to N, reduction in the PEC strategy,
vacancy engineering, heteroatom-doping, heterostructure con-
struction, and single atom synthesis are promising approaches
to improve N, reduction ability. What’s more, the extended
light response capacity to the near-infrared region is a poten-
tial idea for solar-based economy in PEC N, reduction.?***
Chemisorption is a crucial step for N, reduction because
appropriate adsorption can destroy the molecular symmetry
and enhance the proton affinity,®” thus promoting N, hydro-
genation. However, the bond energy (941 kJ mol ") and clea-
vage energy (410 k] mol™") indicate that N, activation is chal-
lenging (Fig. 2a). Many studies have investigated activation
mechanisms, such as vacancy engineering,’”*° large specific
surface area, transition metal (TM)/non-metal doping,>® and
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Fig.2 (@ N, molecular structure,** Copyright 2020, American
Chemical Society. (b) Mechanism of metal activation N; (left) and boron
activation N, (right), (c) Outcomes of various reduction reactions of
dihaloborane adduct 1, including generation of a transient dicoordinate
borylene species (2) and its reactionwith dinitrogen. Dip, 2,6-diiso-
propylphenyl; Dur, 2,3,56-tetramethylphenyl.®® Copyright 2018,
American Association for the Advancement of Science.
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thermal field coupling. The empty d orbital of the TMs can
capture lone pair electrons from N,, and the occupied d
orbital donates electrons to the n  orbital, thus producing a
weak N=N bond through the ‘acceptor-donor’ route.*’ In
addition to metals, B-based molecules with empty orbitals and
lone pair electrons have similar electronic structures to TMs,
so N, activation could be achieved through the ‘acceptor-
donor’ pathway of B-containing catalysts (Fig. 2b and c).*”™*°

The research studies of electrocatalytic and photocatalytic
ammonia synthesis are flourishing;***> however, systematic
summarizations of PEC N, reduction are rather rare. Here, we
review the various bias-driven photocatalytic ammonia pro-
cesses, involving electrochemical apparatus, photovoltaic
voltage and chemical potential. The various strategies and
mechanistic understanding based on calculations and experi-
ments are then outlined, furthermore, we summarize the
methods of NH; quantification, and highlight the necessity of
nitrogen source determination.

2. Merging the solar strategy and the
electrical strategy for PEC N,
reduction

There are synergistic effects between light and electricity, which
promote the PEC progress by taking advantage of both photo-
catalysis and electrocatalysis.*®*’ In particular, the electro-
coupled photocatalysis strategy avoids NH; oxidation, enhances
the reduction ability of electrons, and boosts the carrier separ-
ation capacity, while photo-assisted electrocatalysis is more out-
standing than single electrocatalysis progress, which contributes
to the equilibrium of electron distribution under irradiation.*®
Besides, the synergistic effect is displayed in the form of the
coexistence of photochemical and electrochemical processes,
that is, the potential of electrons is determined by bias in elec-
trocatalysis, and the reduction ability of photoelectrons depends
on the minimum CB of semiconductors for photocatalysis.*’

2.1 PEC N, reduction assisted by electrochemical apparatus

Generally, in the PEC process, light is absorbed to initiate the
catalytic reaction directly, and the applied bias is used to
promote the migration of the photogenerated electrons by
changing the band bending.**" Upon quenching photogene-
rated holes located on the valence band (VB),>* regulating the
H" concentration on the surface of the catalyst,”” and increas-
ing the accumulation of electrons in the catalytic site, the cata-
Iytic performance of ammonia synthesis would be significantly
improved. Electrocatalysis enhanced by photo-excitation and
photocatalysis promoted by external bias occur simultaneously
in PEC N, reduction, which make the catalysis more effective
than the individual electrocatalytic or photocatalytic nitrogen
fixation. It was reported that black phosphorus on indium tin
oxide showed extraordinary PEC N, reduction properties,
which benefit from the coexistence of electrocatalysis and
photocatalysis.*®

This journal is © the Partner Organisations 2023
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2.2 Solar-driven and chemical bias-driven PEC N, reduction

Photocatalysts (such as g-C3Ny, TiO,, BiVO,, etc.) exhibit ineffi-
cient electrocatalytic performance due to poor conductivity,
and there is a obvious side reaction (HER) for the electro-
chemical apparatus-assisted PEC strategy. The current studies
have proved that PEC N, fixation can be carried out without
electrochemical apparatus, and the formed anode photo-
voltage contributes negative potential to N, reduction in the form
of compensation voltage.’*>> The photovoltage from plasma-
induced semiconductors shows huge potential for efficient
ammonia synthesis in PEC cells without apparatus. Ali et al.
described a solar-driven PEC cell over plasmon-assisted Si for
atmospheric N, reduction and produced a high yield (13.3 mg
m~> h™") under 2 sun radiation for the first time.>* Lee et al.
reported that the photovoltage generated from Au modified
ordered Si nanoarrays can reduce nitrate to ammonia with a
FE of 95.6% at 0.2 V vs. RHE.’® Li et al. fabricated a photo-
voltaic cell to realize PEC N, fixation with a high NH; yield (at
the level of pmol h™" or even mmol h™") over the TiO,/Au photo-
cathode.”” Inspired by the successful construction of Au-
loaded black silicon, Wu’s group synthesized Ag-loaded black
silicon for PEC nitrogen fixation without external bias,** and
the catalysts achieved a high FE (40.6%) and NH; yield
(2.87 pmol h™" em™?). The perovskite-based photocathode
(TiO,/CdS/Cu,ZnSnS,) achieved NH; production from NO;z;~
reduction with a FE of 89.1% (Fig. 3).>®

Photocatalytic N, fixation is completed under the action of
chemical bias induced by pH. Oshikiri’s group was committed
to research chemical bias-driven PEC N, fixation over
Au/STTiO; to improve NH; selectivity.*>* The photo-excited hot
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Fig. 3 The enhanced current density or improved NH3 yield under light
irradiation compared to that in the dark. (a) J-V plots of planar Si
(black), Si nanowire (red), and highly ordered Si nanowire (blue) photo-
cathodes for NOs™ reduction in Ar-filled K,SO4 with KNO3. Dashed lines
represent dark current,®® Copyright 2022, Wiley-VCH. (b) ammonia yield
on various substrates: (i) P-type Si, (ii) black Si, (iii) Au/black Si, (iv) Au/
black Si/Cr, and (v) Au/Si/Cr under photo-radiation, (vi) Au/black Si/Cr
under dark conditions,?? Copyright 2016, Nature Publishing Group. (c)
Linear sweep voltammetry (LSV) of the Ag/black Si electrode under N,
Ar and dark conditions,?® Copyright 2020, American Chemical Society.
(d) The LSV of TiO,/CdS/Cu,ZnSnS, in KNOz and H,SO,4 solution, (e) the
LSV of TiO,/CdS/Cu,ZnSnS,; and in K,SO4 solution, (f) the chrono-
amperometry curves of TiO,/CdS/Cu,ZnSnS, with different spray coating
temperatures at 0 V vs. RHE.>® Copyright 2022, Wiley-VCH.
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electrons from Au were transferred to the CB of SrTiO; to
induce nitrogen reduction, and resulted in a hole on the
SrTiO; surface for the oxidation reaction. There is an acceler-
ated reaction under the action of chemical bias that was gener-
ated when the anode potentials move negatively and the
cathode potentials move positively.

3. Synthesis and performance of
advanced catalysts for PEC N,
reduction

3.1 Vacancy engineering

Thermal vibration may cause atoms to deviate from the equili-
brium position or escape from the surface lattice, and form
vacancies.’® As one of the most common defects on atomic-
scale surfaces, vacancies can promote charge separation,
anchor single atoms, and act as adsorption sites by breaking
N=N.®'"®* Therefore, the creation of vacancies significantly
improved PEC performance for ammonia synthesis.

The methods for constructing oxygen vacancies have been
widely studied, and the nitrogen fixation performance has
been significantly improved. BiOF, BiOCl, BiOBr and BiOI are
metallic compounds consisting of a [Bi,0,]" layer and a F/Cl/
Br/I atomic layer through Van Der Waals interaction. The
induced dipole action between the layered structures is favour-
able to form an electric field, thus passivating the recombina-
tion of photogenerated carriers.®> Due to improved electronic
availability, the O, located on the BIOX (X = F, Cl, Br, I)
surface is used as a reaction site to facilitate N, reduction.®®
Bai et al. synthesized O,-BiOI photocathodes by the in situ
electrodeposition method (Fig. 4a),> and the adsorption
capacity of R-BiOI to N, was significantly enhanced after intro-
ducing O, (Fig. 4b). The ammonia production rate is
1400 pmol m™> h™" (Fig. 4c) at 0.4 V vs. RHE, which is 1.3
times higher that of the anaerobic catalyst. Similarly, Lin et al.
prepared an O,s-BiOBr/TiO, photoelectrode, and the Oy elev-
ated the capacity of capturing photoelectrons. The bandgap of
O,-BiOBr was reduced to 2.76 eV, indicating that O,s can
broaden the light absorption range (Fig. 4d). The O is in
favor of the formation of quasi-continuous defects that trans-
port electrons under low-energy light irradiation, and O
BiOBr/TiO, increases the NH; yield, which is 3.3 fold of the
BiOBr/TiO, photocathode.”” Mao et al. prepared LixMoO;
nanosheets with Oy through the lithiation strategy, and there
are more abundant O, and Mo®" in LixMoO; than in MoO;
(Fig. 4e).** Density functional theory (DFT) calculations con-
firmed that LixMoO; nanosheets were favourable for the acti-
vation of N, and the formation of "N,H (Fig. 4f). The experi-
ments confirm that the effective NH; yield of LixMoO;
nanosheets is 3.48 pg cm™> h™', 9 times that of MoO;
nanosheets. The LDH systems with an abundance of surface
oxygen vacancies or coordinatively unsaturated metal cations
in ammonia synthesis were popular in N, reduction. Zhang
et al. demonstrated a simple pretreatment of ZnCr-LDH,
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ZnAl-LDH, and NiAl-LDH nanosheets with aqueous NaOH,
thus enhancing the concentration of oxygen vacancies to
significantly improve photocatalytic activity for N, reduction to
NH,.%”

Nitrogen vacancies (Ny;) exhibit enhanced performance for
PEC N, reduction. Li et al. used 3-amino-1,2,4-triazole treated
with NaOH as a precursor to prepare g-C;N5 with N,°® and
the N, realized charge separation by accepting electrons of
2-C3N;. BiOBr/g-C;N5 heterostructures with Ny, are synthesized
to realize the double-electron transfer mechanism (DETM).
The DETM delays the recombination of carriers to ensure
high-quality electrons, which is manifested through increased
ammonia yield (BiOBr: 2.5 pg mg™" h™"; Nye-g-C5Ns: 14.8 pg
mg ™" h™", Nys-g-C3N5/BiOBr: 29.4 pg mg " h™").

3.2 Heteroatom doping

Metal/non-metal ion doping could adjust the electronic struc-
ture, redistribute the electron density, and construct surface
defects.®®”® The unoccupied orbitals of the TMs capture lone
pair electrons of N, molecules due to matched orbital energy
and symmetry, while the occupied d orbitals donate electrons
in reverse to the anti-bonding orbitals of the N, molecule.
Therefore, the strong triple bond of N, is weakened when the
TM-N o-bond is formed, thus promoting the activation of N,.
The most studied metal doping for photocatalytic nitrogen fix-
ation is an iron ion with abundant unfilled 3d orbitals, vari-
able valence and considerable cost. Schrauzer et al. improved
the nitrogen-fixing activity of TiO, by doping Fe, Co, Mo or Cr,
and found that 2%Fe-doped TiO, exhibited the best perform-
ance in photocatalytic NH; synthesis.”* Vu et al. synthesized
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Fe-W;3049 nanorods with Au modification by two-step
approach, in which the Fe existed in the form of Fe*'/
Fe**(Fig. 5a).>' Fe-W;304 enhanced light absorption ability
and improved the separation capacity of electron-hole pairs,
and achieved a high yield of NH; (9.82 pg h™' ecm™) under
PEC conditions.

The doping of non-metallic atoms (such as B, P, N, etc.) is
used to increase the VB position and reduce the bandgap
through orbital hybridization or defect engineering.”®
Furthermore, non-metallic doping avoids the formation of
recombination centers in N, reduction.”*”® Xu et al syn-
thesized B-doped Bi from layered BiOBr nanosheets with
sodium borohydride (NaBH,) as a reductant,”” and the injec-
tion of B atoms enhanced the polarization of Bi (012), and Bi
provided electrons to the neighbouring B atoms, resulting in
the change of the Bi oxidation state and surface geometry
(Fig. 5c). The Bi surface with a high curvature promoted N,
adsorption, and the accumulation of electrons on Bi facilitated
the entry of electrons into the anti-bonding orbital of "NNH,
thus promoting the elongation of the N-N bond of "NNH. The
energy barrier of the potential-determining step was reduced
to 2.00 eV, showing that B doping had a positive role in N,
reduction (Fig. 5d). The B-doped Bi showed excellent PEC N,
reduction performance (NH; yield: 29.2 mg g.. * h™), far
exceeding that of bismuth (10.6 mg ge.. " h™).

As a burgeoning class of two-dimensional materials, gra-
phene is sought in the field of photocatalysis and electrocataly-
sis. Nitrogen doping can regulate the optical bandgap of gra-
phene to endow favourable optical and electrical features
through expanded = electron delocalization.”® The introduc-
tion of nitrogen affects both the crystal structure and elec-
tronic structure of graphene, in addition, the polarity, elec-
tronic donor property, conductivity and chemical stability of
graphene can be improved.””””® Nitrogen doping into carbon
supporter generates regulated charge density, resulting in
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Fig. 5 (a) Fe 2p XPS of WOF-Au, (b) EPR of WO and WOF-Au,*
Copyright 2020, American Chemical Society. (c) Partial charge density of
the Bi-2B (012) facet, (d) N, reduction progress on Bi-2B (012).”2
Copyright 2020, Elsevier.
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complex reactions related to the multi-proton and electron
transfer in N, reduction. Meanwhile, studies have shown that
the graphene lattice that is rich in nitrogen dopants contrib-
utes to the formation of n-type semiconductors.”® Generally,
nitrogen doped reduced graphene oxide (RGO) shows potential
for p-n heterojunction construction, which is conducive to the
formation of an electric field. Paramanik et al. constructed the
composite of CoTiO; and N-RGO, where an electron is con-
fined in the atomic layer when N-RGO grows on the surface of
CoTiO;. In addition, N-RGO/CoTiO; achieves a shorter
diffusion distance of electrons, rapid charge transfer and
small interface resistance.®® In addition, the synergistic inter-
action between the rod-like structure of CoTiO; and the rough
surface of N-RGO contributes to the overall improvement of
the catalytic performance. The optimized 1N-RGO/CoTiO; has
a quenching rate of 54.89% for photogenerated carriers, and
possesses an electron lifetime of 3.0 ms. The photocatalytic
and PEC activities are more than 1.7 mmol™" h™" and 16 g
em ™' h™', respectively.

Although nonmetallic doped catalysts have improved per-
formance, the mechanism and stability still need to be further
explored in view of the fact that the introduced elements may
become the quenching sites of electrons and holes,* so it is
indispensable to study the stabilization strategy for doping
non-metallic elements.

3.3 Frustrated Lewis pairs (FLPs)

Metal-free catalytic ammonia synthesis with high selectivity
and ideal yield faces challenges until the breakthrough of N,
activation based on the frustrated Lewis pairs (FLPs) in 2018.5
FLPs with an electrophilic acid and nucleophilic base are
favorable for the breaking of N=N through the electron trans-
fer between the unoccupied orbitals of electrophilic acid and
the nonbonding orbitals of nucleophilic base (Fig. 6a).
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Fig. 6 (a) Illustration of artificial frustrated Lewis pairs to adsorb and
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2017, Wiley-VCH. (c) Schematic illustration of BCN for electrochemical
nitrogen reduction,®® Copyright 2022, Wiley-VCH. (d) Mechanism of
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Stephan et al. reported the space blockage in inhibiting the
capture of N, in the synthesis of Ph,CN,B(C¢F;s); with carbene,
N, and borane as reactants.’* Dai et al. presented boron
carbon nitride (BCN) with the abundant unsaturated B (Lewis
acid sites) and N atoms (base sites), and the results showed
that FLPs adsorb N, molecules to form six membered ring
intermediates, which reduces the energy of N=N breaking.*?
Chen et al. proposed an alternative strategy based on FLP cata-
lysts to stabilize N,H" intermediates, that is, substituting two-
dimensional black phosphorus co-doped with TMs and boron
atoms for FLPs.* Zhu et al. designed a variety of FLPs that
have the ability to activate N,, and exhibit low AG values of
—37.5 to —51.0 kecal mol ™" (Fig. 6e).%!

3.4 Heterojunction construction

Different from the inherent band structure of single-phase cat-
alysts, heterojunction materials have the advantages of regulat-
ing the threshold of light absorption, accelerating the separ-
ation of carriers by changing the band structure, and passivat-
ing the recombination of electrons and holes. A typical hetero-
junction is an interface formed through the contact of two
different semiconductors, which is mainly divided into types I,
II and III (Fig. 7a—c). In type I, the VB and the CB of one semi-
conductor are more negative than those of another semi-
conductor, and there is no photocatalytic activity because the
carriers cannot be effectively separated under photoexcitation.
In type III heterojunction, the band positions of one semi-
conductor are all above the band positions of another semi-
conductor, and the formed interface has almost no catalytic
activity in type III. For type II, the band positions are staggered
between the two semiconductors, thus forming an upward or
downward bending of the band,*® which causes the charge car-
riers to migrate in the opposite direction, thus prolonging the
life of electrons and holes and improving the redox ability.
Although effective charge separation is accomplished in con-
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example, (e) g-C3sN4/W15040,%> Copyright 2017, the Royal Society of
Chemistry. (f) Z-scheme in the semiconductor—electron mediator—
semiconductor. A: electron acceptor, D: electron donor; and for
example, (g) Bi-Bi,O3/KTagsNbysO388 Copyright 2022, the Royal
Society of Chemistry.
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structed type II systems, the main disadvantage is the lower
oxidation and poorer reduction capabilities.”® The Z-scheme
heterojunctions achieve rapidly separated carriers and strong
redox ability, which can be attributed to the recombination of
holes on the VB for one semiconductor and electrons on the
CB for another semiconductor (Fig. 7d and e). The Z-scheme
heterojunctions are divided into semiconductor-semi-
conductor (that is the S-scheme) and semiconductor-
mediator-semiconductor depending on whether there is an
electronic mediator between two semiconductors. Researchers
have focused on the construction of different heterojunction
nanocomposites,”” aiming to boost the utilization of ultra-
violet light or near-infrared light and to promote carrier separ-
ation for PEC nitrogen fixation.

Owing to the controllable chemical environment, metal-
organic frameworks (MOFs) are used in the preparation of
heterostructures as photoelectrodes.””® Liu et al. used the
in situ chemical etching strategy to form Cu-MOFs on the
Cu,O surface with an organic ligand (H3;BTC), and the Cu-
MOF amount can be determined by etching time (Fig. 8a).”*
The establishment of the Cu-MOF/Cu,O heterostructure
improves the carrier density and charge separation efficiency
(Fig. 8b). Meanwhile, the NH; yield of Cu-MOF/Cu,O is
increased to 7.2 mmol m™> h™" due to unsaturated Cu(u) sites,
which is 5 times that of Cu,O (3.7 mmol m™ h™') and 3.9
times that of Cu-MOFs (1.9 mmol m~> h™"). Phthalocyanine
copper is used for ammonia synthesis due to strong photo-
responsiveness. However, the surface of phthalocyanine
copper lacks an active site and does not have the desired
surface reaction kinetics. Li et al. prepared a phthalocyanine
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Fig. 8 (a) TEM images and EDS spectra of Cu-MOF/Cu,0O, (b) Mott—
Schottky plot (frequency: 800 Hz),®* Copyright 2021, Elsevier. (c) optical
bandgap energy of g-CzN4 and MoSe,@g-C3N4, (d) equivalent NH3 yield
and FE at different potentials on MoSe,@g-C3N, heterojunctions, (e)
associative distal pathway for PEC N, reduction, (f) Gibbs free energy on
MoSe,@g-CsN, heterojunctions,?® Copyright 2020, the Royal Society of
Chemistry. (g) Fluctuation of temperature and energy against the time of
WO3-MoS; at 300 K and 500 K,%® Copyright 2022, American Chemical
Society. (h) The image of an underwater N, bubble on the Au-PTFE/TS
surface, (i) original (black line) and deconvoluted (red line) spectra of
interfacial water at the Au-PTFE/TS surface.’” Copyright 2019, Elsevier.
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copper/CeO, heterostructure by the chemical deposition
method, and CeO, is coated on the phthalocyanine copper
surface.”> UV-Vis absorption and electrochemical measure-
ment make it clear that the phthalocyanine copper/CeO,
heterostructure has a wide absorption range and a high
electrochemical activity area. The PEC N, reduction perform-
ance reaches the best with an NH; yield of 1.16 pmol h™*
cm™2,

The C atom inserted into the Mo lattice shows a narrow
metal band and exhibits similar Fermi level densities to noble
metals, so Mo,C is expected to perform well in catalysis.”®
However, Mo,C is a matrix with poor electrical conductivity,”
so it is necessary to consider the optimization of carrier
migration for PEC N, reduction. Li et al. took graphite as a
unit of the core-shell heterostructure, and wrapped it on the
Mo,C cluster surface based on in situ hydrothermal and calci-
nation treatment, and effectively broke through the limitation
of Mo,C conductivity.'® The graphitized carbon can accelerate
electron transfer, which is conducive to the activation of N,
with an NH; yield of 6.6 g h™" mg™". In addition, MoSe, and
the two-dimensional material g-C;N, are assembled to form
heterojunctions. Mushtaq et al. synthesized layered flower-like
MoSe,-g-C;N,,*® and the Mo-N bond between MoSe, and
g-C3N, enhances the internal conductivity of MoSe,. The
absorption capacity of MoSe,-g-C;N, is enhanced (Fig. 8c), and
the MoSe,-g-C3;N, hybrid shows efficient PEC N, reduction per-
formance with an FE of 28.91% and a yield of 7.72 mmol h™*
cm™?, respectively (Fig. 8d). The associative distal pathway and
Gibbs free energy on MoSe,@g-CsN, heterojunctions are
shown in Fig. 8e and f. The results show that N, is well
adsorbed and activated on the MoSe,-g-CsN, (7 wt%) hybrid
surface.

WO; is widely used as a photo/electrocatalyst due to its
tunable composition, favourable stability and abundant avail-
ability. Guo et al. simulated a heterojunction constructed by
WO; and metal dichalcogenides (MoS,, WSe,), and proved that
heterojunctions are stable in thermodynamics through calcu-
lation (Fig. 8g). In particular, optimized WO;-MoS, has the
lowest onset potential (0.25 V),°® and its catalytic performance
is enhanced by re-positioning the d-band center that is pre-
cisely controlled to a higher energy level. Furthermore, in
order to improve the N, reduction activity, porous skeleton
structures are used in heterojunction construction engineer-
ing. Multiple scattering and absorption of light in the porous
structure are conducive to the efficient capture of
sunlight."®'%* Porous CdS was obtained by growing CdS on
Mo doped WOj; hollow microspheres based on the hydro-
thermal method. The Mo-WO;@CdS heterostructure'®*
achieved a FE of 36.72% and an NH; yield of 38.99 pg h™"
mg . The DFT analysis suggests that Mo-W is the catalytic
center of N, reduction, and CdS promotes the provision of
electrons, thus accelerating PEC N, hydrogenation.
Meanwhile, the development of porous structures provides the
basis for functionalized heterogeneous structures. The Au
modified porous polytetrafluoroethylene (PTFE) skeleton dis-
persed on a silicon-based electrode was synthesized. The
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silicon and the porous PTFE skeleton were used as the light
absorber and gas diffusion channels, respectively, while Au
was used as the reaction site.”” Attenuated total reflection and
caption-bubble measurements demonstrated that the porous
framework of Teflon and Au created a gas-hydrophilic struc-
ture, which promoted N, enrichment and controlled proton
activity in aqueous solution (Fig. 8h and i). The optimal
ammonia production rate of the photocathode is about 18.9 pug
cm™> h™, and the FE is 37.8% at —0.2 V vs. RHE. The LDH
plays a key role in the fields of photocatalysis/electrocatalysis
and energy conversion due to easily controllable composition
and abundance of surface oxygen vacancies or coordina-
tively.'® Yan et al constructed a CovVP@NiFeV-LDH hetero-
junction that has shown excellent electrocatalytic performance
in the N, reduction reaction. The new three-dimensional
hollow hierarchical structure provides abundant active sites for
nitrogen adsorption and reduction to NH;.'%°

3.5 Cocatalyst loading

Noble metal catalysts have the advantages of high catalytic
activity, stability and selectivity. For effective utilization of
noble metals, it is necessary to load them onto the host
matrix. For example, black silicon serves as a carrier, and it
can also enhance light absorption and suppress
reflection.’®”'°® Ali et al. used plasma-enhanced black silicon
decorated with Au nanoparticles (NPs) to achieve photoelectri-
cally driven nitrogen conversion (Fig. 9a).”> When black silicon
is replaced by unetched silicon, NH; production is 11% of that
generated by Au/black Si/Cr. Black silicon provides a large
surface area for Au loading. Au-coated black silicon has a
higher ammonia yield (more than 13 mg m~> h™") than black
silicon. Wang et al. realized the PEC process of converting
nitrogen into ammonia, when black silicon was used to
enhance light absorption, and silver was used as an active site
with a FE of 55.05% at —0.1 V (vs. RHE).*
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Fig. 9 (a) Corresponding TEM images of Au-coated silicon nanowires,??
Copyright 2016, Nature Publishing Group. (b) TEM images of Au/g-CzNa,
(c) mapping of N, C, and Au,!%® Copyright 2021, Wiley-VCH. (d) XRD pat-
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Porous structures are also excellent to disperse and stabilize
metal NPs. Peramaiah et al. deposited Au NPs on porous
g-C;N, with N defects, and then coated it on the n'np'-Si
photocathode surface (Fig. 9b and c).'* Silicon plays the roles
of light collection and electrical management, Au is the active
center to promote the conversion of N, to NH;, and porous
g-C3N, with N-defects provides more N, adsorption sites. Each
N atom is alternately associated with the first and second
hydrogenation; then, the third hydrogen is added to destroy
the N-N bond; finally, the distal N atom is reduced thoroughly
with the release of the first NH; molecule. Au/g-C;N, exhibits
excellent PEC N, reduction performance with a FE of up to
61.8% and an NH; yield of 13.8% pug h™' cm™>. MoS, is an
excellent carrier due to its well-dispersed layered structure,
high conductivity and large specific surface area. Ye et al. dis-
persed TiO, NPs on MoS, nanosheets by the hydrothermal
method, and the addition of MoS, leads to a smaller bandgap
(2.98 eV) than that of TiO,, and expedites the separation of
electrons and holes.""” Enhanced charge transfer maintains
higher photoelectric voltage and slower decay behaviour. The
results show that the NH; yield and FE are 1.42 x 10 mol h™*
em™? and 65.52%, respectively, for MoS,@TiO,. Hydrophilic
SnO, is uniformly dispersed on the surface of hydrophobic
MoS,, which leads to a change in the growth direction of
MoS;,, so as to induce the growth of the (002) crystal plane.
The improved transfer and separation of carriers are attributed
to the strong interaction between SnO, and MoS,, with an NH;
yield of 19.6 at —0.3 V pg h™* mg™" and a FE of 40.34%, much
higher than those of individual SnO, and MoS, (Fig. 9d).

Quantum dots (QDs) possess superior properties that play
important roles in N, reduction,"*® such as small size, strong
photostability, multiple excitation, exposed sites and electronic
peculiarity. For example, Bi,S; QDs have a high absorption
coefficient and narrow bandgap.''* Gao et al. grew Bi,S; QDs
on MoS, through hydrothermal and solvothermal processes
for photocatalytic reduction of N, to NH;.''! Bi,S; QDs were
dispersed on the MoS, surface, and the agglomeration of Bi,S;
QDs can be inhibited. The shift of binding energy indicates
that there is an interaction between Bi,S; QD and MoS,
(Fig. 9e), thus leading to electron transfer from Bi,S; to MoS,
and accelerating the carrier separation (Fig. 9f). The FE of the
Bi,S; QD/15MoS, photocathode reaches 33%, and the NH;
yield is 19 pg h™" mg™'. Carbon quantum dots (CQDs) are
narrow-gap semiconductor materials, and Hu et al syn-
thesized CQD-modified hydrogenated mesoporous SrTiO;
(CQDs/STO) based on the small size and good conductivity.""
The ammonia yield of CQDs/STO is 143 pmol g™ h™ and is 7
times that of STO without a sacrificial agent. Furthermore,
heterogeneous CQD/STO with a defective STO (200) surface
can promote catalytic N, conversion.

3.6 Other advanced catalysts and strategies for nitrogen
fixation

Single atomic alloy catalysts have broad application prospects
in electro-catalytic nitrogen reduction because of the highly
exposed active sites. However, there are limited comprehensive
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experiments and theoretical research on the conversion of N,
to nitrogen-containing molecules. Chuk et al. reported that the
yield of NH; in the nitrogen reduction reaction was 111.9 pg
h™ mg™" using single atom PdFe alloy."*® In addition, com-
pared with the pristine Ru, the use of Ru-Cu alloy showed that
the addition of Cu improved the FE of NH; (31%) through
enhanced N, adsorption and a reduced H barrier.""” Li-
mediated N, reduction is flexible in the electrocatalytic
approach, which has practical significance for realizing the
nitrogen cycle; however, the yield and FE are not optimistic.
Du et al. studied the properties of the interface generated by
the imide-based Li salt electrolytes. The constructed interface
can provide a substantial NHj; yield of 150 + 20 nmol s~ ecm™2,
and a FE of up to 100%."*® In addition, this group has realized
the ammonia synthesis by the phosphonium cation and iso-
propanol.'*® Therefore, the development of non-metallic
materials with high nitrogen fixation efficiency is of great
potential. Recently, both experiments and theoretical calcu-
lations have suggested that traditional semiconductor
materials are promising photoelectrocatalysts for N, reduction
under ambient conditions, as listed in Table 1.

4. Mechanism of PEC N, reduction
for ammonia synthesis

It is generally believed that PEC N, reduction on a hetero-
geneous catalyst surface undergoes two mechanisms, namely
the associative reaction and dissociative reaction (Fig. 10a).>*
For dissociation, the triple bond of N, is cracked before hydro-
genation, and two separate N atoms are reduced to form NH;
independently through hydrogenation steps, which is similar
to the H-B process that requires more energy. In the associ-
ation pathway, two nitrogen atom centers are combined
together when the N, molecule is hydrogenated, and NH; is
released with the breaking of the N=N bond. The hydrogen-
ation in the association mechanism can take place in two poss-
ible ways, namely distal and alternative pathways. When N,
appears in the mode of terminal coordination, hydrogenation
is inclined to occur on the nitrogen far from the catalysts, thus
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Fig. 10 (a) Dissociative, distal and alternating pathways for N
reduction, (b) MvK mechanism on the TM nitride surface,™*? (c) atom
projected density of states (PDOS) of Mo-WOs,'%* Copyright 2022,
Elsevier. (d and e) PDOS and projected crystal orbital Hamilton popu-
lations of the N atoms ('NNH) on Bi (012) and (e) Bi-2B (012),2
Copyright 2021, Elsevier. (f) Free energy and optimized geometric struc-
ture of distal mechanisms on the FezC sites and Ault sites of the Au/
SiO,/Si photocathode, (g) schematic representation of the catalytic and
enhanced mechanism of the PEC NRR on the Au/SiO,/Si photo-
cathode.®®3 Copyright 2021, American Chemical Society.

leading to the generation of NH; molecules, and leaving the
metal nitrogen unit to react with H' to generate another NH;
molecule. The alternative route requires that two nitrogen
centers alternate between two N atoms on the catalytic surface.
After the first NH; is removed, the second NH; will be released
immediately. Our group has reported the possible route (distal
pathway) of NH; synthesis on the MoSe,-g-C3N, surface based
on the Gibbs free energy,>® that is, the adsorbed N, is hydro-
genated by H' adsorption and electron transfer to form an
N,H" group at the Mo site. And then H" + e~ reacts with N to
form N,H". The adsorption of H" on the pre-hydrogenated N
site of N,H," yields an NH; molecule, leaving the remaining N
at the Mo atom. After that, another three H' ions are coupled
to the electron, hydrogenating the remaining N molecule to
give a second NH;.

