Issue 48, 2021

Concanavalin A: coordination diversity to xenobiotic metal ions and biological consequences

Abstract

The binding ability of lectins has gained attention owing to the carbohydrate-specific interactions of these proteins. Such interactions can be applied to diverse fields of biotechnology, including the detection, isolation, and concentration of biological target molecules. The physiological aspects of the lectin concanavalin A (ConA) have been intensively studied through structural and functional investigations. X-ray crystallography studies have proven that ConA has two β-sheets and a short α-helix and that it exists in the form of a metalloprotein containing Mn2+ and Ca2+. These heterometals are coordinated with side chains located in a metal-coordinated domain (MCD), and they affect the structural environment in the carbohydrate-binding domain (CBD), which interacts with carbohydrates through hydrogen bonds. Recent studies have shown that ConA can regulate biophysical interactions with glycoproteins in virus envelopes because it specifically interacts with diverse polysaccharides through its CBD (Tyr, Asn, Asp, and Arg residues positioned next to the MCD). Owing to their protein–protein interaction abilities, ConA can form diverse self-assembled complexes including monomers, dimers, trimers, and tetramers, thus affording unique results in different applications. In this regard, herein, we present a review of the structural modifications in ConA through metal-ion coordination and their effect on complex formation. In recent approaches, ConA has been applied for viral protein detection, on the basis of the interactions of ConA. These aspects indicate that lectins should be thoroughly investigated with respect to their biophysical interactions, for avoiding unexpected changes in their interaction abilities.

Graphical abstract: Concanavalin A: coordination diversity to xenobiotic metal ions and biological consequences

Article information

Article type
Perspective
Submitted
16 ต.ค. 2564
Accepted
16 พ.ย. 2564
First published
22 พ.ย. 2564

Dalton Trans., 2021,50, 17817-17831

Concanavalin A: coordination diversity to xenobiotic metal ions and biological consequences

H. Jang, C. Lee, Y. Hwang and S. J. Lee, Dalton Trans., 2021, 50, 17817 DOI: 10.1039/D1DT03501K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements