Spontaneous assembly of a class of small molecule prodrugs directed by SN38

Abstract

Small molecule self-assembling prodrugs (SAPDs) are an emerging class of amphiphilic monomers that can aggregate into supramolecular nanostructures with high drug loading identical to the individual prodrug. Despite the great progress in creating nanodrugs via nanoprecipitation, direct self-assembly of small molecule SAPDs in aqueous solution remains challenging, as proper hydrophilic-hydrophobic balance and intermolecular interactions have to be rationally considered. We report a class of small molecule SAPDs by conjugating anticancer drug SN38 as the structure-directing component with various hydrophilic auxiliaries (i.e., oligoethylene glycol (OEG) with different lengths, amino, and carboxyl groups) via a self-immolative disulfanyl-ethyl carbonate linker. Driven by π-π interactions between SN38 units, these SAPDs spontaneously assembled into well-defined fibrous nanostructures. The variations in hydrophilic domains can robustly regulate the hydrophobicity of SAPDs, as well as the morphologies and surface features of supramolecular filaments, which subsequently influence the cellular internalization behaviors. Furthermore, our study also reveals that the parent drug can be efficiently and controllably release in the presence of glutathione (GSH), exhibiting high in vitro toxicity against colorectal cancer cells. In this work, we present a delicate platform to design small molecule SAPDs that can spontaneous self-assembly into supramolecular filamentous assemblies directed by aromatic interaction of the parent drugs, providing a new strategy to optimize supramolecular drug delivery systems.

Supplementary files

Article information

Article type
Paper
Submitted
29 มิ.ย. 2567
Accepted
26 ส.ค. 2567
First published
28 ส.ค. 2567

J. Mater. Chem. B, 2024, Accepted Manuscript

Spontaneous assembly of a class of small molecule prodrugs directed by SN38

Z. Tang, W. Lan, K. Wen, W. Li, T. Wang, D. Zhou and H. Su, J. Mater. Chem. B, 2024, Accepted Manuscript , DOI: 10.1039/D4TB01429D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements