Volume 214, 2019

Monitoring plasmonic hot-carrier chemical reactions at the single particle level

Abstract

Plasmon excitation in metal nanoparticles triggers the generation of highly energetic charge carriers that, when properly manipulated and exploited, can mediate chemical reactions. Single-particle techniques are key to unearthing the underlying mechanisms of hot-carrier generation, transport and injection, as well as to disentangling the role of the temperature increase and the enhanced near-field at the nanoparticle–molecule interface. Gaining nanoscopic insight into these processes and their interplay could aid in the rational design of plasmonic photocatalysts. Here, we present three different approaches to monitor hot-carrier reactivity at the single-particle level. We use a combination of dark-field microscopy and photoelectrochemistry to track a hot-hole driven reaction on a single Au nanoparticle. We image hot-electron reactivity with sub-particle spatial resolution using nanoscopy techniques. Finally, we push the limits by looking for a hot-electron induced chemical reaction that generates a fluorescent product, which should enable imaging plasmonic photocatalysis at the single-particle and single-molecule levels.

Graphical abstract: Monitoring plasmonic hot-carrier chemical reactions at the single particle level

Associated articles

Article information

Article type
Paper
Submitted
30 ก.ย. 2561
Accepted
24 ต.ค. 2561
First published
24 ต.ค. 2561

Faraday Discuss., 2019,214, 73-87

Monitoring plasmonic hot-carrier chemical reactions at the single particle level

S. Simoncelli, E. L. Pensa, T. Brick, J. Gargiulo, A. Lauri, J. Cambiasso, Y. Li, S. A. Maier and E. Cortés, Faraday Discuss., 2019, 214, 73 DOI: 10.1039/C8FD00138C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements