Augmenting the performance of thermally deoxygenated graphite oxide supercapacitor electrodes using 6 M KOH electrolyte with K3Fe(CN)6 redox additive†
Abstract
This study focuses on enhancing the performance of thermally deoxygenated graphite oxide (TDGO) supercapacitor electrodes by incorporating a redox additive viz., 0.03 M K3Fe(CN)6 in 6 M KOH. Characterization of the prepared TDGO was conducted through XRD, Raman, XPS, FESEM and BET surface area analysis, revealing incomplete deoxygenation and the presence of oxygen functional groups. TDGO exhibits a maximum significant surface area of 288.3 m2 g−1 with an average pore diameter of 2.4 nm. The ID/IG ratio of 0.98 suggests the prevalence of structural defects dominating the sp2 graphitic structure. FESEM images reveal exfoliated irregular layers in TDGO. In a three-electrode configuration, the optimized system achieves an areal specific capacitance (Csp) of 817 F cm−2 at 1 A g−1, a 2.5-fold increase compared to 6 M KOH alone. The [Fe(CN)6]3−/[Fe(CN)6]4− redox couple in the electrolyte alters the charge storage mechanism from surface-controlled to diffusion-controlled pseudocapacitance. A symmetric TDGO300 supercapacitor in the KOH/K3Fe(CN)6 redox electrolyte system exhibits a Csp of 414.6 F cm−2, delivering an energy density of 17.4 W h kg−1 at a power density of 235 W kg−1. Notably, the TDGO300 supercapacitor retains 97.4% of its initial capacitance after 2000 continuous charge–discharge cycles. This work establishes a straightforward strategy to significantly improve the capacitive performance of TDGO supercapacitors by leveraging redox additives, showcasing their potential for advanced energy storage applications.
- This article is part of the themed collection: Materials and Devices for the Energy Transition in Latin America