Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 22 2561. Downloaded on 28/1/2569 19:24:25.

(cc)

RSC Advances

ROYAL SOCIETY
OF CHEMISTRY

View Article Online

View Journal | View Issue,

i ") Check for updates ‘

Cite this: RSC Adv., 2018, 8, 18771

Received 16th January 2018
Accepted 23rd April 2018

DOI: 10.1039/c8ra00464a

Supramolecular hydrogels encapsulating
bioengineered mesenchymal stem cells for
ischemic therapyf

Byung Woo Hwang,? Young-Eun Kim, ©2° Mungu Kim, Seulgi Han,? Seoyeon Bok,”
Kyeng Min Park,® Annadka Shrinidhi,® Ki Su Kim,*® G-One Ahn®

and Sei Kwang Hahn (& *2¢

We developed supramolecular hyaluronate (HA) hydrogels to encapsulate genetically engineered
mesenchymal stem cells (MSCs) for the treatment of limb ischemia. In vivo angiogenic factors could be
produced stably by the bioengineered MSCs (BMSCs) within the supramolecular hydrogels showing
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Clinical limb ischemia (CLI) is the severe manifestation of
peripheral arterial disease, which is one of the most common
diseases in the population over 70 years old, up to 20%."
Especially for 30% of the patients who suffer from CLI, ampu-
tation is the only remaining method, because the conventional
treatments such as medication, endovascular therapy and
arterial surgery are not very helpful.> Revascularization is
necessary to restore the damaged tissue without amputation.
Revascularization is a sequential and sophisticated process
related to various signaling molecules participating in matrix
reconstruction, migration and assembly.> To accelerate the
revascularization in ischemic areas, therapeutic treatment aims
to deliver concentrated angiogenic factors locally, such as
vascular endothelial growth factor A (VEGF-A) and hepatocyte
growth factor (HGF). VEGF-A is a well-known angiogenic factor,
participating in the early stage of vessel sprouting. HGF is also
one of the representative angiogenic factors. HGF is involved in
mitogenesis, migration of epithelial cells, as well as their 3-
dimensional organization and generation of new blood capil-
laries.* Neovascularization is known to be synergistically
promoted by the combined delivery of HGF and VEGF-A,
because their signaling pathways are co-regulated during
cellular migration and endothelial morphogenesis.?
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effective vascular repair and enhanced blood perfusion.

With the progress of tissue engineering technology, thera-
peutic neovascularization has been investigated with 3
different strategies for the efficient angiogenic factor delivery.®
First, angiogenic factors have been directly delivered to
contribute to the formation of blood vessels. However, there
have been few clinical trials for the direct protein delivery,
since their activities cannot be maintained for a sufficient
time to regenerate blood vessels.® Second, gene therapy has
been investigated for the manipulation of host chromosomes
by gene delivery with viral or non-viral vectors including
adeno-associated virus, lenti-virus and synthetic polymer
vesicles.” This can raise the angiogenic protein concentration
efficiently, but the relevant clinical applications have been
limited for limb ischemic diseases.® As is well known, there is
a considerable risk of an adverse immune response and the
overexpression of certain angiogenic factors causing a carci-
nogenic environment.”®

Lastly, cell therapy has been performed using stem/
progenitor cells which can differentiate into vasculature or
secrete angiogenic factors.' Cell therapy has attracted a great
attention defining individual stem/progenitor cells involved in
the revascularization processes.'* Although a few examples with
substantial improvement have been reported for the clinical
trial of cell therapy,” rapid clearance and low viability are
significant challenges for the success of cell therapy.

Recently, therapeutic cells are genetically modified for
the controlled delivery of angiogenic factors to overcome
both the low efficiency of direct protein delivery and the risk
of viral-mediated gene delivery. However, rapid clearance
and low survival rate of therapeutic cells are still technical
hurdles for further development. Diverse studies have been
actively conducted to develop various scaffolds to increase
the cell survival rate and prevent the rapid clearance
of therapeutic cells.” As an artificial extracellular matrix
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(ECM), hydrogels have been developed to support cells
providing a biocompatible environment similar with living
tissues in the body.

In this work, we hypothesized that the co-delivery of VEGF-A
and HGF released by bioengineered mesenchymal stem cells
(BMSCs) might be one of the best approaches for neo-
vascularization in ischemic diseases. BMSCs might maintain
high expression levels of HGF and VEGF-A within the artificial
ECM of hydrogels. A variety of supramolecular hydrogels have
been developed using a strong host-guest combination of
cucurbituril.’*® We previously designed a novel system for
long-term and safe delivery of therapeutic proteins by the
BMSCs encapsulated in supramolecular hyaluronate (HA)
hydrogels.'*"” Supramolecular HA hydrogels can localize and
protect genetically modified MSCs from the host immune
systems."® In addition, supramolecular hydrogels can be injec-
ted without toxic chemical reaction due to the fast crosslinking
by the strong host-guest interaction between cucurbit[6]uril (CB
[6]) and diaminohexane (DAH) attached to the HA backbone.*
We assessed the therapeutic efficacy of BMSCs releasing both
HGF and VEGF-A in supramolecular hydrogels by laser Doppler
imaging (LDI).

To achieve the high crosslinking density and facile synthesis,
we carried out mono-functionalization of CB[6], which is a big
challenge for various biomedical applications'>** (Fig. 1A).
Despite the great effort to introduce functional moieties on CB
[6],* mono-amination of CB[6] is still difficult and compli-
cated.”*** We previously reported the method to synthesize CB
[6]-HA derivative via Michael addition between thiol (SH)
modified HA and mono-allyloxy CB[6]. However, there were
unreacted thiol groups on HA backbone, resulting in self-
crosslinking by disulfide bonding.**** Thus, direct functionali-
zation of CB[6] was needed to avoid side-reaction by the reactive
SH group.
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Fig.1 Schematic illustration for (A) sequential synthesis of mCB[6]-HA
using mono-amine CBI[6] and the preparation of mCBI[6]/DAH
hydrogels, and (B) in vivo tests using BMSCs with the analysis by LDI to
investigate ischemic limb reperfusion. Black arrows indicate the liga-
tion point for hind limb surgery.
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First, mono-allyloxy CB[6] was synthesized as previously re-
ported elsewhere.**** To introduce amine groups to mono-
allyloxy CB[6], cysteamine was conjugated in the presence of
reducing tris(2-carboxyethyl)phosphine (TCEP) and potassium
persulfate (K,S,0g) as an initiator. The product, mono-
aminated CB[6] (mCB[6]) was purified by washing with meth-
anol and acetone sequentially.

In this reaction, TCEP was essential to prevent the formation
of the inclusion between mCB[6] and cysteamine. Since cyst-
amine, a disulfide form of cysteamine, interacts more strongly
with the guest-molecule of CB[6] than DAH, CB[6] cannot make
the host-guest interaction with DAH for the inclusion forma-
tion. After reaction at 70 °C for 24 h, we could confirm mCB[6]
was successfully synthesized and the inclusion of cystamine in
mCB[6] was inhibited in the presence of TCEP (Fig. 2A and S17).
The "H NMR spectrum showed the characteristic peaks of
amine-arms (-OCH,CH,CH,-S-CH,CH,-NH,) at ¢ 3.1, 2.77,
2.63, 2.22 (Fig. 2A).

Despite the presence of mono-, di-amine and tri-
functionalized CB[6] detected in MALDI-TOF MS spectroscopy
(Fig. S1t), the majority of the compounds was found to be
mono-amine functionalized CB[6], as shown by 'H NMR
(Fig. 2A). Then, we synthesized mCB[6]-HA conjugate by using
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Fig. 2 'H NMR analysis for (A) mCBI6], the formation of its inclusion
with spermine, and (B) mCBI[6]-HA.
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the simple EDC chemistry. There was no unreacted group in the
final product. Moreover, the substitution rate was incredibly
enhanced up to 28% (Fig. 2B). DAH-HA conjugates, a counter-
part to mCB[6]-HA, were synthesized and characterized as we
described elsewhere.>® According to the MTT assay (Fig. S21t),
the hydrogel precursors of mCB[6]-HA and DAH-HA showed
little cytotoxicity at the synthetic concentrations of the hydrogel
below 3 wt/v%.

The simple mixing of mCB[6]-HA and DAH-HA resulted in
the rapid formation of mCB[6]/DAH-HA hydrogels within 30 s.
We have synthesized hydrogels using mCB[6]-HA with a substi-
tution ratio of 7.1% and 21.5%, and confirmed in vitro degra-
dation with and without hyaluronidase for 2 weeks (Fig. S31). As
a result, the highly substituted hydrogel (21.5%) degraded by ca.
40% for 2 weeks, whereas the low substituted hydrogel (7.1%)
was decomposed by ca. 70% in the presence of hyaluronidase.
The both groups showed little degradation (less than 10%) in
the absence of hyaluronidase. In our previous study,** because
7% substituted hydrogels degraded slowly in mice for up to 3
months, the 21.5% substituted mCB[6]/DAH-HA hydrogels will
remain for more than 3 months.

We used human-derived umbilical cord MSCs, which were
kindly provided from Genexine Co. after genetic modification to
express angiogenic factors such as HGF and VEGF-A using
adenoviral vectors (Fig. 3A). MSCs expressing VEGF-A (BMSCs/
VEGF-A) and/or HGF (BMSCs/HGF) were added to the mCB[6]-
HA precursor solutions, and then mixed with the DAH-HA
precursor solution. The self-assembly of CB[6] and DAH resul-
ted in the immediate hydrogel formation encapsulating BMSCs
homogeneously (Fig. 1B). To confirm in vitro gene expression of
BMSCs with and without the mCB[6]/DAH-HA hydrogels,

A Fe¥*
MSCs ® BMSCs
+ @ @
— VEGF-A or HGF/rAd
= @
B C
4 [CJControl [] mCB[6)/DAH-H 6 [CControl [[] mCB[6)/DAH-HA
= B * T T
5 ‘ i % T m o, M
= E T = T M
E 4]l JT ‘ I [ € 4 T .
> i /- Lo [ 7| ]
<2 W s ‘ I I
T L -
I [
& 22
u |
> 1 I
il
I
I
1
0 t‘ 0

1 2 4 7 10
Time (days)

5 1 2 4 7 10 15
Time (days)

Fig. 3 (A) Genetic modification of MSCs using recombinant adenoviral
(rAd) vectors in the presence of Fe" ions to express VEGF-A and HGF.
(B) VEGF-A expression levels and (C) HGF expression levels of BMSCs
(1 x 10° cells per mL) without and with the mCB[6]/DAH-HA hydro-
gels on PET membrane transwell inserts (mesh size = 8 pum) for
specified periods over 2 weeks (mean + SD, n = 3, *P < 0.0001).
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BMSC/VEGF-A and BMSC/HGF were cultured in the hydrogel
and the expression level of VEGF-A and HGF was analysed by
ELISA for 15 days (Fig. 3B and C). As compared with the control
group, the expression of VEGF-A and HGF was not so much
different for the first and fourth days, but the difference became
significant after a week. At day 15, while the expression level of
the control group was reduced to less than one third, that of the
hydrogel group was maintained at the same level with the initial
level.

The animal model of hind limb ischemia was prepared by
excision and ligation of superficial femoral artery using 6 to 8
week old BALB/c mice anesthetized with 5% isoflurane (Fig. 1B).
After 24 h post-surgery, we subcutaneously injected various
samples of only medium (G1), 5 x 10> BMSCs/HGF in 100 uL of
medium (G2), the precursor solutions of matrixen (G3) and
mCB[6]/DAH-HA hydrogels (G4). The blood perfusion of the
ligated and the control limb was measured and compared by
laser Doppler imaging (LDI; Perimed, North Royalton, Ohio) at
the predetermined days (day 0, 2, 10 and 24) post-therapy. The
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Fig. 4 Laser Doppler imaging (LDI) analysis for the blood reperfusion
of BALB/c ischemic limb model mice after injection of BMSCs/HGF in
various carriers. (A) Representative LDI images for peripheral blood
flow in groups of mice that received media only (G1), BMSC/HGF in
media (G2), in matrixen (G3), and in CB[6]/DAH-HA hydrogel (G4) at
day 0, 2, 10, 18 and 24. The color-coded image shows the blood flow
distribution. The low or no perfusion is shown in blue and the highest
perfusion is shown in red. (B) The quantitative analysis of blood flow in
hind limbs expressed as the perfusion ratio of ischemic hind limb to the
untreated opposite limb (n = 5, **P < 0.01 vs. the control of G1). (C)
The number of animals categorized in 3 groups as fully recovered,
necrotized and amputated limbs at day 24 post-injection.
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group treated with BMSCs/HGF encapsulated in mCB[6]/DAH-
HA hydrogels showed higher blood perfusion than other groups
(Fig. 4A and B). Most of the limbs were amputated in the control
group, but only one limb was necrotized in the group of eMSCs/
HGF within mCB[6]/DAH-HA hydrogels (Fig. 4C).

Based on these results, we assessed the combination effect of
HGF and VEGF-A for ischemic limb reperfusion after subcuta-
neous injection of intact MSCs (G1), BMSCs/VEGF-A (G2),
BMSCs/HGF (G3), and BMSCs/VEGF-A + HGF (G4) mixed with
100 pL of the precursor solution of mCB[6]/DAH-HA, respec-
tively. The total population of cells in the hydrogels was 5 x 10>
per heads. As shown in Fig. 5, VEGF-A and HGF produced by
BMSCs helped the recovery of blood perfusion in the ischemic
mice. The blood perfusion after treatment with BMSCs/VEGF-A
or BMSCs/HGF was recovered more significantly than that of
the intact MSCs. The best therapeutic effect was observed in the
combination group of BMSCs/VEGF-A + HGF (Fig. 5A and B).
After 28 days post-injection, all the limbs were fully recovered in
every mouse except one mouse with gangrenous toe (Fig. 5C).
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Fig. 5 Laser Doppler imaging (LDI) analysis for the blood reperfusion
of BALB/c ischemic limb model mice after injection of various BMSCs
in mCB[6]/DAH-HA hydrogels. (A) Representative LDI images for
peripheral blood flow in groups of mice that received the intact MSC
(G1), BMSC/VEGF-A (G2), BMSC/HGF (G3), and BMSC/HGF + VEGF-A
(G4) within mCBI[6]/DAH—-HA hydrogels at day 0, 3, 7, 14 and 28 post-
injection. The color-coded image shows blood flow distribution as in
Fig. 4(B). (B) The quantitative analysis of blood flow in hind limbs
expressed as the perfusion ratio of ischemic hind limb to the untreated
opposite limb (n = 6-7, ***P < 0.001 vs. the control of G1). (C) The
number of animals categorized in 3 groups as fully recovered, nec-
rotized and amputated limbs at day 28 post-injection.
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All animal experiments were performed in accordance with the
National Institutes of Health Guide for the Care and Use of
Experimental Animals and approved by the Institutional Animal
Care and Use Committee of the Pohang University of Science
and Technology.

The biological half-life of VEGF-A and HGF in the body is less
than 50 min and 3 min, respectively.”” Despite the short half-
life, the massive administration of VEGF-A can cause the cata-
strophic blood vessel formation at the undesirable site. In
addition, c-Met, the receptor of HGF, is implicated in the
oncogenesis, which can be activated by the overexpressed
HGF.”® Thus, it is crucial to deliver an adequate level of angio-
genic factors consistently for the angiogenic therapy. Our
BMSCs/VEGF-A + HGF encapsulated in CB[6]/DAH-HA hydro-
gels might help to maintain the concentration of angiogenic
factors continuously for the treatment of ischemia.

Conclusions

We developed a new ischemic therapy system to deliver angio-
genic factors for long-term neovascularization using HGF and
VEGF-A expressing BMSCs encapsulated in supramolecular
mCB[6]/DAH-HA hydrogels. The BMSCs in the supramolecular
HA hydrogels continuously expressed both VEGF-A and HGEF,
and released the angiogenic factors for a long-term period. The
laser Doppler imaging clearly visualized the effective vascular
repair and the enhanced blood perfusion in hind-limb ischemia
model mice. Our angiogenic factor producing system using
BMSCs in the CB[6]/DAH-HA hydrogels might be a promising
candidate for various neovascularization therapies.
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