Aggregation-induced emissive nanoarchitectures for luminescent solar concentrators

Abstract

Aggregation-induced emission (AIE), the phenomenon by which selected luminophores undergo the enhancement of emission intensity upon aggregation, has demonstrated potential in materials and biomaterials science, and in particular in those branches for which spectral management in the solid state is of fundamental importance. Its development in the area of luminescent spectral conversion devices like luminescent solar concentrators (LSCs) for solar energy harvesting and conversion is instead still in its infancy. This account aims at summarizing relevant contributions made in this field so far, with a special emphasis on the design of molecular and macromolecular architectures capable of extending their spectral breadth to the deep-red (DR) and the near-infrared (NIR) wavelengths. Because of the many prospective advantages characterizing these spectral regions in terms of photon flux density and human-eye perception, it is anticipated that further development in the design, synthesis and engineering of advanced molecular and macromolecular DR/NIR-active AIE luminophores will enable faster and easier integration of LSCs into the built environment as highly transparent, active elements for unobtrusive light-to-electricity conversion.

Article information

Article type
Minireview
Submitted
03 พ.ค. 2567
Accepted
25 ก.ค. 2567
First published
25 ก.ค. 2567
This article is Open Access
Creative Commons BY license

Nanoscale, 2024, Accepted Manuscript

Aggregation-induced emissive nanoarchitectures for luminescent solar concentrators

E. Tatsi, A. Nitti, D. Pasini and G. Griffini, Nanoscale, 2024, Accepted Manuscript , DOI: 10.1039/D4NR01910E

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements