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Direct C(sp3)–H difluoromethylation via radical–
radical cross-coupling by visible-light photoredox
catalysis†

Wei Xiong,‡ Wen-Bing Qin,‡ Ya-Shi Zhao, Kai-Zhong Fu and Guo-Kai Liu *

Herein, a radical–radical cross-coupling strategy for direct difluoromethylation of the C(sp3)–H bond is

reported. This transformation was readily accomplished under transition metal-free photoredox catalysis

in the presence of 3 mol% of an organic photocatalyst, allowing the direct difluoromethylation of C(sp3)–

H of a wide variety of 1,4-dihydroquinoxalin-2-ones in good yields under mild reaction conditions.

Moreover, various 3-difluoromethyl quinoxalin-2-ones were also easily furnished in a one-pot manner

through this radical difluoromethylation protocol. Mechanistic studies clearly reveal that the radical–

radical cross-coupling between a difluoromethyl radical and a C(sp3) radical is responsible for this trans-

formation. To the best of our knowledge, this is the first example of radical–radical cross-coupling

difluoromethylation of the C(sp3)–H bond, which not only provides a promising strategy for a straight-

forward installation of a CF2H group at a C(sp3) center but would also promote the development of other

new fluorination and fluoroalkylation methods.

Introduction

Nowadays, the incorporation of one or more fluorine atoms
into bioactive compounds has become a routine strategy for
the development of pharmaceuticals and agrochemicals.1

Amongst various fluorine-containing units, the CF2H group
can endow the parent molecule with significantly improved
physicochemical and biological properties due to its unique
instincts.2 For example, the CF2H group can serve as a compe-
tent lipophilic hydrogen bond donor3 as well as act as metabo-
lically stable bioisosteres of alcohol, thiol, or amine groups.4

Therefore, the development of strategies and synthetic versions
for assembling the CF2H unit has attracted considerable atten-
tion. Amongst the existing strategies, the difluoromethylation
reaction is the most straightforward and efficient approach to
access CF2H-containing compounds. Consequently, for this
purpose, continuous efforts on difluoromethylating reagents
and thereby difluoromethylation protocols have been increas-
ingly made in the past decade.5 Notably, the C(sp3)–CF2H
moiety is of great interest in pharmaceutical chemistry
because it is a bioisosteric replacement for aliphatic alcohols

and thiols, two prevalent functional groups in drug design and
discovery.6 As one of the most straightforward and general
reactions for the rapid and efficient installation of CF2H to a
C(sp3) center, the direct C(sp3)–H activation difluoromethyl-
ation represents a greatly reliable and ideal method for the
construction of C(sp3)–CF2H bonds in the late-stage modifi-
cation of bioactive molecules. However, to date, a direct
C(sp3)–H difluoromethylation method has been rarely studied
and a great challenge. The related research is mainly focused
on the electrophilic difluoromethylation of highly activated ali-
phatic-carbon acids with difluorocarbene in the presence of a
strong base due to the fact that a great variety of difluorocar-
bene precursors were developed by Hu, Shibata, Shen, and our
group (Scheme 1a).7–11

However, these methods usually suffer from limitations
such as requirement of highly activated substrates, require-
ment of excess reagents and strong bases, and undesirable
regioselectivity, thus significantly narrowing their practicability
and further application. In 2019, Liu and co-workers reported
the first copper-catalyzed benzylic C–H difluoromethylation.
However, this transformation was accomplished with the aid
of a directing group chloroamide to generate a benzylic radical
(Scheme 1b).12

In spite of the aforementioned preliminary progress, the
direct C(sp3)–H difluoromethylation remains largely underde-
veloped and highly desirable as one of the most straight-
forward and promising strategies. To address this topic and
challenge, we decided to develop an elegant and highly
efficient solution by using our bench-stable S-(difluoromethyl)
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diarylsulfonium salts 2,10 which have proved to be good
difluoromethyl radical precursors under photoredox cataly-
sis,13 as well as electrophilic difluoromethylating reagents and
difluorocarbene precursors.10,14 On the other hand, the photo-
redox-catalyzed reaction is becoming a more and more popular
synthetic version for incorporating the fluoroalkyl group into
various organic molecules via a radical pathway.15,16 The direct
C(sp3)–H radical difluoromethylation remains currently
unknown except the copper-catalyzed benzylic C–H difluoro-
methylation reported by Liu.12 Consequently, we question
whether 2 can achieve the direct C(sp3)–H difluoromethylation,
serving as a difluoromethyl radical precursor via a photoredox-
catalyzed radical–radical cross-coupling reaction. In particular,
amines could be oxidized to generate N-radicals under photo-
redox catalysis, thus allowing the generation of α-C radical
species via single electron transfer (SET) from C to N atoms
(Scheme 1c, for the detailed information, see the ESI S2–
S4†).17 Bearing this in mind, we reasoned that reagent 2 and
1,4-dihydroquinoxalin-2-ones would lead to a radical–radical
cross-coupling reaction under photoredox catalysis. As a result,
we report herein a transition metal-free visible-light-induced
direct C(sp3)–H difluoromethylation approach via the radical–
radical cross-coupling reaction in this article (Scheme 1c). To
the best of our knowledge, this transformation is the first
example involving a radical–radical cross-coupling difluoro-
methylation of the C(sp3)–H bond, allowing for the direct C3–
H radical difluoromethylation of a wide variety of 1,4-dihydro-
quinoxalin-2-ones, which is of great interest to pharmaceuti-

cals and drug candidates as a prevalent scaffold frequently
existing in a lot of biologically active compounds.

Results and discussion

Initially, we started our investigation employing 4-benzyl-1,4-
dihydroquinoxalin-2-one 1aa as a model substrate to optimize
the reaction conditions (Table 1). Gratifyingly, the reaction pro-
ceeded smoothly under the irradiation of blue light overnight
in the presence of 3 mol% photocatalyst PC I, 5.0 equivalents
of LiOH and 2.0 equivalents of S-(difluoromethyl) sulfonium
salt 2, affording 3-difluoromethylated 1,4-dihydroquinoxalin-2-
one 3aa in 63% isolated yield (Table 1, entry 1). Inspired by
this exciting result, other conveniently available common
photosensitizers were further examined, and all the organic
photosensitizers exhibited high catalytic activity to promote

Scheme 1 Strategies for difluoromethylation of C(sp3)–H bonds.

Table 1 Survey of reaction conditions for radical–radical cross-coup-
ling of 1,4-dihydroquinoxalin-2-ones with the S-(difluoromethyl)sulfo-
nium salta

Entry PC (3 mmol%) Base (5.0 equiv.) Solvent Yieldb (%)

1 PC I LiOH AcOEt 63
2 PC II LiOH AcOEt 74
3 PC III LiOH AcOEt 73
4 Perylene LiOH AcOEt 55
5 Ir(dFppy)3 LiOH AcOEt 52
6 Ru(bpy)3Cl2 LiOH AcOEt 0
7 — LiOH AcOEt Trace
8c PC II LiOH AcOEt 0
9 PC II DBU AcOEt 10
10 PC II Et3N AcOEt 0
11 PC II NaOH AcOEt 5
12 PC II CsOH·H2O AcOEt 8
13 PC II KOH AcOEt 43
14 PC II K2CO3 AcOEt 18
15 PC II Li2CO3 AcOEt 60
16 PC II Li3PO4 AcOEt 69
17 PC II LiOH CH3CN 57
18 PC II LiOH THF 8
19 PC II LiOH CH2Cl2 17
20d PC II LiOH AcOEt 55
21e PC II LiOH AcOEt 56
22 f PC II LiOH AcOEt 51

a Reaction conditions (unless otherwise specified): 1aa (0.1 mmol, 1.0
equiv.), photocatalyst (3 mol%), reagent 2 (0.2 mmol, 2.0 equiv.), base
(0.5 mmol, 5.0 equiv.), solvent (2.0 mL), room temperature, overnight.
b Isolated yields. cNo blue light irradiation. d LiOH (0.3 mmol) was
used. e Reagent 2 (0.15 mmol) was used. f The reaction time was shor-
tened to 3 hours.
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this reaction, leading to moderate to good yields; PC II
achieved 74% isolated yield of the desired product (Table 1,
entries 2–4). A metal photosensitizer Ir(dFppy)3 was also com-
patible with this reaction to deliver the product in 52% iso-
lated yield (Table 1, entry 5), whereas Ru(bpy)3Cl2 did not work
(Table 1, entry 6). Predictably, the reaction was shut down in
the absence of light or the photocatalyst (Table 1, entries 7
and 8), hence suggesting that the process might proceed
through a radical pathway. Next, screening of various bases
was carried out. Compared to inorganic bases, organic bases
were clearly less effective to drive this reaction (Table 1, entries
9 and 10). Interestingly, alkaline lithium seems to be superior
to other inorganic bases. Li2CO3 and Li3PO4 also gave the pro-
ducts in good yields of 60% and 69%, respectively (Table 1,
entries 15 and 16), whereas dramatically diminished yields
were obtained when KOH, NaOH, CsOH and K2CO3 were used
(Table 1, entries 11–14). The effect of solvents on the trans-
formation efficiency was also surveyed. Thus, the use of
CH3CN instead of AcOEt decreased the yield to 57% (Table 1,
entry 17). THF and CH2Cl2 also led to inferior results (Table 1,
entries 18 and 19). The reduction of the amount of LiOH or
the difluoromethylating reagent was obviously harmful to the
yields of the desired product (Table 1, entries 20 and 21). The
conversion efficiency was also eroded when the reaction time
was shortened to 3 hours (Table 1, entry 22).

To showcase the generality of this radical–radical cross-
coupling difluoromethylation protocol, we further explored the
substrate scope under the optimized reaction conditions
(Table 1, entry 3). As illustrated in Table 2, a wide range of N4-
benzyl-1,4-dihydroquinoxalin-2-ones were readily transformed
to the desired products in moderate to good yields. The struc-
ture of 3aa was confirmed by X-ray crystallographic analysis.
Notably, many functional groups were tolerated, regardless of
their electron-donating and electron-withdrawing properties,
including halogens (F, Cl, and Br), CF3O, CH3, CH3O, C(CH3)3,
etc. Most substitution sites, i.e., C6, C7 and C8, were compati-
ble with the reaction conditions. However, C5-substituents led
to significantly low reactivity (3ae and 3am). Next, the influ-
ence of protection groups on N4 was investigated. Various
benzyls were well tolerated to give the corresponding products
in good yields, and the electronic properties of para-substitu-
ents on benzyls did not show a noticeable influence on the
transformation efficiency (3aa, 3aq, and 3ar). N4-methyl and
N4-allyl-protected 1,4-dihydroquinoxalin-2-ones also reacted
well to give good yields (3as and 3at). However, electron-with-
drawing benzoyl on N4 shut down the desired transformation
(3au). Moreover, N1 and N4 di-substituted substrates were also
suitable substrates and provided 3av and 3aw in moderate
yields. A tertiary C(sp3)–H bond, e.g., 3-methyl-1,4-dihydroqui-
noxalin-2-one, also smoothly underwent the reaction to give
the desired product, albeit in a lower isolated yield of 38%
(3ax), because its poor solubility eroded the reaction efficiency
and a large amount of 1ax was recovered. Remarkably, N4-
unprotected substrates were also compatible with this trans-
formation, furnishing the corresponding difluoromethylated
products in moderate to good yields (3ba–3be). Finally, a

larger scale transformation of 1ak (2.0 mmol) was demon-
strated with 60% isolated yield.

Interestingly, when N4-unprotected substrates 1,4-dihydro-
quinoxalin-2-ones 1ba–1bd were subjected to this reaction, oxi-
dation products 3-difluoromethyl-quinoxalin-2-ones 4a–4d
were detected as the minor products (Table 2). It is reasonable
to presume that 4a–4d might be derived from the oxidation of
the corresponding desired 3ba–3bd. We therefore further
expanded the application of this method for the synthesis of
3-difluoromethyl functionalized quinoxalin-2-ones 4, which
belong to a class of pharmaceutically important compounds
and were hitherto difficult to synthesize, although many
methods were reported for the functionalization of quinoxalin-
2-ones.18 Thus, as shown in Table 3, various 3-difluoromethyl-
quinoxalin-2-ones were readily accessed in moderate to good
yields via a facile one-pot process with the addition of an
oxidant DDQ.

Notably, in these cases of low yields, i.e. 4b and 4o, the
poor solubility of substrates 1bb and 1bo significantly dimin-
ished the desired transformation, and the unreacted starting
materials were oxidized to the corresponding quinoxalin-2-
ones as the main side-products after adding DDQ.
Importantly, 4c, an antitumor agent,19 was conveniently syn-

Table 2 Scope of visible-light-induced radical–radical cross-coupling
difluoromethylation of 1,4-dihydroquinoxalin-2-ones with the S-
(difluoromethyl)sulfonium salta

a Reaction conditions (unless otherwise specified): 1 (0.1 mmol, 1.0
equiv.), PC II (3 mol%), reagent 2 (0.2 mmol, 2.0 equiv.), LiOH
(0.5 mmol, 5.0 equiv.), AcOEt (2.0 mL), room temperature, overnight.
Isolated yields. b 2.0 mmol scale. c Yield was calculated according to
the 19F NMR ratio of 3 and 4; 4 refers to Table 3. dCH3CN was used as
the solvent.
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thesized from 1bc in 52% isolated yield with this simple one-
pot method.

Quinoxalinones constitute a prevalent skeleton, frequently
occurring in many biologically active compounds and pharma-
ceuticals, and possessing a wide variety of biological activities
such as antiviral, anti-inflammatory, antidiabetic, anti-
microbial, and anticancer properties. In order to further
demonstrate the potential application of this significant
method, we herein explored a rapid synthesis of difluoro-
methyl modified opaviraline (GW420867X) 5 from 3bb in 82%
yield (Scheme 2), which is an anti-HIV-1 reverse transcriptase
inhibitor.20 This process further demonstrates the synthetic
utility of this radical–radical cross-coupling difluoromethyl-
ation reaction in the late-stage CF2H-modification of drugs
and biologically active compounds.

The mechanistic insight into this reaction was preliminarily
studied. Thus, only a trace of 3aa was found under the stan-
dard reaction conditions in the presence of 1,4-dinitrobenzene
(Scheme 3a), suggesting the existence of difluoromethyl
radical species. Furthermore, a radical clock experiment was
also conducted (Scheme 3a). The yield of the desired product
3aa was downgraded to 10%, along with the rearranged
product 7 as the major product in 34% isolated yield.

Moreover, in the low-yield case of 3am (22%), the dimer
product 8 was isolated as the major product in 42% yield
(Scheme 3c), which is strong evidence for obtaining the α-C
radical from 1,4-dihydroquinoxalin-2-ones under photoredox
catalysis conditions. Consequently, these experimental results
above confirmed that a radical–radical cross-coupling process
is involved during the reaction.

Based on the results of these mechanistic experiments, the
radical–radical cross-coupling reaction mechanism was pro-
posed as depicted in Scheme 3d. Initially, the S-(difluoro-
methyl)diarylsulfonium salt 2 is reduced by the excited PC* to
generate the •CF2H radical along with PC+, followed by single
electron transfer between substrate 1 and PC+ to render a cat-
ionic nitrogen radical A. A is delivered to the sp3 carbon
radical B via deprotonation in the presence of a base, thus
allowing for a radical–radical cross-coupling between the
•CF2H radical and sp3 carbon radical B to generate the desired
product 3, which can be readily oxidized to 4 for the N4-unpro-
tected 1,4-dihydroquinoxalin-2-ones.

Conclusions

In conclusion, we have developed the first approach for a
direct difluoromethylation of the C(sp3)–H bond via a radical–
radical cross-coupling strategy, featuring transition metal-free
photoredox catalysis, broad substrate scope and functional
group tolerance, and mild reaction conditions. A wide variety
of 1,4-dihydroquinoxalin-2-ones were smoothly converted to
3-difluoromethyl-1,4-dihydroquinoxalin-2-ones and 3-difluoro-

Table 3 Synthesis of 3-difluoromethylquinoxalin-2-onesa

a Reaction conditions (unless otherwise specified): 1 (0.1 mmol, 1.0
equiv.), PC II (3 mol%), reagent 2 (0.2 mmol, 2.0 equiv.), LiOH
(0.5 mmol, 5.0 equiv.), AcOEt (2.0 mL), room temperature, overnight.
Then DDQ (0.2 mmol, 2.0 equiv.) was added. Isolated yields. b CH3CN
was used as the solvent.

Scheme 2 Synthesis of the opaviraline analogue.

Scheme 3 Mechanistic studies and the proposed mechanism.
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methylquinoxalin-2-ones in moderate to good yields.
Employing this protocol, pharmacologically antiviral agent 5
and anticancer agent 4c were readily accessed in good yields,
proving its potential utility in medicinal chemistry.
Furthermore, mechanistic studies support the radical–radical
cross-coupling process between a difluoromethyl radical and a
C(sp3) radical involved in this reaction. This pioneering
radical–radical cross-coupling strategy for significantly
efficient C(sp3)–H difluoromethylation not only provides a
powerful tool for the straightforward assembly of CF2H-con-
taining bioactive molecules in the late-stage synthesis but
would also promote the development of other new fluorination
and fluoroalkylation methods, which is of great interest in syn-
thetic chemistry and pharmaceutical chemistry.

Experimental
General information
1H NMR spectra were recorded on either a Bruker Ascend
400 MHz (400 MHz) spectrometer, a Bruker Ascend 500 MHz
(500 MHz) spectrometer or a Bruker Ascend 600 MHz
(600 MHz) spectrometer at ambient temperature unless other-
wise indicated. Data were reported as follows: chemical shifts
in ppm from tetramethylsilane as an internal standard in
CDCl3, integration, multiplicity (s = singlet, d = doublet, t =
triplet, q = quartet, dd = doublet-doublet, m = multiplet, and
br = broad), coupling constants (Hz), and assignment. 13C
NMR spectra were recorded on either a Bruker Ascend
500 MHz (126 MHz) spectrometer or a Bruker Ascend 600 MHz
(151 MHz) spectrometer at ambient temperature and were
proton decoupled. Chemical shifts are reported in ppm from
tetramethylsilane on the scale with the solvent resonance
employed as the internal standard. 19F NMR spectra were
recorded on a Bruker Ascend 400 MHz (377 MHz) spectro-
meter or a Bruker Ascend 500 MHz (471 MHz) spectrometer at
ambient temperature. Chemical shifts are reported in ppm
from CFCl3 as the internal standard. Single crystal X-ray diffr-
action data for the compounds were collected on a Rigaku
Oxford Diffraction SuperNova dual source at 100 K using Cu-
Kα radiation. ESI-MS analysis was performed in the positive
ionization mode on an Agilent 1260-Infinity LC/MSD resolu-
tion mass spectrometer. All high-resolution mass spectra were
obtained on a Thermo Scientific Q-Exactive (HR/AM) Orbitrap
mass spectrometer. Commercially available reagents were used
as received. Reactions were monitored by TLC (detection with
UV light). Flash chromatography: silica gel (300–400 mesh).
Visible light irradiation was performed using blue LED lamps
(3 W × 4; λ = 450 nm) for the preparative scale.

General procedure for the visible-light photoredox catalyzed
direct C(sp3)–H difluoromethylation of 3,4-dihydroquinoxalin-
2(1H)-ones

To a 25 mL Schlenk tube equipped with a magnetic stir bar
were added the derivative of 3,4-dihydroquinoxalin-2(1H)-one 1
(0.1 mmol, 1.0 equiv.), 2 (83.0 mg, 0.2 mmol, 2.0 equiv.), PC II

(1.7 mg, 0.003 mmol, 3 mol%), and LiOH (12.0 mg, 0.5 mmol,
5.0 equiv.). Then the flask was flushed with argon, followed by
the addition of EtOAc (2 mL). The tube was placed at a dis-
tance of ∼2 mm away from (3 W × 4) blue LED lamps (λ =
450 nm), and the reaction mixture was stirred under the
irradiation of blue LEDs. After stirring overnight, the solvent
was evaporated in vacuo and the residue was purified by flash
column chromatography on silica gel (petrol ether/ethyl
acetate) to afford product 3.

General procedure for the synthesis of
3-difluoromethylquinoxalin-2-ones

To a 25 mL Schlenk tube equipped with a magnetic stir bar
were added the derivative of 3,4-dihydroquinoxalin-2(1H)-one 1
(0.1 mmol, 1.0 equiv.), 2 (83.0 mg, 0.2 mmol, 2.0 equiv.), PC II
(1.7 mg, 0.003 mmol, 3 mol%), and LiOH (12.0 mg, 0.5 mmol,
5.0 equiv.). Then the flask was flushed with argon, followed by
the addition of EtOAc (2 mL). The tube was placed at a dis-
tance of ∼2 mm away from 3 W blue LED lamps (λ = 450 nm),
and the reaction mixture was stirred under the irradiation
of blue LEDs. After stirring overnight, DDQ (45.5 mg,
0.2 mmol, 2.0 equiv.) was added and the mixture was stirred at
80 °C for another 2 hours; then the solvent was evaporated in
vacuo and the residue was purified by flash column chromato-
graphy on silica gel (petrol ether/ethyl acetate) to afford
product 4.
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