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This review article highlights the diverse ways in which recent developments in the areas of photocatalysis
and visible light photochemistry are impacting synthetic carbohydrate chemistry. The major topics covered
are photocatalytic glycosylations, generation of radicals at the anomeric position, transformations involving
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Accepted 13th Decernber 2023 radical formation at non-anomeric positions, additions to glycals, processes initiated by photocatalytic
hydrogen atom transfer from sugars, and functional group interconversions at OH and SH groups.

DOI: 10.1035/d35c05400d Factors influencing stereo- and site-selectivity in these processes, along with mechanistic aspects, are
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1. Introduction

Carbohydrates have their origins in photochemistry: the fixa-
tion of CO, by photoautotrophs drives life on our planet and
yields sugars as the most abundant renewable chemical feed-
stocks. Making use of energy from light to enable trans-
formations that are kinetically and/or thermodynamically
unfavorable offers significant potential to advance the synthetic
chemistry of carbohydrates; indeed, photochemical trans-
formations of sugars have been explored for decades.' However,
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because carbohydrates typically do not absorb light in the
visible region, such methods required either the use of high-
energy ultraviolet (UV) light or the covalent installation of
photoactive groups.

Photoredox catalysis provides a general approach for har-
nessing the energy of incident photons for transformations of
substrates that do not possess a chromophore suitable for
direct excitation.” The development and applications of this
transformative synthetic technology have been detailed in
review articles.’ In brief, absorption of light by a photocatalyst
results in an excited state that is capable of acting as either an
oxidant or a reductant by participating in a single electron
transfer (SET) event with a suitable substrate. Intermediates
generated by the redox process (usually radical species) can be
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exploited in diverse ways to enable new reactivity. A subsequent
SET step with an intermediate or reagent takes place to close the
photoredox cycle. An alternative mode of activation is energy
transfer photocatalysis, wherein an interaction between the
substrate and the excited-state photocatalyst results in indirect
excitation of the former.* For the transformations of carbohy-
drate derivatives described in this review, it is the photoredox
catalysis manifold, rather than energy transfer photocatalysis,
that generally predominates.

Photocatalysts employed in the transformations described in
this review are depicted in Fig. 1, along with the available
excited-state redox potentials,>® which often serve as important
reference data for researchers in the area. For example, catalysts
with high excited-state reduction potentials E; /Z(red) (e.g., Ir-2,
Acr-1", Aer-2") serve as potent photooxidants, while those with
high negative excited-state oxidation potentials E; /z(ox) (e-g:,
fac-Ir(ppy);) are strong photoreductants.

Advances in visible light photocatalysis have sparked interest
in transformations that proceed via direct excitation of
substrate-derived species (e.g., electron donor-acceptor (EDA)
or charge-transfer complexes®) or transition metal complexes
by visible light, in the absence of a photosensitizer; applications

Sofia Jdanova received her BSc
from the University of Toronto in
2019. She is currently pursuing
her PhD at the University of Tor-
onto under the supervision of
Prof. Mark Taylor. Her research
focuses on the development and

drate derivatives.

Sofia Jdanova

Julia A. Turner received a BSc in
Biochemistry and Chemistry
from Western University in
2019, where she completed
a thesis with Prof. Robert H. E.
Hudson synthesizing fluorescent
nucleobase analogs. She started
her PhD at the University of
Toronto in 2019 under the
supervision of Prof. Mark S.
Taylor. Her work is focused on
methodology development and
computational study of site-
selective radical formation on
carbohydrates via photoredox and hydrogen atom transfer co-
catalysis.

Julia A. Turner

© 2024 The Author(s). Published by the Royal Society of Chemistry

mechanistic study of transition
metal-catalyzed, site-selective
functionalizations of carbohy-

View Article Online

Chemical Science

[Ir(dF(CF,)ppy)z(dtbbpy)]PFs (Ir-1) [Ir(dF(CFg)ppy)z(d(CFg)bpy]PF5 (Ir-2) [Ir(ppv)z(dtbbpv)lPFa (Ir-3)
1127 (0X) = 0. Eqpp*(0x) =-0.90 172" (0X) = —0.91
Eqg'(rec) = +1. 21 V Eyp*(red) = +1. sav Eyp*(red) = +oasv

Ru(bpy)sX,
Ey2"(0X) =—0.81 V
Eyp*(red) = 40.77 V

favlr(ppv)a(ﬂ H)

Eir(0x) =—1.73 = N
| Eqp'(red) = +031v =~ o
"\

N = facIr(mppy); (R=Me) =
OMe Mes OMe

IX
Me

ACzIPN (X=H) 4CICZIPN (X = CI) Acr-14%-

*, *, 2%
EE‘|,/22 ((rc:g; :11%«; \\I/ E'E((rzg); —36731 \\I/ Eypo*(red) = +1.65 V E‘,z'(red) =+2.18V

° 0

(s "OOLY

Br Br Me N \N/&O ‘fjt‘
seraliiCsanlivos

HO o OH AcO/\/K) E

H 2 xanthone (E = 0)
B B OAc  OAc Eyp'(red) = +1.35 V
Eosin Y riboflavin tetraacetate
Eqjp*(0x) =-1.58 V Eyp*(red) = +1.50 V (riboflavin) anthraquinone (E = CO)
Ejp*(red) =+1.23V Eqjp*(red) = +1.77 V

Fig. 1 Representative photocatalysts. Reported excited state redox
potentials (versus the standard calomel electrode, SCE) are listed.

of such processes in carbohydrate chemistry will also be
discussed.

The influence of visible light photocatalysis on the progress
of the organic synthesis field has been profound, and carbo-
hydrate chemistry is no exception in this regard. Photocatalysis
has been implemented to provide innovative solutions to classic
problems in carbohydrate chemistry (e.g, glycosylation,
protection of hydroxyl groups), and to enable new types of
reactivity for sugar derivatives. Here, we aim to provide an
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overview of the applications of visible light photocatalysis and
photochemistry to carbohydrate-derived substrates. The major
topics covered are photocatalytic glycosylations, generation of
radicals at the anomeric position, transformations involving
radical formation at non-anomeric positions, additions to gly-
cals, processes initiated by photocatalytic hydrogen atom
transfer from sugars, and functional group interconversions at
OH and SH groups. We anticipate that this relatively broad
coverage will provide a distinct type of perspective from more
specialized reviews discussing photochemical glycosylations,"*
the chemistry of anomeric radicals,' biomimetic radical reac-
tions of sugars® and photocatalytic C-H and C-C bond activa-
tion of carbohydrate derivatives.”* While a representative
carbohydrate derivative may be included among a panel of
structurally diverse substrates to explore the scope and limita-
tions of a method, the focus here is on studies that have
examined the reactivity of carbohydrate-derived substrates in
depth.

2. Activation of glycosyl donors

Glycosylation, the formation of a covalent linkage to the
anomeric position of a sugar by nucleophilic substitution, is the
key step in the synthesis of oligosaccharides, steroidal glyco-
sides, glycoconjugates and carbohydrate analogs. Synthetic
methodology development for glycosylation centers around the
identification of leaving groups that can be displaced from the
anomeric carbon under appropriate activation conditions.
Considerations include stereoselectivity (a- versus B-glycoside
formation), ease of preparation and handling of the glycosyl
donor (the precursor to the anomeric electrophile), and tuning
of its reactivity to enable sequential or one-pot glycosylations
(e.g., through ‘arming’ or ‘disarming’ via protective group
variation)."

Photoredox catalysis and visible light photochemistry have
been employed to generate reactive electrophiles through
oxidation of a functional group at the anomeric position of
a glycosyl donor. Because this topic has been reviewed in depth
elsewhere," representative examples have been selected to
illustrate the approach. Photoacid generation, which takes
advantage of the activity of Brensted acids as catalysts for
glycosyl donor activation,'® is also described in the above-
mentioned reviews and will not be covered here.

