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Continuum-scale modelling of polymer blends
using the Cahn–Hilliard equation: transport
and thermodynamics†

Pavan K. Inguva, ‡ab Pierre J. Walker,‡b Hon Wa Yew,b Kezheng Zhu,b

Andrew J. Haslam b and Omar K. Matar*b

The Cahn–Hilliard equation is commonly used to study multi-component soft systems such as polymer

blends at continuum scales. We first systematically explore various features of the equation system,

which give rise to a deep connection between transport and thermodynamics-specifically that the Gibbs

free energy of mixing function is central to formulating a well-posed model. Accordingly, we explore

how thermodynamic models from three broad classes of approach (lattice-based, activity-based

and perturbation methods) can be incorporated within the Cahn–Hilliard equation and examine

how they impact the numerical solution for two model polymer blends, noting that although the analysis

presented here is focused on binary mixtures, it is readily extensible to multi-component mixtures.

It is observed that, although the predicted liquid–liquid interfacial tension is quite strongly affected, the

choice of thermodynamic model has little influence on the development of the morphology.

1 Introduction

Polymer blends are of significance in many areas such as high-
performance materials,1 organic photovoltaics,2 polymeric
membranes3 and pharmaceutics.4 Most polymer blends tend
to be incompatible, which results in blends consisting of
multiple phases. As a result, the morphology of the blend,
which is used to create a functional material, will have a
significant impact on the material performance. The following
list includes examples where the blend’s morphological
features are important in ensuring performance and it is
certainly non-exhaustive.

(1) Organic solar cells require the polymer blends to adopt
an interconnected/co-continuous morphology smaller than
20 nm.5

(2) The inclusion of rubber particles with an appropriate
particle size distribution to polystyrene can improve the
mechanical properties of the material.6

(3) The morphology of polymeric membranes can influence
its separation capabilities in terms of selectivity and perme-
ability. Specific examples of such internal structures include
an asymmetric membrane structure7 or the orientation and

distribution of the domains of a dispersed polymer species
within a blend matrix.3

A common method to model the formation of these polymer
blends at continuum length scales is to adopt a modified
Cahn–Hilliard framework. This approach has previously been
used to model binary8,9 or ternary polymer blends,6,10,11 or
systems consisting of polymers and solvents.12 This framework
can also be readily coupled to other equations such as the
Stokes9 or Navier–Stokes equations13 for modelling more-complex
processes involving flow-induced shearing effects.

The Cahn–Hilliard equation has multiple complexities from
both a mathematical and physical standpoint. It is a fourth-
order non-linear partial differential equation. The theoretical
features and numerical solution of the Cahn–Hilliard equation
and its modifications as outlined above is still an area of active
research in applied mathematics and computational physics.14,15

Physically, the Cahn–Hilliard equation is fundamentally related to
the thermodynamics of the system and this relation is captured
in the Gibbs free energy of mixing function. An appreciation of
non-ideal mass transport is also useful for understanding the
Cahn–Hilliard equation. Typically, many studies employ a simple
quartic polynomial, which has a double-well shape as the free
energy function. While this does serve as a useful theoretical tool,
it is difficult to obtain physically relevant information from such a
potential. Therefore, more physically appropriate thermodynamic
models need to be used.

In the case of mixtures containing polymers, the most common
choice is the Flory–Huggins equation, which is a remarkably
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simple and powerful equation for which there is a wealth of
supporting data from literature. However, there are a variety of
more-advanced thermodynamic models that are better suited for
specific systems or enable more-accurate modelling of complex
systems that can be employed. To date, only a handful of studies
have explored more-complex thermodynamic models, such as
CALPHAD-based free-energy functions,16 the comparatively simple
activity-coefficient model non-random two-liquid (NRTL)17,18 and
free-energy functions suitable for mineralic systems,19 within the
Cahn–Hilliard equation.

To the novice reader, the breadth and depth of the knowl-
edge required to appreciate and use the Cahn–Hilliard model
can be intimidating. Therefore, in the present work, we aim to
introduce key features of the Cahn–Hilliard equation along
with a robust introduction to a range of thermodynamic models
that can be incorporated. We demonstrate how one can use
this model to study polymer mixtures of interest. While the
analysis is focused on mixtures containing polymers, it is
readily extensible to other mixtures such as emulsions. The
structure of the tutorial review is as follows: first, a pheno-
menological treatment of demixing is provided, then a deriva-
tion of the Cahn–Hilliard equation is presented. Subsequently,
key features of the equation such as the mobility coefficient and
gradient energy parameter are considered and we demonstrate
their intimate connection to the Gibbs free energy of mixing
function. We then explore various thermodynamic models that
can be used to compute the free energy of mixing. Lastly, we
explore the numerical solution of the Cahn–Hilliard equation
in different settings such as considering how approximations to
the free-energy expression and choice of mobility model impact
the numerical solution. We also consider two model polymer
blends; polystyrene–polybutadiene (PS/PB) and polystyrene–
polymethylmethacrylate (PS/PMMA).

2 Phenomenology of demixing

To illustrate the nature of the demixing process, it is helpful to
first consider the temperature–composition (T–x) diagram for a
model system as shown in Fig. 1. The two-phase region is the
region within the binodal curve and a homogeneous mixture
that is quenched into this two-phase region will undergo phase
separation to form two distinct phases. There are a variety of
approaches to quench a mixture relevant for polymeric systems.
These include: non-solvent induced phase separation (NIPS)20

where a non-solvent is added to a homogeneous polymer–
solvent mixture to precipitate out the polymer, Thermally
induced phase separation (TIPS)21 where the homogeneous
mixture is prepared at a high temperature and cooled down
to induce phase separation and lastly, polymerization-induced
phase separation (PIPS)22 whereby miscible monomers are
reacted to form a longer polymer chain that is immiscible.

There are two mechanisms of demixing that need to be
considered: ‘‘nucleation and growth’’ and spinodal decomposition.
Nucleation and growth typically occurs within the metastable zone
as indicated in Fig. 1. In the case of nucleation and growth, a large

composition fluctuation i.e. the formation of a local region of high
concentration of one species or a nucleus needs to form to trigger
demixing. The nucleus then continues to grow as the mixture
undergoes further demixing. In contrast, spinodal decomposition,
also known as oiling out, involves smaller composition fluctuations.
The reader is advised to review Favvas and Mitropoulos23 for a
helpful one-dimensional illustration of the differences between the
two mechanisms. Various figures throughout the present work also
provide two-dimensional representations for both processes.

After the initial stages of demixing, the phenomenon of
Ostwald ripening becomes noticeable. Ostwald ripening refers
to the process of coarsening whereby larger domains grow at
the expense of smaller domains.24 Through such coarsening,
the system can further decrease the total free energy as the
interfacial area decreases, which reduces the energy penalty
associated with the formation of an interface. Examples of
Ostwald ripening can be found throughout the manuscript,
e.g. Fig. 9.

3 Cahn–Hilliard model
3.1 Model derivation

A modified Cahn–Hilliard model based on the work of Petrish-
cheva and Abart19 and Naumman and He10 is used to model the
demixing of polymer blends. This approach can handle systems
with orders of magnitude molecular-size difference e.g. polymers
and solvents. Similar Cahn–Hilliard-type models have also been
used to explore the morphological behavior of many-component
polymer systems25 and also nanoparticle formation.12

The Cahn–Hilliard equation can be used to model uphill
diffusion where transport occurs against a concentration
gradient, thus the driving force is gradients in the chemical
potential rather than concentration gradients. The flux ji of
species i can be written as

ji ¼ �
X
j

Mijrmj ; (1)

Fig. 1 Schematic of the T–x diagram for a system demonstrating phase
separation. The point marked by the cross is the Upper Critical Solution
Point (UCSP).
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where Mij is the mobility coefficient as expressed in the square
symmetric mobility matrix M, and mj is the chemical potential
of species j. The flux of species i can be expressed in terms
of the difference in chemical potentials for additional con-
venience i.e. mij = mi � mj:

ji ¼
X
j

Mijrmij : (2)

To obtain the transport equation for species i, the continuity
equation is applied:

@fi

@t
þr � ji ¼ 0; (3)

where t denotes time. For an N component system, typically
N � 1 transport equations are defined and fN for the last
component is inferred from a material balance equationP
i

fi ¼ 1, where fi is the volume fraction of species i. For a

binary system with components 1 and 2, the transport equation
for species 1 can then be written as:

@f1

@t
¼ r � M12rm12ð Þ: (4)

An expression for the chemical-potential difference, mij, can
be obtained by considering the generalised N-component
Landau–Ginzburg free-energy functional for inhomogeneous
systems enclosed within a dimensionless volume Ṽ:

GSystem ¼
ð

~V

gmðf1;f2:::fNÞ þ
XN�1
i

ki
2
ðrfiÞ2

 

þ
X
j4 i

XN�1
i

kijðrfiÞðrfjÞ
!
d ~V;

(5)

where GSystem is the total Gibbs energy of the system, ki and kij

are the gradient energy parameters, ~V ¼ V

vref
where vref is a

reference volume, typically the reference monomer volume, and
gm denotes the homogeneous contribution to the Gibbs free
energy per monomer normalised such that:

gm ¼
G

NmkBT
; (6)

where Nm is the number of monomers, G is the homogeneous
contribution to the total free energy, kB is the Boltzmann
constant, and T is the temperature. GSystem is scaled in the
same manner as eqn (6). For a binary system, GSystem reduces to
the following:

GSystem ¼
ð

~V

gmðf1Þ þ
k
2
ðrf1Þ2

� �
d ~V : (7)

It should be noted that the Landau–Ginzburg free-energy func-
tional can be formulated using a free-energy density gv which
will have units of J m�3 unscaled instead of gm which is on a
monomer basis and has units of J only. In such a case where
gv is used, eqn (5) needs to formulated differently: the integral
is defined over the actual volume V instead of Ṽ and the
gradient energy parameter will have units of J m�1 unscaled.

To evaluate mij, we compute the variational derivative on
GSystem:

mi ¼
dGSystem

dfi

¼ @GSystem

@fi

�r � @GSystem

@rfi

; (8)

which gives us the following expression for m12 in the binary
system:

m12 ¼
@gm
@f1

� kr2f1: (9)

Note that, because the homogeneous Gibbs free energy can
be expressed as:

gm ¼ Dgmix;m þ
X
i

fig
�
i;m; (10)

where Dgmix,m denotes the normalised Gibbs free energy of
mixing per monomer and the superscript * denotes a property
related to pure species i, in taking a derivative with respect to fi

and, subsequently, the gradient in equation eqn (4), any
information related to the pure species in equation eqn (10)
is lost without any loss of generality. As a result, for the
purposes of the Cahn–Hilliard equation, only Dgmix,m needs
to be provided.

At this stage, we can see that eqn (4) and (9) give us the
fourth order partial differential equation (PDE) that constitutes
our model equation. On first inspection, there are three com-
ponents of the modified Cahn–Hilliard equation that would be
‘‘tunable’’ based on the specific polymers of interest:

(1) k, the gradient energy parameter;
(2) M, the mobility coefficient;
(3) Dgmix,m, the Gibbs free energy of mixing.
As we will show in subsequent sections, k and M are

intimately related to Dgmix,m. Hence we shall first proceed with
a discussion on the first two components.

3.2 Scaling

The following length x0 and time t0 scalings can be introduced
to non-dimensionalise the model equations:

t0 ¼
L0

2

M0
; x0 ¼ L0; (11)

where M0 and L0 are the characteristic constant value for the
mobility coefficient and the length respectively. We thus obtain
the following non-dimensionalised model equations:

@f1

@~t
¼ ~r � ð ~M12ðf1Þ ~r~m12Þ; (12)

~m12 ¼
@gm
@f1

� ~k ~r2f1: (13)

3.3 Interfacial tension

A lasting consequence of the work of Cahn and Hilliard26 was
the emergence of so-called square-gradient theory (SGT) as a
widely used approach for the computation of interfacial tension
(IFT), arising from their rediscovery of a result originally
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proposed in Dutch by van der Waals27 (see ref. 28 for an English
translation). A helpful review of the different presentations of
the theory has been provided by Carey et al.29

The solution of the Cahn–Hilliard model as outlined above
can be employed to compute the IFT, denoted by L in the
present work, of a system. Under the simplifying assumption of
a planar interface, the concentrations vary in only one direction
and the problem becomes one-dimensional. In the study
of bulk thermodynamics where the interfacial arrangement,
curvature and contact angle between phases are not of concern,
this is a reasonable assumption. Following Naumman and
He,30 we are then able to write the following expression for L:

L ¼ rmRT
ð1
�1

k
@f1

@x

� �2

dx; (14)

where rm is the monomer molar density and R is the universal
gas constant. In non-dimensional form, eqn (14) can be
written as:

L
L0rmRT

¼
ð1
�1

~k
@f1

@~x

� �2

d~x: (15)

One may note from the form of eqn (14) and (15) that the
gradient energy parameter is a key quantity in calculating
the IFT.

4 Gradient energy parameter

The approach of Debye31 as extended by Ariyapadi and Nauman32

for multi-component systems, can be used to systematically
evaluate the gradient energy parameters for a given expression
of Dgmix,m. k can be decomposed as follows:

k = kS + kH, (16)

where the subscripts S and H denote the entropic and enthalpic
contributions, respectively.26,32 For a given Dgmix,m expression
such as the Flory–Huggins equation, a perturbation of the
following form can be introduced:

fi ¼ f�i þ
RG;i

2

6
ðr2f�i Þ; (17)

where the * superscript refers to the value of fi with reference
to a defined lattice point/central molecule and RG,i is the radius
of gyration of species i. A perturbation expansion can then be
performed and the resultant expansion, after discarding higher
order terms, can be compared to the Landau–Ginzburg free
energy functional to obtain k by inspection. Often, Dgmix,m can
be decomposed into an ideal (entropic) and residual (enthalpic)
contribution from which one can obtain compact expressions
for kS and kH separately. However, in the case where Dgmix,m

cannot be decomposed, such as a quartic polynomial with a
double-well, one would obtain only a single expression for k,
which can be quite complicated. A sample calculation for the
case of a quartic polynomial is presented in the ESI.†

For a binary polymer blend using the Flory–Huggins equation,
kS and kH can be written as follows:32

kS ¼
RG;1

2

3

1

N1f1

þ 1

N2ð1� f1Þ

� �
; (18)

kH ¼
1

3
RG;1

2 þ RG;2
2

� �
w12; (19)

where w12 is the Flory–Huggins interaction parameter between
species 1 and 2 and Ni is the degree of polymerisation for species i.
We will outline in subsequent sections how k is computed in a
tractable manner when more-complex thermodynamic models
are used.

It is a common approximation to neglect kS when modelling
polymer blends due to the large values of Ni which diminish its
contribution.6,10 This also simplifies the computation due to
the removal of an additional source of non-linearity in the
model equation. As the focus of this study is on polymer
blends, kS shall be neglected. However, in the case of polymer/
solvent systems, the entropic contribution should not be so
readily discarded as it can be significant.

We also note that within this model formulation, RG,i for the
polymer species is treated as a constant and used as the length
scale L0. Whilst it is true that RG can have a temperature and
composition dependence, without a suitable expression in
terms of model variables i.e. f or T in the event temperature
is considered, it is not possible to capture this physics in the
model. Nonetheless, experimental morphology data has been
replicated in previous work without accounting for these
effects.30

5 Mobility coefficient

The mobility coefficients Mij are subject to the following
constraints due to the Onsager reciprocal relationships and to
account for interdiffusion respectively.19

Mij ¼Mji;
X
i

Mij ¼ 0: (20)

Correspondingly, M can be written as follows for a binary
system:19

M ¼
�M12 M12

M12 �M12

 !
: (21)

The interested reader is advised to review Petrishcheva and Abart19

for a discussion on the ternary and multi-component cases.
There have been a variety of models for the mobility, but

many of them are centered around the form of eqn (22).13,33–35

This can be understood from considering diffusion in non-
ideal mixtures.19,30

Mij ¼ Dij
@2Dgmix;m

@fj
2

 !�1
; (22)
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where Dij is the effective diffusion coefficient which can be
written as follows:19,30,35

Dij ¼ Dijf1ð1� f1Þ
@2Dgmix;m

@fj
2

; (23)

where Dij is the interdiffusion coefficient. If a suitable form of
Dij that accounts for temperature and composition dependence
is available, such as in the case of accounting for the ‘‘fast’’ and
‘‘slow’’ models relevant to polymer–solvent systems,35 it can be
captured in this representation. Therefore, efforts to formulate
a suitable mobility model should be focused on accurately
evaluating Dij.

At this stage, we should note some important conceptual
features of the mobility coefficient. First, the introduction of
the composition dependence in the form of the fi(1 � fi) term
serves to restrict mass transport to the interface region which is
physically accurate as interdiffusion cannot occur in regions
where there is only a single species.19,30 Second, at the Spinodal

where
@2Dgmix;m

@fj
2
¼ 0, Dij and ji will be zero. This can be under-

stood by further exploring the flux expression for a binary
mixture where k = 0:

j1 ¼ �M12rm12 ¼ �M12
@m12
@f1

rf1 ¼ �M12
@2Dgmix;m

@fj
2
rf1:

(24)

It can be seen in eqn (24) that at the spinodal, the flux will be
zero. Last, within the spinodal, Dij o 0 which correctly reflects
the case of uphill diffusion as previously discussed. Corre-
spondingly, k needs to be accounted for in the flux expression.

Often, in isothermal cases, Dij is taken as a constant and
treated as the scaling for Mij, resulting in the following expres-
sion for M12 which has been used in studies involving polymer
blends:6,8,10,11

M12 = D12f1(1 � f1) (25)

Conceptually similar mobility models have also been employed
for polymer solutions.36,37

Another common approach is to assume a constant mobility38

and upon scaling, the following expression is obtained:

M̃12 = 1. (26)

As we will show in the results section, the morphology obtained
from numerical simulation is not impacted by using either
eqn (25) or eqn (26). Manzananrez et al.35 also demonstrated
that, while different mobility models result in a similar
morphology, the system dynamics as captured by the domain
scaling growth laws can vary.

For completeness, there are a variety of other mobility
models considered in the literature which are relevant for
polymeric systems that build on eqn (22).35,39 Other approaches
to capture dynamics related to glass-transition in systems,
particularly with a polymer and solvent, have also been
explored in the literature.40,41 The interested reader is advised

to look through the various citations included in this section
for additional detail.

6 Thermodynamic models for Dgmix,m

In this section, we give an overview of some of the different
approaches available to obtain the Gibbs free energy of mixing
for polymer blends which can be used within the Cahn–Hilliard
equation. Most approaches discussed here obtain the Gibbs
free energy of mixing in molar units, Dgmix, whilst eqn (77)
requires it in per monomer units. Using a geometric average of
the degree of polymerisation of the polymers, one can convert
between the two:

Dgmix ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
Dgmix;m: (27)

6.1 Lattice-based approaches: Flory–Huggins equation

In adopting a lattice-based model, one considers how the
polymer molecules can be arranged on a lattice; this enables
the derivation of a thermodynamic model of the system
through various means such as a mean-field approximation.
The most relevant and common equation in this category for
polymers is the Flory–Huggins equation,42 which expresses the
dimensionless Gibbs free energy of mixing per monomer
volume in terms of volume fractions as follows:

Dgmix;vðf1;f2; . . . ;fncomp
Þ ¼

Xncomp

i

fi

Vi
lnfi

þ 1

vref

X
j4 i

Xncomp�1

i

wijfifj ; (28)

where Vi is the molar volume of species i, vref is the reference
monomer volume, and Dgmix,v is the Gibbs free energy of
mixing per monomer volume normalised in a similar way to
eqn (6). For a binary system, eqn (28) can be written as:

Dgmix;vðf1Þ ¼
f1

V1
lnf1 þ

1� f1

V2
lnð1� f1Þ þ

w12
vref

f1ð1� f1Þ:

(29)

It is possible to re-arrange equation eqn (29) to express the
Flory–Huggins equation in monomer units, which is denoted
by the subscript m:

Dgmix;mðf1Þ ¼
f1

N1
lnf1 þ

1� f1

N2
lnð1� f1Þ þ w12f1ð1� f1Þ;

(30)

where Ni is the degree of polymerisation of species i, often
taken to be the number of monomers in species i. Eqn (30) is
the form of the Flory–Huggins equation that is incorporated
into the Cahn–Hilliard equation.

As implementing a model capable of predicting the beha-
viour of a wide variety of polymer blends is desirable, the
present work has made various attempts to use generalisable
approaches where possible. Specific to the Flory–Huggins
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equation, the approach used in in this work estimates w12 using
the method employed by Hildebrand and Scott43

w12 ¼ vref
ðd1 � d2Þ2

RT
; (31)

where di is the Hildebrand solubility parameter of species i and
can be obtained from sources such as Barton.44 Other possible
approaches include using the Hansen solubility parameters45

or performing molecular simulations.46,47

6.2 Activity-based approaches: UNIFAC-FV

A common method for simple molecules such as short alkanes
and other organic compounds is the use of activity-coefficient
methods48 to estimate and predict thermophysical properties
such as liquid–liquid equilibrium (LLE). These methods
include NRTL49 and UNIFAC/UNIQUAC.48 Such approaches
have been adapted for use in polymer–solvent systems50 and
with polymer blends, albeit with certain modifications.51,52

We are able to write down the following expression relating
the normalised Gibbs free energy of mixing per mole to the
ideal and excess contributions:

Dgmix(x1) = Dg ideal
mix (x1) + Dg excess

mix (x1), (32)

where

Dg ideal
mix (x1) = x1 ln x1 + (1 � x1)ln(1 � x1) (33)

and

Dg excess
mix (x1) = x1 ln g1 + (1 � x1)ln g2; (34)

here, gi is the activity coefficient of species i. Whilst the Cahn–
Hilliard equation is expressed in terms of the volume fractions,
activity-coefficient models tend to be expressed in terms of
mole fractions. We can easily convert between the two:

xi ¼
fi=ViP

j¼1
fj=Vj

; (35)

where Vi is calculated using a reference density at a specified
temperature and the thermal expansion coefficient, which can
be obtained from literature.53

The challenge for evaluating the Gibbs energy of mixing for
a system now becomes an issue of evaluating the activity
coefficient of the polymer molecules. The choice of a
UNIFAC-based approach is desirable because of the predictive
capabilities of such a group-contribution method, which
requires only knowledge of the chemical structure of the
species present. The UNIFAC-FV model used by Belfiore
et al.51 with modifications from Thomas and Eckert54 can be
used for polymer blends. The UNIFAC-FV model introduces a free-
volume correction to the standard UNIFAC model to account for
species with different molecular sizes.51,55 We are able to break
down the activity coefficient into combinatorial, free-volume and
residual contributions:

ln gi = ln gcombinatorial
i + ln gfree volume

i + ln gresidual
i , (36)

The combinatorial contribution can be given as follows:

ln gcombinatorial
i ¼ ln

fseg
i

xi
þ 1� fseg

i

xi
; (37)

where fseg
i refers to the segment fraction, which for a binary

system is defined as:

fseg
i ¼

ri
3=4xi

r13=4x1 þ r23=4x2
: (38)

ri is the van der Waals volume of species i and is defined as
follows:

ri ¼
X
k

vikRk; (39)

where vi
k is the number of groups of type k in molecule i and

Rk is the group volume which can be obtained from Gemhling
et al.56

The free-volume contribution can be written as follows:55

ln gfreevolume
i ¼ 3Ci ln

~Vi
1=3 � 1

~Vmix
1=3 � 1

� �

� Ci

~Vi

~Vmix

� 1

	 

1� 1

~Vi
1=3

	 
�1 !
;

(40)

where Ṽi is the reduced volume of species i, the subscript ‘‘mix’’
refers to the mixture and the constant Ci is related to the
number of external degrees of freedom per molecule of i.55

Interested readers are advised to refer to the work of Iwai and
Arai57 and Bonner and Prausnitz58 for more information and
data related to Ci for various polymers. The reduced volume
terms can be written as follows:

~Vi ¼
Vi

15:17bri
; ~Vmix ¼

V1x1 þ V2x2

15:17bðr1x1 þ r2x2Þ
(41)

where b is a constant with a value of 1.28 and wi is the weight
fraction of species i.

The residual contribution can be written as follows:

ln gresiduali ¼
X
k

vikðlnGk � lnGðiÞk Þ; (42)

where Gk is the residual activity of group k in the mixture and
G(i)

k is the residual activity of group k in a pure solution; Gk can
be written as follows:

lnGk ¼ Qk 1� ln
X
m

Hmcmk �
X
m

HmckmP
n

Hncnm

0
@

1
A; (43)

where Qk is the molar group volume parameter of group k and
can be obtained from sources such as Gemhling et al.,56 Hm

is the area fraction of group m and cmn captures the intra-
molecular and intermolecular interaction energies between the
various functional groups. Hm is written as:

Hm ¼
QmXmP
n

QnXn
; (44)
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where Xm is the group mole fraction and can be written as
follows:

Xm ¼

P
j

v j
mxjP

j

P
n

v j
nxj

: (45)

cmn can be written as follows:

cmn ¼ exp
�amn

T

� �
; (46)

where the values for amn are tabulated in sources such as
Gemhling et al.;56 lnG(i)

k is calculated in a similar manner
following eqn (43) and (46) with the modification of xi = 1 in
eqn (45) as the solution consists of a single species and the
sums in eqn (43) and (44) include only groups in the pure
polymer.

6.3 Thermodynamic perturbation approaches: PC-SAFT

The final approaches discussed here are approaches based on
the Statistical Associating Fluid Theory (SAFT);59,60 the SAFT
equation of state is capable of capturing the properties of
polymer–solvent mixtures by modelling each of these fluids
as chains of equal-sized hard-spherical segments with either
simple dispersive interactions or highly directional association
sites. Molecules within the SAFT framework are typically
described by the number of coarse-grained segments, m, com-
prising the chain that represents the molecule, the segment
diameter, s, and the segment energy (or the depth of the pair
potential between individual segments of molecule), e.