Researchers proposed a new reaction mechanism in recent
years, namely Mars-van-Krevelen (MvK), based on transition

Table 1 The catalytic performance of PEC N, reduction to NHz over various catalysts

Catalyst Irradiation source Bias [V] Rate of NH; Ref.
BiVO,/PANI 300 W Xe lamp —0.1 Vvs. RHE 0.055 pmol ecm™> h™* 52
BiOI 100 mW cm™ +0.4 Vvs. RHE 0.140 pmol em™ h™! 24
CQDs/SrTiOs 300 W Xe lamp —0.3 Vvs. RHE 1.915 pmol cm™? h™* 115
Cu,O 300 W Xe lamp +0.4 Vvs. RHE 0.423 pmol cm™> h™* 49
PANI-ASSM/CdS-Co5S, 40 W LED —0.75 V vs. RHE 12.33 pmol cm™? h™* 120
Vo-BiOBI/TiO, 300 W Xe lamp —0.2 Vvs. RHE 1.475 pmol ecm™> h™* 27
Cu-MOF/Cu,O 300 W Xe lamp +0.5 V vs. RHE 0.716 pmol cm™> h™* 94
MoSe,@g-C3N, 150 W Xe lamp —0.3 Vvs. RHE 7.72 pmol em™> h™? 26
Fe-doped W;50,9 simulated solar light —0.65 V vs. Ag/AgCl, 0.577 pmol cm™> h™* 21
Sn0,/MoS, 300 W Xe lamp —0.3 Vvs. RHE 19.6 pg h™' mgeq ™" 110
B-doped Bi nanorolls 300 W Xe lamp +0.48 V vs. RHE 29.2mg h™ geoe " 72
Mo-doped WO,@CdS 300 W Xe lamp —0.3 Vvs. RHE 38.99 pg h™' mge,. ™" 101
Mo,C/C 100 mW cm > +0.2 Vvs. Ag/AgCl 6.6 pg h™" mg.q. 121
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metal nitrides (TMNs: V-N, Zr-N, Nb-N) as shown in
Fig. 10."** The lattice N atoms of TMNs are hydrogenated to
obtain NH; by lattice nitrogen reduction, followed by the
regeneration of lattice nitrogen. Importantly, N, activation on
TMNs requires a smaller overpotential for the MvK mecha-
nism, which is more conducive to the formation of NH; than
association and dissociation reactions.

DFT studies are used for energy assessment and catalyst
design on the basis of experimental results, including the cal-
culations of adsorption energy, Gibbs free energy,”>'**"** the
density of states analysis, the Bader charge analysis, and the
crystal orbital Hamilton population analysis. In addition,
advanced in situ monitoring technologies are meaningful for
verifying the reaction mechanisms, dynamics of molecular
catalyst interactions, and revealing the structure of intermedi-
ates, especially for in situ observation of catalytic reaction
intermediates under practical operation, such as synchrotron
radiation, X-ray diffraction (XRD), X-ray photoelectron spec-
troscopy (XPS), scanning tunnelling microscopy (STM), X-ray
absorption spectroscopy (XAS), diffuse reflectance infrared
Fourier transform spectroscopy (DRIFTS) and surface-
enhanced infrared absorption spectroscopy (SEIRAS).'>>'?%
Yang et al. used in situ XPS and in situ XAS to reveal that
VN, .;00.45 Was the active site rather than VN, and they moni-
tored that the catalyst underwent passivation due to a change
in VNg-0g.45 to form VN.'° According to in situ SEIRAS, the
possible nitrogen reduction pathway on the Ru surface in
acidic solution was deduced."®® Feng et al. observed that
adsorbed H,0 molecules were located at the O, site based on
operando STM equipment, which accelerated the electro-
catalytic HER process, and provided a rich route for revealing
the kinetic process of nitrogen fixation."*' Various in situ
characterization techniques can be used not only indepen-
dently, but also in combination to obtain accurate and multi-
dimensional research results. In the future, in situ characteriz-
ation technology will make a breakthrough in cost and univers-
ality, which further deepens our understanding of catalytic
mechanisms.

The selectivity of NH; from N, and H,O is challenging
against the HER (and/or N,H,), and numerous computational
simulations and experimental attempts have been conducted
to elucidate the essence of selectivity. Singh et al. provided
some guidance that the selectivity between NH; and H, can be
determined through a competition between the binding ener-
gies of N and H. They found that the generation rate of
ammonia is of zero-order at electron and proton concen-
trations, while the rate of H, is of first-order at a potential
more negative than Us (Us refers to the potential to favourable
H adsorption)."* And the strategies of proton/electron avail-
ability have been proposed due to the significant impact of the
proton concentration on HER performance, so employing an
aprotic solvent,'*® blanketing the catalyst with a hydrophobic
protection layer,’*® and designing photoelectrocatalysts are
several potential solutions to selectively block the proton trans-
fer to the catalyst surface, thus hindering H, evolution.
Increased loadings of H' and e~ equivalents can directly trans-
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late to greater N,H, yields, and the powerful reductant KCg
and strong Brensted acid can deliver H'/e™ equivalents for the
necessary proton-coupled electron transfer to improve the
selectivity of N,H,."*” In addition, regulating the adsorption
strength of N and H towards catalytic sites can alter the selecti-
vity of NH;. It is reported that the adsorption energy of H on
Ru is smaller than that on N, which indicates that N atoms are
preferably adsorbed on H atoms, thus obtaining higher NH;
selectivity.'*®

5. Detection and quantification of
hitrogen sources for ammonia

The accurate quantification of ammonia is restricted by many
factors, such as trace NHj; yield intrinsically, ammonia pol-
lution from the environment, tedious ammonia separation
from electrolytes, solution pH, and interferants. Serious con-
cerns exist on a reliable quantitative method of ammonia con-
centration for N, reduction, and we should maintain a rigor-
ous scientific attitude and strive to accurately quantify NH;
based on different catalytic systems (Fig. 11). Currently, spec-
trophotometry and ion chromatography are common methods
with the advantage of simplicity. In addition, the use of ion-
selective electrodes (ISEs) and colorimetric NH; assay kits, and
nuclear magnetic resonance (NMR) methods can significantly
improve the sensitivity, however, the experimental cost is
increased to a certain extent.
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Fig. 11 Calibration curves for NHz quantification. (a) the UV-Vis absorp-
tion, (b) the corresponding calibration curve for the indophenol blue
method,*” Copyright 2019, Wiley-VCH. (c) *H NMR spectra of *NH,*
standard solutions (0.1-2.0 mM), (d) the corresponding calibration curve
for the NMR method,*® Copyright 2020, American Chemical Society. (e)
UV-Vis of standard solutions, and (f) the corresponding calibration
curve with Nessler's reagent,**®> Copyright 2019, Nature Publishing
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NH,4* concentration,*** Copyright 2019, American Chemical Society. (i)
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The universal chemical chromogenic approaches are indo-
phenol blue (IB) and Nessler’s reagent based on the cali-
bration curve, and they all have limitations. The IB test is
usually used under neutral and acidic conditions because
the generated indophenol dye could react with other amine
groups under alkaline conditions.”*® Sodium salicylate is
more steady than IB because salicylate can prevent the gene-
ration of toxic substances.'*® Nessler's method has wide pH
applicability, however, some sacrificial agents (alcohol,
glucose) are oxidized to carbonyl easily, thus resulting in
misleading results.>® Ion chromatography has high sensitivity
and reliable results, among which the distraction of pH and
sacrificial agents are avoided through appropriate detection
methods."*"'**> The ISE determines the concentration of ions
in solution by a membrane potential based on the Nernst
equation, which can be divided into the NH, -selective elec-
trode and the NHj-selective electrode. The concentrated solu-
tion can further improve the accuracy of NH; detection when
choosing an ISE."** The resonance signal obtained from 'H
can be qualitatively and quantitatively detected by NH,".'**
Nielander et al. reported a frequency-selective pulse NMR
method for measuring NH; concentration in electrolytes and
quantified the common Berthelot method. The reliability of
the results can be greatly improved by using various
methods simultaneously to realize the quantitative determi-
nation of ammonia. Hao et al. used a colorimetric method
with Nessler’s reagent, an enzymatic NH; assay kit (Sigma-
Aldrich), and NMR to quantify ammonia accurately;'*> they
found that the FEs measured using Nessler’s approach or
the enzymatic ammonia assay kit are persuasive. Zhang et al.
used Nessler’s approach, ion chromatography and the indole
phenol method to quantify NH3, and the results showed that
the three methods had good coordination at low concen-
trations (0-500 pg L™"). However, Nessler’s approach and ion
chromatography are more suitable for the quantification of
ammonia than the indole phenol method at high
concentrations.'*®

In order to scale up the PEC ammonia synthesis techno-
logy, the most essential progress is to confirm the true role
of the catalysts. The primary task of removing nitrogen pol-
lution is to ensure that the feed gases and catalysts are not
polluted by nitrogen containing substances, including
nitrate, nitrite and other contaminants before the experi-
ment. Considering serious ammonia pollution in the
environment, the '°N, labeling experiment is necessary to
provide direct evidence,'*® especially for N-containing catalyst
systems."”® However, many researchers often ignore the
problem of "N, pollution, so it is only used as a qualitative
method. Therefore, we need to accurately present the nitro-
gen fixation performance of the catalysts from multiple
views. In addition, the background experiment is another
piece of evidence to assist in proving the role of catalysts.
The development of a combined technology of ammonia syn-
thesis and ammonia detection can avoid ammonia pollution
and realize the in-situ detection and online quantification of
ammonia.
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6. Conclusion

The above achievements have proved that PEC N, reduction is
a promising route to realize the N-cycle goal under environ-
mental conditions, and multiple catalytic strategies are pro-
posed to improve the yield and selectivity of NH;. However,
there are fundamental challenges as follows:

(I) Disclosure of the essence of photo-electrical synergy.
The catalytic performance of PEC N, reduction is more excel-
lent than that of individual photocatalysis or electrocatalysis;
however, this collaborative technology causes obstacles to the
mechanistic understanding and revelation of photogenic/elec-
trical effects. Most studies show that light irradiation promotes
the electrocatalytic process, and bias accelerates the separation
of photogenerated carriers, and few works reveal the coexis-
tence of photocatalytic and electrocatalytic processes.

(I) Reliable methods in consideration of NH; quantifi-
cation and N-source determination. Although the spectral ana-
lysis is maneuverable, the accuracy usually is disturbed by pH,
ionic strength and sacrificial agents. Therefore, it is necessary
to combine it with other quantitative experiments, such as ion
chromatography and NMR, to obtain accurate NHj3 concen-
trations. In addition, researchers judge the rationality of cata-
Iytic performance by testing the recommended benchmark
catalyst.

(II) Rigorous mechanistic insights. The active sites, free
energies and possible reaction paths are revealed on the basis
of theoretical exploration. The available theoretical methods,
catalyst model and computing power are the driving force
behind accurate calculations.

(IvV) Advanced in situ characterization. It is difficult to
predict the reconstruction of the surface structure, including
the change of valence states, the identification of reaction
intermediates and active centers, and real-time monitoring of
reaction processes. For example, in situ surface enhanced infra-
red absorption spectroscopy and high-resolution electron
energy loss spectroscopy showed potential for understanding
the N, reduction pathway due to its high sensitivity to the cata-
lyst surface. In conclusion, reasonable catalysts are designed
based on calculation and experiment, which will promote the
rapid development of PEC N, reduction to a large extent under
environmental conditions in the future. The advantages of
PEC N, reduction are higher than those of individual photoca-
talysis or electrocatalysis. The correlation between PEC per-
formance and the structures could be established at the mole-
cular level to achieve industrial capabilities. In addition,
strengthening durability testing is the key to proving the practi-
cality at the industrial level. Finally, large-scale synthesis of cat-
alysts should be considered.
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