Exploring the effects of synthesis parameters on the properties and photoactivity of WO3–graphene oxide synthesized via a microwave route†
Abstract
Tungsten oxide (WO3) is a promising material for photocatalysis. Coupling it with graphene-based materials can enhance its electronic conductivity. One effective technique for synthesizing WO3 nanomaterials is microwave-assisted solvothermal synthesis, which selectively heats the reaction species and reduces the reaction time. We report a straightforward route for preparing a WO3 nanomaterial modified with graphene oxide (WO3GO) using microwave-assisted solvothermal synthesis. We investigated the effect of various synthesis parameters, such as the irradiation time and reaction temperature. WO3 nanoplatelets were obtained under all conditions investigated; also, adding GO to the reaction did not change the WO3 morphology. It was observed that the crystal phase related to tungsten oxide can be modulated by temperature or time. Hexagonal WO3·H2O was obtained at temperatures of 160 and 180 °C, whereas at 200 °C, monoclinic WO3 was formed. All WO3GO materials were active for methylene blue, rhodamine B and methyl orange photodegradation. Also, incorporating GO increased the photoactivity of the materials.
- This article is part of the themed collection: Materials and Devices for the Energy Transition in Latin America