Many variants of the SAFT equation of state have been
developed, some of which have been previously applied to
polymer systems. Examples include soft-SAFT61 and, more
recently, SAFT-g Mie62 which, as a group-contribution
approach,63 has the potential to be extended to a range of
polymer systems. However, in this study, we focus on the
Perturbed Chain-SAFT (PC-SAFT)64 equation of state, which,
out of all the existing SAFT equations of state to date, has seen
the most usage in the context of polymer systems.65–67 This
equation allows one to obtain the reduced residual Helmholtz
free-energy contributions as a function of T, V and x, from
which physical properties can be derived:

ares = aHC + adisp. + aassoc., (47)

where a is the normalised Helmholtz free energy:

a ¼ A

NAkBT
: (48)

The Helmholtz free-energy contributions can be decomposed
in terms of the additive function of the hard-chain reference
system contribution, aHC, the dispersion contribution, adisp.

and the association contribution, a assoc.
The hard-chain reference system contribution of the mixture,

aHC, is determined by:

aHC ¼ �maHS �
XNC

i¼1
xiðmi � 1Þ ln gHS

ij ; (49)

where %m is the mean segment number given by:

�m ¼
XNC

i¼1
ximi; (50)

and mi corresponds to the number of spherical segments present
in the chain representing component i. aHC is likely to play a
significant role in modelling polymer blends, especially consi-
dering the typically large number of segments used to represent
such species.68

It should be noted that, in the case of polymers, the
spherical segments do not represent the monomers present
in a chain nor, therefore, does mi represent the number of
monomers (in a chain of species i). Indeed, mi need not be an
integer value. By obtaining the number of segments for species
in same homologous series through regression using experi-
mental data, Kouskoumvekaki et al.69 have correlated the
number of segments to the molecular weight of a species,
resulting in a linear relationship between the two variables.
From this relationship, it is possible to obtain the number of
segments for polymers of any size within the same homologous
series. aHS is the (dimensionless) Helmholtz free energy of a
hard-sphere fluid per segment of the mixture:

aHS ¼ 1

z0

3z1z2
ð1� z3Þ

þ z23

z3ð1� z3Þ2
þ z23

z32
� z0

� �
lnð1� z3Þ

	 

;

(51)

where zn is a reduced density that appears from Carnahan and
Starling’s hard-sphere free energy when it is modified to
represent mixtures:70,71

zn ¼
p
6
r
X
i

ximid
n
i ; n 2 0; 1; 2; 3; (52)

where, r is the number density and di corresponds to the
temperature-dependent segment diameter of component i
given by:

di ¼ si 1� 0:12 exp �3 ei
kBT

� �	 

; (53)

where si and ei correspond to the size and energy parameters
relating to molecule i. Note that z3 corresponds to the packing
fraction, often denoted by Z. gHS

ij is the radial distribution
function of the hard-sphere fluid between species i and j,
defined by:70

gHS
ij ¼

1

1� z3
þ didj

di þ dj

� �
3z2

ð1� z3Þ2

þ didj

di þ dj

� �2
2z22

ð1� z3Þ3
: (54)

The dispersive contributions are accounted for within the
adisp term which consists of a second-order perturbation of the
hard-chain reference system:

adisp = a1 + a2. (55)

These are evaluated as:

adisp ¼ �2prI1ðZ; �mÞm2es3 � pr �mC1I2ðZ; �mÞm2e2s3; (56)
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where I1 and I2 are power-series approximations in Z and m̂ of
integrals involved in evaluating the perturbation terms:

I1ðZ; m̂Þ ¼
X6
i¼0

aiðmÞZi; (57)

I2ðZ; m̂Þ ¼
X6
i¼0

biðmÞZi; (58)

Gross and Sadowski72 have shown that the dependence of the
coefficients ai and bi can be captured through universal correla-
tions:

aiðmÞ ¼ a0;i þ
m̂� 1

m̂
a1;i þ

m̂� 1

m̂

m̂� 2

m̂
a2;i; (59)

biðmÞ ¼ b0;i þ
m̂� 1

m̂
b1;i þ

m̂� 1

m̂

m̂� 2

m̂
b2;i; (60)

the parameters aji and bji are available from Gross and
Sadowski.64

C1 corresponds to the compressibility expression, given by

C1 ¼ 1þ m̂
8Z� 2Z2

ð1� ZÞ4 þ ð1� m̂Þ20Z� 27Z2 þ 12Z3 � 2Z4

½ð1� ZÞð2� ZÞ�2

� ��1
:

(61)

Finally, both m2es3 and m2e2s3 are molar averaged quantities of
m, e and s which include both like and unlike interactions
between species (ij). The unlike interactions are characterised
by sij and eij, which are determined by the usual Lorentz–
Bertholot-like combining rules:

sij ¼
1

2
ðsi þ sjÞ; (62)

eij ¼
ffiffiffiffiffiffiffi
eiej
p ð1� kijÞ; (63)

where kij is a binary interaction parameter relating to the
interaction between segments i and j. A noteworthy observation
when modelling polymer blends is that, relative to mixtures of
low-molecular-weight species, the conditions of (calculated)
LLE are very sensitive to the value of this parameter;66 this is
primarily because the interaction is segment-specific, thus, in
longer chains (such as polymers), its effects are magnified.

The final contribution, ã assoc, accounts for highly directional
associative interactions such as hydrogen bonding between sites
on segments of species. This can be obtained from:

~a assoc ¼
X
i

xi
Xnassoci

a

ni;a lnXi;a þ
1� Xi;a

2

� �0
@

1
A; (64)

where nassoc
i is the number of types of sites on species i, ni,a is the

number of sites of type a on species i and Xi,a is the fraction of
sites of type a on species i not bonded to any other site. The latter
can be obtained by solving a set of mass-action equations:

Xi;a ¼
1

1þ r
P
j

Pnassocj

b

nj;bxjXj;bDij;ab

; (65)

where Dij,ab is the association strength between site of type a
on species i and site of type b on species j. This can be
obtained from:

Dij,ab = gHS
ij (exp(eassoc.

ij,ab /(kBT)) � 1)sijkij,ab, (66)

where eassoc.
ij,ab and kij,ab are the potential well-depth and so-called

bonding volume characterising the association between site of
type a on species i and site of type b on species j. One additional
complication of including this contribution is that eqn (65)
must be solved for iteratively (see ESI† for further details).
We note that the above formulation of the association term is
different from that presented in chapman et al.60’s original
work where the indices a and b denotes particular sites, rather
than site types. The latter formulation is more-commonly used
in recent SAFT publications.

Pure-component parameters for a variety of polymers are
available in literature,65,73 as well as a group-contribution
method66 specifically developed for polymer systems. However,
obtaining the binary interaction parameter, kij, can be quite
difficult and, as discussed previously, is very important for
polymer blends. Typically, this parameter is obtained by adjust-
ment using experimental data of properties involving compo-
nents i and j such as vapour–liquid equilibrium properties,
excess volumes of mixing, excess enthalpies of mixing.63,64

Alternatively, one can use combining rules (CR); many such
rules have been proposed;74,75 among these, adopting the
combining rule (CR) of Hudson and McCoubrey76 (and neglect-
ing the minor differences in molecular ionisation potentials)
leads to:

kCRij ¼ 1� 26
si3sj3

ðsi þ sjÞ6

� �
: (67)

Once all of the parameters are obtained, the Gibbs free energy
and, by extension, the Gibbs free energy of mixing of a system
can be calculated from:

g = aideal + ares + Z � ln Z, (68)

where Z is the compressibility factor given by:

Z = 1 + Zres, (69)

where the residual compressibility, Zres factor can be
obtained from:

Zres ¼ Z
@ares

@Z

� �
T ;xi

: (70)

As a result, we can obtain the Gibbs free energy of mixing by
re-arranging eqn (10). However, as PC-SAFT is derived within
the canonical ensemble, it is not written explicitly in terms of
the pressure, which requires the additional step of solving
for the corresponding volume at a certain temperature and
pressure. We note in passing that the molar volumes required
to convert between the molar and volumetric fractions in
eqn (35) can be obtained by finding the corresponding volume
at a certain temperature and pressure for a pure species.

Tutorial Review Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

1 
 2

56
4.

 D
ow

nl
oa

de
d 

on
 7

/1
/2

56
9 

16
:4

7:
37

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1sm00272d


This journal is © The Royal Society of Chemistry 2021 Soft Matter, 2021, 17, 5645–5665 |  5653

6.4 Redlich–Kister approximation

Simple thermodynamic models such as the Flory–Huggins and
NRTL equations can easily be integrated within the Cahn–
Hilliard equation, however, attempting to do so for more-
complex models, such as the full PC-SAFT equation or the
UNIFAC-FV equation, is not feasible in practice. This will likely
be the case for many other such models; as a result, there is a
need to approximate these such that they can then be used with
the Cahn–Hilliard equation.

One can achieve this through the use of the Redlich–Kister
equation, which is a convenient tool for expressing algebrai-
cally thermodynamic properties of solutions77 (volumes of
mixing, Gibbs free energy of mixing, and so forth). The Gibbs
free energy of mixing for an N-component mixture can be
expressed as the sum of the ideal Gibbs free energy of mixing
and the excess Gibbs free energy of mixing, Dgexcess

mix (x1,x2,. . .,xN):

Dgmixðx1;x2; :::;xNÞ¼
XN
n¼1

xn lnxnþDgexcessmix ðx1;x2; :::;xNÞ: (71)

Dg excess
mix (x1,x2,. . .,xN) can be fitted to the Redlich–Kister polyno-

mial equation:77

Dgexcessmix ðx1Þ ¼ x1ð1� x1Þ
Xk
i¼0

Cið1� 2x1Þi; (72)

where Ci are the fitting parameters for the kth-order polynomial
fit, which can be systematically determined prior to solving the
Cahn–Hilliard system for a given polymer blend. The order of
the polynomial can be chosen to obtain a fit to desired level of
accuracy within the domain [0,1] of x1. We have found that the
use of a 6th-order polynomial fit using 100 points within the
domain is sufficient to fit the coefficients to the predictions
made by these more-complicated models. This method is
generalisable to most polymer blends and thermodynamic
models.

6.5 Data-driven approaches

To conclude our discussion of thermodynamic models we draw
attention to two classes of data-driven approach for studying
the thermodynamics of mixtures. We do not consider these
approaches explicitly in the remainder of our current study, but
they are applicable to polymer blends and are mentioned here
for completeness.

The first class of data-driven approaches involves construct-
ing the equation of state for the system using machine-learning
techniques. It is possible to then compute various properties
of interest, including Dgmix,m. Employing such machine-
learning-based approaches offers the advantage of being able
to better capture the behaviour of the system due to the
avoidance of a restrictive closed-form analytical expression for
the molecular interactions or the equation of state itself.78,79

The interested reader is also advised to review Faúndez et al.80

for more information regarding the implementation of such
an approach.

Another area of interest is the inverse problem for the Cahn–
Hilliard equation. Broadly, the inverse problem can be

understood as the process of using measurements to infer
the value of the parameters or physics of a system.81 In recent
work, the inverse problem for the Cahn–Hilliard equation has
been explored; this has enabled the evaluation of the thermo-
dynamics of the system from a few snapshots of the pattern
forming process.82,83 This approach has particular utility for
studying complex systems where there may be rich experi-
mental data of the actual pattern-forming process, but formu-
lating an accurate thermodynamic and/or transport model is
non-trivial.

7 Numerical implementation

In this section, we give details on the numerical implementa-
tion of the PC-SAFT equation, the determination of liquid–
liquid equilibria and interfacial tension for polymer blends
using the various thermodynamic models and solution to the
Cahn–Hilliard equation.

7.1 Pressure-dependence of PC-SAFT

As PC-SAFT is explicitly written in terms of the volume and
temperature of the system, in order to obtain the relevant
thermodynamic properties at a certain pressure ( p0), tempera-
ture (T0) and composition (x0), assuming it is in a single phase,
the following optimisation problem needs to be solved:

min
V

aðx0;V;T0Þ þ
p0V

NAkBT
: (73)

The solution to this optimisation will be the equivalent to the
solution of:

@a

@V
þ p0

NAkBT
¼ 0; (74)

in the present work this is solved using the least-squares solver
in SciPy.84 We point out that implementing the SAFT associa-
tion term within this formalism involves two layers of iterative
numerical procedures, incurring considerable computational cost.

7.2 Determining liquid–liquid equilibria of polymer blends

Before even implementing any of the thermodynamic models
within the Cahn–Hilliard equation, it is useful to obtain the
phase diagram of the system to determine whether or not phase
separation will occur. The conditions for thermodynamic
equilibria are already well-known:

Ta = Tb, (75)

pa = pb, (76)

mi,a = mi,b 8i A {1,2}. (77)

where a and b are two hypothetical phases. Within the models
discussed in Section 6, the temperature of the two phases can
already be set and, in the case of the Flory–Huggins equation
and UNIFAC-FV model, these models are pressure-independent.
This leaves only eqn (77), which can be used to determine the
composition of the two phases. von Solms et al.85 have proposed
a method developed specifically for polymer systems and applied
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it to a variant86 of PC-SAFT; however, for the blends of interest
here, we find that simply solving for the Gibbs Tangent Plane is
adequate to solve for the compositions of the two phases.

7.3 Cahn–Hilliard model

In the present work, the non-dimensionalised Cahn–Hilliard
equations given by eqn (12) and (13) are solved using the open-
source finite-element-based declarative PDE solver FEniCS87

version 2019.1.0 using the Ocellaris 2019.1.0 Singularity
container.88

All source terms are treated implicitly. The LU solver within
the ‘‘NewtonSolver’’ environment is selected with an absolute
tolerance of 10�16 and relative tolerance of 10�10. FEniCS
and other solver codes also enables users to employ iterative
methods which would be useful for larger and more complex
systems. Periodic boundary conditions are applied. Details
regarding the various simulation parameters can be found in
Table 3. The initial condition of the f1 field is set uniformly at
the value of f1,0 specified and perturbed with a random noise
variable of magnitude 0.01 to trigger demixing.

The simulation data are then exported as a series of VTK
files and post-processed using ParaView 5.6.1. The default
‘‘Cool to Warm’’ color scheme is used where reds and blues
correspond to regions rich in species 1 and 2, respectively.

The interested reader is advised to refer to Wodo and
Ganapathysubramanian89 for a comprehensive discussion on
the numerical solution of the Cahn–Hilliard equation. Various
open-source solvers in addition to FEniCS such as FiPy90,91 or
MOOSE92 have been used to solve similar problems. PFHub93 is
another excellent resource for problems involving phase-fields.

To compute the interfacial tension, a simplified one-
dimensional simulation is carried out on a small domain and
run until the system reaches equilibrium such that there is only
a single interfacial region in the domain. The integral given by
eqn (15) is computed at each timestep using the in-built
integration functionality within FEniCS. It is also possible to
evaluate the integral offline using ParaView or exporting the
data and implementing a suitable quadrature scheme.

8 Validation

We consider two validation cases. The first case, ‘‘Case 1’’, is
from Vasishtha and Nauman,9 and the second, ‘‘Case 2’’, is
from He and Nauman.8 A summary of all the relevant material
and simulation parameters can be found in Table 1. The
simulations in the original study were performed in 2D, hence
2D simulations shall be exclusively employed in this section.

This is also a convenient junction to consider two
aspects of the model. First, as both validation cases employ

the Flory–Huggins equation, we can consider how various
approximations of the Flory–Huggins equation impact the
numerical solution. Second, we can consider the impact of
the mobility coefficient by using either eqn (25) or eqn (26).

We explore the following approximations to the Flory–
Huggins equation:

(1) ‘‘Heat of Mixing’’ approximation94 where the entropic
contribution of the Flory–Huggins equation is neglected:
Dgmix,m E w12f1(1 � f1).

(2) Least-squares curve-fitted quartic polynomial approxi-
mation Dgmix,m E f (f1,f1

2,f1
3,f1

4)
(3) Taylor series expansion of the full Flory–Huggins

equation: Dgmix;m � Dgmix;mð0:5Þ þ
Dg0mix;mð0:5Þ

1!
ðf1 � 0:5Þþ

Dg00mix;mð0:5Þ
2!

ðf1 � 0:5Þ2 þ . . .

(4) Taylor series expansion of the logarithmic terms only:

Dgmix;m �
f1

N1
ðaðf1; f1

2; . . .ÞÞ þ 1 � f1

N2
ðbðf1; f1

2; . . .ÞÞ þ w12f1

ð1 � f1Þ, where a(f1,f1
2,. . .) and b(f1,f1

2,. . .) are the expan-
sions about f1 = 0.5 for lnf1 and ln(1 � f1) respectively.

(5) Least-squares curve-fitted symmetric quartic double-well
potential: Dgmix,m E Af1

2(1 � f1)2.
A summary of the various runs and run labels can be found

in Table 2.
Snapshots from our simulations are presented in Fig. 2; the

snapshots of the benchmark simulations for comparison can
be found in the cited ref. 8 and 9. Cases (a) and (c) in Fig. 2
correspond to the benchmarking simulation and we are able to
reproduce those results reasonably well.

As previously discussed, the mobility model given by
eqn (25), which restricts mass transfer to the interface, results
in a slower rate of demixing and Ostwald ripening compared to
the outcome when a constant mobility model given by eqn (26)

Table 1 Summary of simulation parameters for benchmarking test cases

Test case f1,0 w12 N1 N2 x0 t0 t̃final Domain size Mesh resolution Dt̃

Case 1 0.5 0.0075 400 400 1.13 � 10�8 m 6.4 � 10�6 s 400 000 128x0 128 � 128 2.0
Case 2 0.77 0.004 800 1400 20 � 10�8 m 4 � 10�6 s 500 000 40x0 80 � 80 2.0

Table 2 Summary of Flory–Huggins approximations and mobility models
explored

Mobility
model Approximation Label

Eqn (25) Full Flory–Huggins Var-Full FH
Eqn (26) Full Flory–Huggins Con-Full FH
Eqn (25) Heat of mixing Var-Heatmix
Eqn (26) Heat of mixing Con-Heatmix
Eqn (25) 4th order curve fit Var-Curvefit4
Eqn (26) 4th order curve fit Con-Curvefit4
Eqn (25) Taylor expansion of logarithmic terms Var-LogTaylor
Eqn (26) Taylor expansion of logarithmic terms Con-LogTaylor
Eqn (25) Taylor expansion of full Flory–Huggins Var-FullTaylor
Eqn (26) Taylor expansion of full Flory–Huggins Con-FullTaylor
Eqn (25) Symmetric double well potential Var-Sym
Eqn (26) Symmetric double well potential Con-Sym
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Fig. 2 Results of benchmarking cases for different Flory–Huggins approximations. The labels denote the adopted mobility model and Flory–Huggins
approximation; see Table 2 for details. Each snapshot is taken at the end of the simulation (t̃final as given in Table 1), except where indicated. The colour
bar range is restricted to between 0.0 and 1.0 for all images.
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is used. This is evident from how the runs in Fig. 2 using a
constant mobility have much larger domains or have the same-
sized domains at earlier times. The evolution of GSystem as given by
eqn (7) which also represents the dynamical behaviour of the system
can be seen in Fig. 3. We see that the morphology of the blend is not
a function of mobility model, however, the dynamics can be
impacted/unphysical if a suitable model is not used.30,35

The different approximations of the Flory–Huggins equation
reveal a variety of different features and requirements of the
free energy function. First, all the approximations resulted
in numerical instability especially with the variable mobility
model for Case 2. The exception to note is for the cases
involving the symmetric double-well potential where 3/4 of
the simulations terminated early not because of numerical
instability during the emergence of a pattern, but rather
because no pattern was forming.11

When the approximation does not have two minima within
f1 A [0,1] such as in the case of heat-of-mixing’’ approximation

or possibly having the minima outside the range f1 A [0,1] in
the case of the 4th-order curve fit (an artifact arising from
the regression process), the local mole fractions may not be
conserved even though the total mole fraction is conserved. In
the case of the heat-of-mixing approximation, the violation is
significant with large values of f1 at each cell e.g. B�1000 and
larger. For the 4th-order curve fit approximation, the violation
is much smaller, of order B5–10% from 0–1 for Case 2. The
Cahn–Hilliard equation tracks GSystem which is decreasing
monotonically by demixing (which decreases the homogeneous
free energy) and Ostwald ripening which results in coarsening
and a decrease in the interfacial area. In the case of the heat-of-
mixing approximation, not only does f1 locally diverge to large
numbers comparatively quickly, but no Ostwald ripening is
noticeable as the system is able to minimise the total Gibbs
energy by generating increasingly large positive and negative
cell mole fraction values which strongly reduces the homo-
geneous free energy, making the effects of domain coarsening
minuscule in comparison.

These result indicates that, so long as the shape of the Gibbs
free energy of mixing (along with its local minima) is appro-
priately captured by an approximation, the dynamic behaviour
of the system should not be significantly different, thus demon-
strating the validity of using a Redlich–Kister approximation of
both PC-SAFT and UNIFAC-FV.

9 Test-cases

Within this section, PS/PMMA and PS/PB blends will be ana-
lysed in the context of the Cahn–Hilliard framework. These
systems were selected primarily because of the wealth of
literature available with respect to their blend morphology,
phase behaviour and model parameters. Whilst all group-
related parameters needed within the UNIFAC-FV model are
readily available,48 the values of Ci (needed in eqn (40)) normal-
ised for the polymer molecular weight for PS and PMMA can be
obtained from Belfiore et al.51 The value of Ci for PB is obtained
using the group-contribution method of Holten-andersen
et al.95 Similarly, pure-component PC-SAFT parameters are
readily available within the literature66,69 although binary-
interaction parameters between polymers are obtained either
from combining rules (eqn (67)) or regression to
experimental data.

An additional benefit is that these polymer blends do not
exhibit associating behaviour66 which would otherwise increase
the complexity of the implementation of the PC-SAFT equation
of state. Exploring the role of association and other complexi-
ties, such as diblock polymers, in impacting polymer-blend
morphology is a topic of great interest.

In terms of blend morphologies, these are typically obtained
from solvent-cast polymer films that undergo compositional
quenching through flashing. These can be used as the bench-
mark for comparing experimental morphologies to those
obtained from simulations.6,10,96 However, due to numerical
instabilities, we are not able to directly reproduce the

Fig. 3 Evolution of GSystem over time for Cases 1 and 2 (see Table 1) using
the full Flory–Huggins equation as the homogeneous free energy
expression.
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experimental data from works such as Ton-That et al.,97 Li
et al.98 as the polymer chain lengths used in most experimental
studies are prohibitively large. Consequently, the material and
simulation parameters, which are outlined in Table 3, were
selected so as to ensure that stable numerical solutions are
obtained.

In the first instance, we examine the polymer thermo-
dynamics and phase behaviour obtained using the different
approaches discussed in Section 6. Developing on this, we
present simulation results for 1-3D cases to illustrate the type
of morphology data that can be extracted. Typical values for the
absolute time and length scales for the simulation are O(1 s)
and O(1 mm) respectively. We find that 2D simulations are
adequate to describe the morphology of the system and present
a variety of 2D results to compare the various thermodynamic
models.

9.1 Polymer thermodynamics and phase behaviour

It is useful to first analyse the predicted thermodynamic
behaviour when using the different models prior to implement-
ing these within the Cahn–Hilliard system to determine if we
expect to observe phase splitting. The predicted LLE for oligo-
mer blends of PS/PB and PS/PMMA can be observed in Fig. 4b.

As we can see, for the same system, the different thermo-
dynamic models can predict drastically different phase behav-
iour, highlighting the importance of selecting a model
appropriately. This is particularly true when comparing the
predictions made using the PC-SAFT equation; it is clear the
binary interaction parameter, kij, has a very large influence on
the predicted behaviour.

For the PS/PB blend as shown in Fig. 4a when using UNIFAC-
FV or the Flory–Huggins equation, we do not accurately predict
the experimental data, but do correctly predict that the polymer
blend is of type I101,102 and exhibits an UCST within this
temperature range. At lower temperatures (closer to the condi-
tions which will be examined in this study), when using either
UNIFAC-FV and PC-SAFT (using both methods to obtain kij),
similar predictions for the compositions of the two phases
are made.

For the PS/PMMA blend as shown in Fig. 4b, when using the
various thermodynamic models, different phase behaviour is
predicted. When using the Flory–Huggins equation, no phase
split is predicted in the temperature range considered, whilst
when using UNIFAC-FV, a type VI blend is predicted which is
typically expected for longer chain lengths.101,103 However, the
PS/PMMA blend is expected to be a type I blend,101,102 which is

Table 3 Summary of material and simulation parameters for polymer blends of interest

Polymer
blend

Thermodynamic
model f1,0 N1 N2 RG/m T/K D12/m2 s t̃final

Domain
size

Mesh
resolution Dt̃

PS/PB F-H 0.5 50 50 4.5 � 10�9 298 1 � 10�9 5000 100x0 500 � 500 1.0
UNIFAC
PC-SAFT (CR)
PC-SAFT (Fitted)

PS/PMMA F-H 0.25 500 500 1.4 � 10�8 472 1 � 10�11 150 000 100x0 500 � 500 1.0
PS/PMMA UNIFAC 0.25 25 25 3.2 � 10�9 472 1 � 10�9 7250 100x0 500 � 500 1.0
PS/PMMA PC-SAFT (CR) 0.25 25 25 3.2 � 10�9 472 1 � 10�9 10 000 100x0 500 � 500 1.0
PS/PMMA PC-SAFT (Fitted) 0.25 100 100 6.4 � 10�9 472 1 � 10�11 42 000 100x0 500 � 500 1.0

Fig. 4 Predicted liquid–liquid equilibria for different polymer blends of interest using the PC-SAFT with kij obtained from either the Hudson–McCoubrey
combining rule (red, dashed) or fitting to experimental data (red, solid), UNIFAC (blue, solid) and Flory–Huggins (black, solid) equations. (a) Predicted LLE
of a PS(1960)/PB(2350) blend. Empty circles represent experimental cloud points obtained from Lin et al.99 For PC-SAFT: kFitted

ij = �0.0003 and
kCR

ij = 0.0001. (b) Predicted LLE of a PS(1390)/PMMA(6350) blend. Empty squares and crosses indicate conditions where a single phase or a two-phase
split (respectively) is observed, (obtained from Kressler et al.100). For PCSAFT: kFitted

ij = 0.0160 and kCR
ij = 0.0180.
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predicted when using PC-SAFT, regardless of which approach is
used to obtain the kij parameter.

The substantial differences in predicted behaviour can
perhaps be rationalised by the complex nature of the interac-
tions between the PS and PMMA monomers, wherein the unlike
interactions are strongly dissimilar from the like interactions,
due to the presence of the polar ester groups present in PMMA.
Adjusting the kij value using experimental data allows one to
account implicitly for these interactions when using PC-SAFT
but they are not well captured using the other equations, nor by
PC-SAFT using the Hudson–McCoubrey combining rule, since
this expression is based on an assumption that only London
dispersion interactions are present.

For larger blends where experimental data are not available,
we can, nevertheless, examine the Gibbs free energy of mixing
for the polymer blends of interest using the various thermo-
dynamics models to enhance our understanding of the thermo-
dynamic behaviour. The Gibbs free energy of mixing for the
blends of interest is shown in Fig. 5. For the PS/PB blend, the

four models lead to rather similar predictions. This similarity
can be linked to the previous observation that when these
models are used, similar phase-behaviour is predicted (see
Fig. 4a). In contrast to the Flory–Huggins equation, in spite
of having equal chain lengths, using either UNIFAC-FV or
PC-SAFT, asymmetric curves for the Gibbs free energy of mixing
are generated. The maxima in the Gibbs free energy of mixing
predicted using UNIFAC-FV is slightly shifted to a volumetric
fraction of 0.6. For both approaches with PC-SAFT, the predicted
minima are of different magnitude.

On the other hand, analogous to the LLE for PS/PMMA, the
four models lead to significantly different predictions for the
Gibbs free energy of mixing for the PS/PMMA blend as shown in
Fig. 5b. Values obtained using the Flory–Huggins equation are
orders of magnitude smaller than those obtained using either
UNIFAC-FV or PC-SAFT (Fitted), although, PC-SAFT, in either
approach, can also be used to predict an almost symmetrical
Gibbs free energy of mixing where the two phases are predicted
to be almost pure PS and PMMA, respectively. One can also see
that the Gibbs free energy of mixing also changes drastically
when one uses a different value for kij in PC-SAFT, which likely
a reflection of the different predicted UCST between the
two approaches in Fig. 4b. In contrast to PC-SAFT and the
Flory–Huggins equation, when UNIFAC-FV is used, a highly
asymmetric Gibbs free energy of mixing is obtained where, not
only is the maximum shifted towards 0.3, but the minima are of
significantly different magnitudes. In addition, the location of
these minima are quite asymmetrical as well, with one being
close to pure PMMA and the latter only being at a volumetric
fraction of 0.85, in contrast to the other models which all have
minima close to almost-pure compositions. These drastic
differences are expected to be reflected in the behaviour pre-
dicted by the Cahn–Hilliard system.

Overall, all thermodynamic models considered predict
phase-splitting at the conditions considered; however, the
composition at which these minima occur can be drastically
different. The impact of this is examined in the subsequent section.

9.2 Interfacial tension

Before discussing our IFT calculations, it is important to reflect
on the nature of SGT and its use in describing experimentally
observed fluid–fluid IFTs. It has long been recognised that,
used in traditional predictive fashion, the quality of the descrip-
tion of the IFT is lacking in quantitative accuracy.29,30,104 This
stems from the calculation of the gradient energy parameter
(or the influence parameter, its analogue in the vdW represen-
tation of the theory); see, for example, ref. 105 for a helpful
summary of the literature on this point. Consequently, it is
more usual to use SGT as a correlative approach to describe
fluid–fluid IFT, rather than a predictive one, as we adopt in our
current study. Indeed, the current popularity of the approach
owes much to the works of Carey and co-workers29,106,107 who
introduced two innovations to the modelling. The first was to
use the (then) recently published Peng and Robinson equation
of state108 to provide the fluid thermodynamics; in common
with other cubic EoS, this equation is usually parameterized in

Fig. 5 Predicted Gibbs free energy of mixing at atmospheric pressure for
different polymer blends of interest using the PC-SAFT with kij obtained
using either eqn (67) (red, dashed) or by fitting using experimental LLE data
(red, solid), UNIFAC (blue, solid) and Flory–Huggins (black, solid) equations.
(a) Predicted Gibbs free energy of mixing for a of a PS/PB blend with N1 = N2 =
50, at T = 298 K. For PC-SAFT: kFitted

ij = �0.0014 and kCR
ij = �0.0001.

(b) Predicted Gibbs free energy of mixing for a of a PS/PMMA blend with
N1 = N2 = 500, at T = 472 K. For PC-SAFT: kFitted

ij =�0.0125 and kCR
ij =�0.0180.
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such a way as to guarantee exact capture of experimental pure-
component critical temperatures and pressures. The second,
crucial advance was to ‘‘invert’’ the application of the theory by
using experimental IFT data to back-calculate the influence
parameter (the analogue of the gradient energy parameter
in the vdW representation of SGT), instead of inferring it based
on the molecular model.105 In other words, k is taken as an
adjustable parameter, leading to agreement between theory
and experiment.109 In our current work, k is not treated as
adjustable; with this in mind, the provision of a good descrip-
tion of the IFT represents a stern test of our (predictive)
approach.

The dependence of the IFT of PS/PMMA blends on PS
molecular weight is explored, under isothermal conditions
at T = 472 K, using experimental data from Anastasiasdis
et al.110 as a reference; the number average molecular weight
of the PMMA is 10 000 Da. The descriptions obtained using
the UNIFAC and PC-SAFT models are presented in Fig. 6. (The
Flory–Huggins model is omitted from this discussion since
it does not demonstrate phase splitting at the conditions
considered, when using the Hildebrand solubility parameter
approach to compute w12.)

The qualitative trends from all three predictions reflect that
of experiment, featuring a rapid increase at low PS molecular
weight, plateauing to a near constant value at high PS mole-
cular weight. However, quantitatively, significant differences
are seen, depending which of the three approaches is used for
the fluid thermodynamics. k is sensitive to Dgmix; given the
relative magnitudes of Dgmix obtained using the different
approaches (see Fig. 5b) one would expect the IFTs predicted
using UNIFAC and PC-SAFT (CR) to be larger than those using
PC-SAFT (Fitted) and this is indeed what is observed. When
using either UNIFAC or PC-SAFT (CR) to provide the thermo-
dynamics, compared to experiment the IFT is overpredicted by
approximately an order of magnitude; by contrast, the agree-
ment between the predictions using PC-SAFT (Fitted) and
experiment is rather good.

It is interesting to consider the relative success of the
different predictions of IFT from an alternative perspective,
provided by considering the differences between experimental
and theoretical phase diagrams and, in particular, the locations
of critical solution points. The IFT represents the energy cost to
the system of sustaining an interface at the boundary between
two coexisting phases; at a critical point, the distinction
between the two phases disappears, whereby L 0 as the
system approaches the critical point. A consequence of this is
that, even if the dependencies of the IFT are well captured by
the theory, the theoretical predictions of the IFT for a particular
fluid should be quantitatively accurate only if the critical point
of the model fluid (underlying the theory) coincides exactly with
the experimental critical point. For example, if the critical
temperatures differ, one should expect a systematic deviation
between experimental and predicted IFTs as a function of
temperature. This is not an issue for simple fluids and their
mixtures, where an appropriate choice of EoS can ensure
accurate agreement between theoretical and experimental
critical temperatures and pressures. However, for more-complex
mixtures, such as polymer blends, it becomes more difficult to
capture critical points - indeed, experimental determinations of
critical solution points may be unavailable – whereby it becomes
an important consideration. Although we do not have computed
and experimental phase diagrams of any of the PS/PMMA(10 000)
blends considered in Fig. 6 available for comparison, one may
expect a broadly similar picture to that provided in Fig. 4b, for the
PS(1390)/PMMA(6350) blend. Reasonable quantitative agreement
in the value of the UCST of the PS/PMMA blend is obtained using
PC-SAFT (Fitted); this is reflected in the reasonable predictions of
the IFT evidenced in Fig. 6. In contrast, the UCST is significantly
overestimated using PC-SAFT (CR), while the UNIFAC description
yields no UCST at all within the temperature range considered;
indeed, the trend of the phase diagram appears to suggest a lower
(rather than upper) critical solution point.

As a final comment in relation to the IFTs, we note that for
polymer mixtures at lower molecular weights, such as the
mixtures considered within the first few data points of Fig. 6,
the neglect of kS is a less-satisfactory approximation, which may
impact on the quality of the IFT predictions. For those based on
UNIFAC and PC-SAFT (CR), which are in any case quantitatively
poor, this is not important but it may be a relevant considera-
tion in relation to the predictions obtained using PC-SAFT
(Fitted).

9.3 1–3D simulations

The dimensionality of the simulation is considered by explor-
ing the PS/PB blend at different values of f1,0 using the Flory–
Huggins equation for simplicity. A lower mesh resolution
(100 cells per vertex) is used to minimize computational
expense especially for the 3D cases. As evident from the 2D
case in Fig. 7 and 8, the lower mesh resolution does not
compromise on the quality of the morphology obtained from
the simulation.

Whilst it is clear that the 1D simulations are inadequate to
properly understand the morphology of the system, 2D

Fig. 6 PS-molecular-weight dependence of the interfacial tension of PS/
PMMA(10 000) blends at T = 472 K. Symbols represent predictions
obtained using UNIFAC or PC-SAFT (as indicated) for the fluid thermo-
dynamics (with connecting lines as a guide for the eye). The experimental
data are taken from Anastasiadis et al.110
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simulations are able to provide the necessary insight for these
binary systems considering that the co-continuous morphology
in Fig. 7 and the particulate morphology Fig. 8 are evident in
the 2D case. We also note that the 2D PS/PB simulation at f1 =
0.25 yields an almost identical morphological result to the
PS/PMMA case subsequently presented which indicates that
values of N1/N2 and w12 do not significantly impact the mor-
phology with the value of f1 being the important factor in the
symmetric case. This result is not entirely unexpected as there
are only two phases present, which severely restricts the
complexity of the observable morphologies. For ternary or
multicomponent mixtures, the morphology can be significantly
more complex10,11 and 3D simulations may be necessary to
resolve important structural details.

9.4 2D simulations

As shown in Fig. 5 the magnitudes of Dgmix,m can vary signifi-
cantly between the various thermodynamic models for the
same mixture. As such, estimating the appropriate value of k
for each case is important as it is physically inappropriate to
use the same value of k when the Gibbs free energy of mixing
function indicates that the interfacial energy significantly var-
ies as well. If one were to obtain k rigourously, this would
involve the use of the method of Ariyapadi and Nauman,32

as previously discussed, which can result in an excessively
complex expression for k. When obtaining k for the NRTL model,

Zimmermann et al.18 used order-of-magnitude estimates.
Other studies instead specified a constant value of k in a
semi-empirical fashion.13,111

To obtain a more-rigourous expression for k whilst retaining
the simplicity of the expressions given by ref. 32, we introduced
a regression step at the start of the simulation which curve-fits
the Flory–Huggins equation with w12 as the free parameter to
the computed values of Dgmix,m from a given thermodynamic
model. This step yields an approximate value of w12 which can
then be passed into eqn (19). If both the Cahn–Hilliard model
and thermodynamic equations were defined in terms of mole
fractions, a similar estimation procedure could be carried out
directly using a zeroth order Redlich–Kister expansion as the
residual component for both the zeroth order Redlich–Kister
equation and the Flory–Huggins equation are conceptually
similar. Additional details on the estimation procedure with
exemplar plots of the temperature dependence of k can be
found in the ESI.†

Consistently for both blends, the various thermodynamic
models considered yield comparable results for the blend
morphology. For PS/PB blends, both phases precipitate out
simultaneously and a web-like co-continuous structure is
formed. For PS/PMMA blends, the PS phase precipitates out
first forming globular structures that undergo Ostwald ripening
as time progresses. The resultant morphology for these binary
systems arguably is more a function of the initial composition

Fig. 7 1, 2 & 3D blend simulations for PS/PB blends at f1,0 = 0.5. Snapshots at t̃ = 5000 are presented. In the case of the 3D simulation, the isosurface at
f1 = 0.5 is presented.

Fig. 8 1, 2 & 3D blend simulations for PS/PB blends at f1,0 = 0.25. Snapshots at t̃ = 5000 are presented. In the case of the 3D simulation, the isosurface at
f1 = 0.5 is presented.
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f1,0 as opposed to the actual species present as discussed
previously. The consistency of the morphology for PS/PMMA
blends for the various Flory–Huggins and PC-SAFT is interes-
ting as the values of N1 and N2 specified for the different
equations varied significantly. The similarity in morphologies
could also be attributed to the fact that, as shown in Fig. 5a, the
values of Dgmix,m need to be comparable to the energies
predicted by the Flory–Huggins equation for the simulation
to be numerically stable. Hence, comparable free energy func-
tions are being passed into the simulations. Whilst it would be
desirable to compare systems with the same values of N1 and
N2, this is challenging due to numerical instabilities.

10 Conclusions and outlook

It was the goal of this work to present how the Cahn–Hilliard
equation can be applied to model polymer blends at a

continuum scale. As demonstrated in the first few sections,
the Gibbs free energy of mixing function Dgmix,m is central in
formulating a well-posed model. To that end, we have provided
an extensive overview of various thermodynamic models that
can be employed to supply Dgmix,m, taking particular care
to ensure consistent notation throughout. Even though the
polymer blends we have explored with our approach are
comparatively simple binary systems, the Cahn–Hilliard and
thermodynamic models can all be readily extended, allowing
our combined approach to be applied to multi-component
blends, and to account for more-complex physics such as
intermolecular association, and hydrodynamics.

Approximating Dgmix,m with functions of various forms and
assuming a constant mobility coefficient does not impact
the accuracy of the numerical solution of the Cahn–Hilliard
equation, as long as the approximation captures the general
shape of Dgmix,m. This result is essential for integrating UNIFAC
or PC-SAFT into the Cahn–Hilliard equation, since a direct

Fig. 9 PS/PB blend simulations for the various thermodynamic models. The colour bar range is restricted to between 0.0 and 1.0 for all images.
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integration is computationally intractable due to the complexity
of these thermodynamic models. Instead, by employing a
Redlich–Kister equation, a high-accuracy approximation of
Dgmix,m as predicted by the various thermodynamic models
can be captured and passed into the Cahn–Hilliard model.
Assuming a constant mobility results in a much faster rate of
mass transfer, which adversely impacts the dynamics of the
process. However, if one is interested only in the morphology,
this need not be of concern. Adopting the Redlich–Kister
approximation also allows for the gradient energy parameter
to be estimated conveniently for the different thermodynamic
models, avoiding the complexity introduced by directly following
the methodology of Ariyapadi and Nauman.32

Whilst both the Flory–Huggins and the UNIFAC-FV equation
are readily extendable to other polymer species, the PC-SAFT
equation requires an additional parameter to be estimated. The
Hudson–McCoubrey combining rule can be used directly, or
modified to include an additional empirical correction based

on experimental liquid–liquid equilibrium (LLE) data. For the
PS/PB blend, where the pair of polymers involved are similar in
nature, the latter approach yields better results but the simple
combining rule still provides good agreement with experi-
mental LLE data. The predicted phase behaviour for this
mixture obtained using the Flory–Huggins and UNIFAC-FV
equations is similar. However, in the case of the PS/PMMA
blend, for which the like–like interactions are significantly
dissimilar from the unlike interactions, only the PC-SAFT
approach with the empirical correction yields accurate results;
when any of other models is used, substantially different
behaviour is predicted. Accordingly, whenever suitable LLE
data are available, one should adopt this approach in preference
to the others considered.

The importance of the choice of the thermodynamic model
is also noticeable for the computation of the interfacial tension.
Where the thermodynamic model is reasonably accurate,
there can be quantitative agreement between predicted and

Fig. 10 PS/PMMA blend simulations for the various thermodynamic models. The colour bar range is restricted to between 0.0 and 1.0 for all images.
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experimental values of the interfacial tension and by the same
reasoning, where the model is inaccurate, significant deviations
can arise. Since the use of PC-SAFT requires the availability of
experimental LLE data to make the empirical correction in order
to describe well the interfacial tension, its predictive capability is
reduced. In that regard, advances in SAFT-based approaches
such as the SAFT-g Mie group contribution method112–114 and/
or other predictive thermodynamic models could avoid this issue
and provide an avenue to predictively estimate the interfacial
tension.105

Due to the simplicity of the possible morphologies that can
be formed in a binary mixture, 2D simulations are adequate
for a robust morphological description. Consequently, both
PS/PMMA and PS/PB blends yield almost identical morpholo-
gies given the same the initial volume fraction f1,0 irrespective
of the thermodynamic models used, as demonstrated by
the similarity of the morphologies from 2D simulations as
presented in Fig. 7–10.

The work of Cahn and Hilliard has been truly seminal, with
well over 7000 citations of their original 1958 paper26 to date.
Yet, with the ever-increasing computational power available to
modern-day researchers allowing its application to progres-
sively more-complex systems and scenarios, its relevance today
is arguably greater than ever. The Cahn–Hilliard equation and
its variants, which can capture additional physics such as
hydrodynamics and electrostatics, provide a remarkably power-
ful modelling approach that can be used to study a wide range
of systems, not limited to polymers, to obtain important
properties such as the interfacial tension and morphology.
A suitable thermodynamic model is essential to formulate a
well-posed model and the various thermodynamic models
explored in the present work can be extended to study multi-
component mixtures comprising more-complex species such as
block co-polymers or charged polymers. The interested reader
could also develop and incorporate a thermodynamic model
suitable for their application and incorporate it in the manner
described in the present work. This presents an exciting oppor-
tunity to explore a variety of more-complex systems in a range
of application settings.
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