Reactions of water or alcohols with aryl glycosides'” or thi-
oglycosides™ under UV irradiation in the presence of dicya-
noarenes (1,4-dicyanobenzene with phenanthroline as
photosensitizer, or 1,4-dicyanonaphthalene), were reported
more than three decades ago. The proposed mechanisms —
photoinduced electron transfer from the aromatic aglycon to
generate a radical cation, nucleophilic displacement of a (thio)
phenoxy radical, and reduction of the latter by the dicyanoarene
radical anion — incorporate elements of what would now be
termed a photoredox catalysis process. These studies estab-
lished a conceptual foundation for activation of glycosyl donors
through light-promoted oxidation of an electron-rich anomeric
substituent, but were not adopted as preparative methods,
likely due to the requirement for UV irradiation and an excess of
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o CH,Cl,, 4 AMS, 1t J{
5 Me
J< Me
Me o

(1.3 equiv)

- 17 examples (nine donors, ten acceptors), 65-95% yield

Scheme 1 O-Glycosylations via photoredox catalysis reported by: (a)
Crich and co-workers;? (b) Bowers and co-workers;? Ragains and co-
workers;? (d) Ye and co-workers.?® PMP denotes 4-methoxyphenyl;
Ir-1 denotes [Ir(dF(CF3)ppy).(dtbbpy)]PFe.

the glycosyl acceptor (generally water or methanol). Analogous
reactivity of aryl selenoglycosides upon UV irradiation was re-
ported by the groups of Furuta and Iwamura,” and Crich
(Scheme 1a),* using pyrylium and quinolinium photocatalysts,
respectively. These contributions included examples of disac-
charide synthesis using protected glycoside acceptors.
Applications of modern visible light photocatalysis to
glycosylation were reported by the groups of Bowers and
Ragains in 2013. Bowers and co-workers found that upon irra-
diation with a blue light-emitting diode (LED) in the presence of
photocatalyst Ir-1, substoichiometric BrCX; (X = Cl or Br) and
hexafluoroisopropanol (HFIP, 10 equiv.) in acetonitrile, para-
methoxyphenyl (PMP) thioglycosides underwent glycosidation
reactions with various primary, secondary and tertiary alcohols
(Scheme 1b).** A proposed photocatalytic cycle is depicted in
Scheme 2. SET from excited-state Ir-1 to BrCX; results in
a strongly oxidizing Ir(iv) species that accepts an electron from
the aryl thioglycoside. Expulsion of thiyl radical forms an oxa-
carbenium ion or related electrophilic species,** which reacts
with the glycosyl acceptor. Because the released thiyl radical can
serve as an oxidative quencher for Ir-1 in subsequent turnovers
of the photoredox cycle, a stoichiometric quantity of BrCX; was

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Scheme 2 Proposed mechanism for the O-glycosylation shown in
Scheme 1b.

not needed. B-Configured PMP thioglycosides derived from
benzyl or methyl ether-protected glucopyranosose, as well as
a 2,6-dideoxypyranose, were employed as donors. The authors
proposed that epimerization under the acidic conditions of the
reaction was responsible for the formation of mixtures of
anomers.

The Ragains group's approach to glycosylation via photo-
redox catalysis employed phenyl selenoglycoside donors, along
with Ru(bpy);(PFe), as the photocatalyst, tetrabromomethane
and 2,6-di-tert-butyl-4-methylpyridine (DTBMP, Scheme 1c).>* A
per-O-benzylated B-glucopyranoside donor was employed,
forming o-glycosides as the major products. The mechanism
likely involves oxidation of the excited-state photocatalyst by
CBr,, followed by SET from the selenoglycoside. Nucleophilic
substitution at the anomeric center via loss of the phenylseleno
radical results in glycosidic bond formation. A variant of the
protocol was developed using (PhSe), in place of the Ru(u)
photocatalyst (seven examples of gluco or galacto configuration,
33-72% yield).

Ye and co-workers have also explored the combination of
a photoredox catalyst, electron-accepting reagent and thio-
glycoside for O-glycosylation of alcohols.”® The optimized
protocol employed catalytic Ru(bpy)s(PFs),, Umemoto's reagent
(1) and copper(u) triflate under visible light irradiation (Scheme
1d). Glycosylations using sialyl donors,* as well as couplings of
aryl glycosides rather than thioglycosides, have been achieved
by Ye's group using related protocols.”® In the latter study,
syntheses of a variety of O- and N-glycosides were demonstrated,
using gluco-, galacto- and manno-configured donors. 1,2-trans-
Configured glycosides were obtained selectively with ‘disarmed’
per-O-acylated donors, and tolerance of protective groups that
are employed frequently in carbohydrate chemistry (esters,
benzyl ethers, acetals and ketals) was demonstrated. The
proposed mechanism follows along the general lines of those
discussed in the preceding paragraphs - namely, quenching of
the excited-state photocatalyst by Umemoto's reagent, followed
by oxidation of the anomeric substituent (thioaryl or aryloxy) by
the resulting Ru(ur) complex, and finally displacement of the
thiyl or aryloxy radical to generate the glycoside. Control
experiments suggested that the Cu(OTf), additive served to

© 2024 The Author(s). Published by the Royal Society of Chemistry
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suppress a competing reaction of the trifluoromethyl radical
with dibenzothiophene.

Ragains and co-workers found that 4-PMP-substituted 3-
butenylthioglycosides were activated as glycosyl donors upon
irradiation with blue LEDs in the presence of Umemoto's
reagent in dichloromethane (Scheme 3).” Based on spectro-
scopic evidence and computational modelling, the authors
proposed that the thioglycoside and Umemoto's reagent inter-
acted to form an EDA complex capable of being excited by
visible light. After SET, cyclization of the radical cation and
recombination with trifluoromethyl radical resulted in the
formation of a reactive glycosyl donor under conditions that did
not cause activation of unfunctionalized thioglycosides. The
method was applied to per-O-benzylated glucopyranosyl donors,
as well as a tri-O-benzylated derivative having an acetate group
at the 2-position. The former resulted in mixtures of anomers
(roughly 1:1 a: B), while couplings of the latter were B-selective.

Visible light excitation of an EDA complex underlies
a protocol for activation of methallyl glycosyl sulfones reported
by Niu, Houk and co-workers in 2022.>® The optimized condi-
tions involve irradiation of the glycosyl donor in the presence of
1-iodoperfluorobutane (C,Fol), ammonium hydrogenphosphate
and catalytic triphenylphosphine oxide (Scheme 4). The
consistent 1,2-cis-stereoselectivity arising from couplings of
‘armed’ per-O-benzylated pyranosyl and furanosyl donors is
a noteworthy aspect of this method. The initial stages of the
proposed mechanism are reminiscent of that proposed by
Ragains and co-workers for the transformation shown in
Scheme 3,*” with excitation of the halogen-bonded complex
resulting in the formation of a perfluoroalkyl radical that adds
to the alkene. Fragmentation of the B-sulfinyl radical, followed
by loss of SO,, results in an anomeric radical (see the next
section for a discussion of the reactivity of such species).
Reaction of the latter with iodine atom generates a glycosyl
iodide. The authors proposed that the 1,2-cis-stereoselectivity

OBn
o AN OBn
BnO s
BnO BnO % o
Ac0+ 1 (1.07 equiv) BnO AcO
OH hv (blue LEDs) BnO %
g, CHClp, 4 AMS, ~30 °C BnO SAr
0 2Cl, 5~ BnO
BnO
BnO SAr
BnO
(0.5 equiv)

74% yield

- 14 examples (two donors, seven acceptors), 44-93% yield

Pr d mechanism

y O “CF,
2 .
RS S RS S
~—, — T>~—., |, TO
“PMP ' ‘ “PMP
OBn OBn pvp
CF,
BnO 0 RoH BnO o
BnO OR BnO
AcO AcO 110~

Scheme 3 O-Glycosylation via excitation of the EDA complex of
a thioglycoside with Umemoto's reagent (1). PMP denotes 4-
methoxyphenyl.
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Scheme 4 O-Glycosylation via excitation of the halogen-bonded
complex between a glycosyl sulfone and 1-iodoperfluorobutane. Ar
denotes 4-chlorophenyl.

arises from an associative substitution reaction of the pB-
configured glycosyl iodide, which is the more reactive of the pair
of rapidly interconverting anomers. Computational modelling
pointed towards a hydrogen bond between the acceptor OH
group and the ether oxygen at C-2 as a stabilizing interaction in
the transition state leading to the 1,2-cis-glycoside.

Wen and Crich employed O-glycosyl 2,2,6,6-tetramethylpi-
peridinoxides (Tempol glycosides, synthesized from the corre-
sponding glycosyl fluorides) as donors in photocatalytic
glycosylations using complex Ir-2 under irradiation by blue
LEDs (Scheme 5a).>° Unlike the blue light-mediated processes
shown in Scheme 1b-d, this protocol did not require an
electrophilic/reducing reagent, since the nitroxyl radical
released in the glycosylation event was able to serve as an
oxidant to close the photoredox cycle. Armed donors of gluco,

OBn
OH 2 M w2Emos o
o]

BnO —  —  __ BnO

s hv (blue LEDs) BnO
BnO o CHNO,, 4 AMS, rt BnO “Ocy

3-5 equiv From o-2:

Me 96% yield, 1:2.5 a:p

From f-2:
91% yield, 1.2:1 a:p

- 12 examples (four donors, three acceptors), 57-95% yield

(b)

0B
OBn I (2.5 mol %) n
O, (1 atm)
o + nBUOH ——— —— ¢}
Bnoﬁpsph hv (white LED) S0
BnO 2 equiv CHGCN, 1t n
BnO A BnO "On-Bu
90% yield
1.3:1 a:p

-15 examples (five donors, ten acceptors), 17-95% yield

Scheme 5 Photocatalytic O-glycosylations reported by the groups of
Crich® (a) and Opatz (b).3° Ir-2 denotes [Ir(dF(CF3)ppy).(d(CF3)bpy)]
PFs.
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manno or galacto configuration were employed. While the ster-
eoselectivity at the anomeric position was generally modest,
a dependence of the a:f ratio on the configuration of the
starting Tempol glycoside 2 was observed, consistent with an
associative pathway for the displacement of the radical leaving
group after oxidation.

A distinct reagent combination for photocatalytic glycosyla-
tion was disclosed by Opatz and co-workers, who used I,
(2.5 mol%) to activate aryl thioglycosides upon irradiation with
a white household LED bulb in acetonitrile under an oxygen
atmosphere (Scheme 5b).** Armed glycosyl donors gave good
yields and modest stereoselectivities, while disarmed donors
reacted more sluggishly (<40% yield) but with 1,2-trans stereo-
selectivity. The authors proposed two mechanisms, both of
which were supported by experimental observations: an ionic
pathway, in which I, served as the electrophilic activator for the
thioglycoside, with the released iodide being reoxidized by
photogenerated singlet oxygen; and a SET pathway, wherein the
thioglycoside was oxidized by triplet oxygen (generated by
photosensitization with I,), followed by expulsion of the thiyl
radical in the glycosylation step.

Visible light excitation of catalytic copper complexes has
been used to achieve the synthesis of 1,2-cis-configured O-
glycosides from glycosyl bromides (Scheme 6).** Gluco- and
galactopyranosyl donors bearing benzyl ether groups at the 2-
position, as well as a 2-O-benzylated ribofuranosyl bromide,
underwent stereoselective couplings with primary and
secondary alcohols in the presence of catalytic copper() iodide,
Xantphos and 4,7-diphenyl-1,10-phenanthroline (BPhen).
Experiments with added TEMPO and a 2-O-allyl-protected
substrate capable of 5-exo-trig cyclization did not point to the
intermediacy of a free anomeric radical. Subsequent computa-
tional studies suggested that a photoexcited Cu() complex

OBn
OMe Cul (10 mol %)
BPhen (25 mol %) BnO 0 OMe
Xantphos (25 mol %) BnO
DTBMP (1.5 equiv) BnO Me7.20
hv (blue LEDs; N
MéCN, 25 °c) Z% 1Y'9_'d °><o
1 ap Me
(1.5 equlv) Me

- 24 examples (11 donors, 9 acceptors), 53—84% yield

Prog d mechanism

h e
[LCu(l)BPhenr—v» [LCu(l)BPhen] [LCu(I1)BPhen]>*

[LCu(l)BPhen]* LCu()*[BPheri | g o E
Br’\ / \
Cu catalytic OBn
BrCu(l)BPhen cycle
OBn Bno 0
BnO
o —H*
"o @zx pro Cu(i)BPhen
BnOOR BnO O R Br
BnO (‘)H
BnO Cu*(III)BPhen [LCu(ll)BPhen]?*

Br
[LCu(l)BPhen]*

Scheme 6 Visible light-induced, copper-catalyzed O-glycosidic bond
formation from glycosyl halides. BPhen denotes 4,7-diphenyl-1,10-
phenanthroline; DTBMP denotes 2,6-di-tert-butyl-4-methylpyridine.
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Scheme 7 Photocatalytic synthesis of glycosyl fluorides and proposed
reaction mechanism. PMP denotes 4-methoxyphenyl.

served to reduce a second equivalent of Cu(i) BPhen, forming an
active Cu(0)-like species that engaged in a sequence of oxidative
addition, ligand exchange, one-electron oxidation and reductive
elimination to generate the O-glycoside in a stereospecific
fashion.** A simplified version of the calculated cycle is depicted
in Scheme 6.

A mechanistically distinct pathway for photocatalytic
substitution at the anomeric position was explored by Nagorny
and co-workers, who developed a protocol for the synthesis of
glycosyl fluorides from the corresponding hemiacetals.*® The
transformation was accomplished using SFs gas and Hiinig's
base, along with 4,4-dimethoxybenzophenone as photocatalyst
under irradiation at 365 nm in 1,2-dichloroethane (Scheme 7).
The proposed mechanism involves photocatalytic generation of
transient amounts of SF,;, a reagent capable of promoting
deoxyfluorination, from SFs and iPr,NEt. Tolerance for ester,
ether (Bn and PMB) and benzylidene acetal groups, as well as
glycosidic linkages, was demonstrated.

3. Anomeric radicals

Anomeric radicals serve as the basis for alternative approaches
for glycosidic bond construction, offering distinct and poten-
tially complementary features in comparison to the reactions of
glycosyl electrophiles.®® Foundational contributions from the
group of Giese in the 1980s provided insight into the structure,
bonding and reactivity of radicals arising from homolytic
cleavage of an anomeric C-X bond.*® By enabling access to
anomeric radicals from a variety of precursors under mild
conditions, photocatalysis has created new opportunities to
develop synthetic methods that exploit the reactivity of these
versatile intermediates.

3.1. Glycosidations via radical substitutions of glycosyl
halides

The utility of photocatalysis for glycosyl radical formation was
established by Gagné and co-workers in 2010, with the
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Ru(bpy)3](BF,), (5 mol %)
iProNEt (3 equiv) B20 o
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hv (14W fluorescent bulb) B20
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HsCN

B20 O+ Zcome
BzO

2 equiv
B0y q CO,Me

92% yield
-7 examples (two glycosyl bromides, six alkenes), 63-98% yield

Proposed mechanism
0Bz

BzO 0
BzO

BzO Br
BzO

-
iProNEt Ru(h)

OBz Br

o}
H

Photocatalytic

iPraNE GHE

BzO
Ru(ll)* Ru(ll)

\_/ OBz
CO,Me
hv ﬁ

OBz OBz

R+ R-H o
820 0 N B20

BzO
BzO B20

BzO COMe _CO,Me

Scheme 8 Photocatalytic synthesis of C-glycosides from glycosyl
halides and proposed reaction mechanism.

demonstration of C-glycoside formation from glycosyl bromides
and electrophilic alkenes upon irradiation with blue LEDs in
the presence of [Ru(bpy);](BF,),, iPr,NEt and Hantzsch ester 3
(Scheme 8).%* High a-stereoselectivities were observed for reac-
tions of per-O-acylated gluco-, galacto- and mannopyranosyl
halides, consistent with previously documented stereochemical
outcomes of additions of anomeric radicals to alkenes.*® In
comparison to the protocol initially reported by Giese and
Dupuis (UV photolysis in the presence of tributyltin hydride),**
the photocatalytic procedure offers several practical advantages,
which is notable given the prevalence of C-glycosides as natural
product substructures and metabolically stable analogs of O-
glycosides.*” The authors' proposed mechanism involves SET
from iPr,NEt to the excited-state photocatalyst, priming the
latter for reduction of the glycosyl halide. After addition of the
anomeric radical to the alkene, the C-glycoside product is
formed by hydrogen atom transfer to the resulting radical from
either 3 or a trialkylamine-derived species (denoted R-H in
Scheme 8). The Gagné group went on to develop a flow photo-
reactor for couplings of glycosyl bromides with acrolein on
scales as high as 18 mmol, and employed the products in the
synthesis of C-linked glycopeptide and glycolipid analogs.**
Photocatalytic activation of glycosyl halides has proved to be
a versatile method for the synthesis of diverse types of C-
glycosides. The use of Ir-1 along with tris(trimethylsilyl)silane as
a silyl radical precursor enabled alkenylations of a-aceto-
bromoglucose with 2,2-diaryl-substituted vinyl sulfones
(Scheme 9a).* By using o-trifluoromethylstyrenes as radical
trapping reagents, Hu and co-workers accomplished the pho-
tocatalytic synthesis of gem-difluoroalkene-substituted C-
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AcO Ph MeCN, rt
Br
3 equiv
- four diaryl vinyl sulfone examples, 65-71% yield Ph
(b) OAc OAc
PMP Ir-1 (3 mol %)
AcO (o] . )\ Et3N (3.5 equiv) AcO
AcO CFs  hv (white LED) AcO
Br 1.75 equiv MeCN, 25°C PMP

82% yield
F
- 26 examples (13 glycosyl bromides, 13 a-CF5-styrenes, 42—-85% yield

Me O~ Me_ Me

Me” o\ O o (¢]
—~O-~ Me. O PAN
B 113 (2 mol %) >< Me, MeNZ "N
3 equiv EtsN (4 equiv) e 0"\ 070.0 /X

+ hv (blue LEDs) NBn
XN PhCI, 1 ] N=/
| \> 73% yield
A
N Bn

- 34 examples (17 glycosyl bromides, 19 heteroarenes, 30-92% yield

C) OAc o Ir-3 (3 mol %) OAc
(TMS)gSIOH (1.5 equiv)
A:OO o] th)zs\ N KoCO3 (2 equiv)  pco o]
cf | AcO o
hv (blue LEDs)
AcOg, Ph  Me vty AcO -
3 equiv N
me” ‘ph H

75% yield, 1:1 d.r.
- 30 examples (12 glycosyl bromides, 19 alkenes, 40-75% yield

Scheme 9 Photocatalytic reactions of glycosyl bromides with (a) vinyl
sulfones;*® (b) trifluoromethylstyrenes;*® (c) nitrogen heterocycles;*
and (d) N-sulfonyl methacrylamides.*? Ir-1 denotes [Ir(dF(CF3)ppy)a(-
dtbbpy)]PFs; Ir-3 denotes [Ir(ppy),(dtbbpy)]PFs. PMP denotes 4-
methoxyphenyl.

glycosides (Scheme 9b).* In addition to a-selective couplings of
per-O-acylated pyranosyl bromides, the authors demonstrated
1,2-trans-selective C-glycosylations of isopropylidene-protected
furanosyl bromides. Nitrogen heterocycles have also been
used as trapping agents for photocatalytically generated
anomeric radicals, enabling the preparation of C-nucleoside
analogs and other heterocyclic C-glycosides (e.g., Scheme 9c).**
Triethylamine served as reductive quencher for the excited-state
photocatalyst (see Scheme 8 for a related mechanism) and as
base for rearomatization of the heterocycle after radical addi-
tion and single-electron reduction. Ester-protected furanosyl
and pyranosyl bromides gave rise to C-glycosides with 1,2-trans-
stereoselectivity, while the stereochemical outcomes of reac-
tions of isopropylidene ketal-protected congeners were variable:
ribo- and mannofuranosides gave 1,2-cis-selectivity, as shown in
Scheme 9c, while lyxofuranosides and mannopyranosides
favored the 1,2-trans-configured products. Trapping of anome-
ric radicals with N-sulfonyl methacrylamide derivatives results
in intramolecular aryl transfer (Truce-Smiles-type rearrange-
ment), followed by desulfonylation, generating functionalized
C-glycosides (Scheme 9d).* For the mechanism of glycosyl
radical formation from (TMS);SiOH and base in the presence of
a photoredox catalyst, see Scheme 15 below.

Reductive couplings with haloalkynes enable the synthesis of
alkynyl C-glycosides from glycosyl halides. The protocol
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ACI?CO . ‘ ‘ iProNEt (4 equiv)
hv (blue LEDs) .
Br PMP PhCI, rt 96% yield | ‘
(2 equiv) PMP
- 35 examples (15 glycosyl bromides, 20 bromoalkynes), 40-98% yield
Proposed mechanism
OAc
OAc
AcO 0
CAcO OAc
5 OAc Br
. ¢ o
NN AcO +
Me™ ~NiPr, AcO Me” NiPr,
_H+
H ] PMP———-Br
4o
iProNEt
OAc
OAc
iProNEt AcO 0
. AcO
RC Br
Br’ Yy
. PMP
Pg Photocatalytic
cycle
OAc
OAc
B AcO O
hy = r+ AcO
PMP

Scheme 10 Reductive couplings of bromoalkynes with glycosyl
bromides.

developed by Yu and co-workers employs the organic photo-
catalyst Eosin Y along with iPr,NEt as the reductant, and is
tolerant of ester and isopropylidene ketal protective groups
(Scheme 10).** The authors proposed that the glycosyl radical
was generated by halogen atom transfer (XAT) to the radical
arising from photooxidation and deprotonation of the trialkyl-
amine base. Addition to the alkynyl bromide and expulsion of
bromine atom forms the C-glycoside product, with photo-
catalyst turnover being accomplished by reduction of Br* to Br ™.

Reductive couplings of aryl bromides and glycosyl chlorides
have been used to synthesize aryl C-glycosides. The protocol
developed by Zhang, Niu and co-workers employs a Ni(u)
complex and Ir-1 photocatalyst,** with Hantzsch ester 3 as the
stoichiometric reductant (Scheme 11).** Per-O-acetylated pyr-
anosyl chlorides were coupled with para-bromoanisole, giving
access to 1,2-trans-configured C-aryl glycosides in yields ranging
from 34% to 53%. Various bromoarenes and bromoheteroar-
enes were coupled with the glucopyranosyl chloride partner to
furnish the corresponding pB-C-glycosides. Alkoxy, alkyl and halo
(F, Cl) substituents were tolerated at the meta and para posi-
tions, whereas examples bearing strong electron-withdrawing
groups or ortho substituents were not reported. The proposed
mechanism involves SET from the Hantzsch ester to photoex-
cited Ir-1. Deprotonation of the Hantzsch ester-derived radical
cation results in the generation of a reductant capable of
forming the glycosyl radical from the glycosyl chloride. The
Ni(u) complex arising from oxidative addition to the bromoar-
ene interacts with the glycosyl radical, enabling reductive
elimination to form the C-glycoside. SET from reduced Ir-1 to
the resulting Ni(1) intermediate closes the coupled catalytic
cycles.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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AcO AcO PMP
TMG (4 equiv)
hv (blue LEDs) AcO
53% yield
(4 equlv) >19:1 B
—_—Representative products =
OAc
OAc
AcO AcO
AcO
38% yleld 38% yield 45% yield
a only 5:1B:a 4:1 B
- 29 examples (9 glycosyl chlorides, 20 bromoarenes), 32-74% yield
Proposed mechanism
AcO _OAc
EtOzc COzEt : EtO,C CO,Et
| T n
Me Me N
Et02C CO,Et

Ar-Br

AcO OAc
V—\Ar Nl(II)L ?&

(1t Nu(o)

Ir(i*

Photocatalytic Ni catalytic
cycle cycle
AcO OAc
o ¥
AcO Ni(ll)L,
Br—Ni(l)L,, Y
Ir(in) ) A0 Ar

R—Ar

Scheme 11 Synergistic nickel/photoredox catalysis for reductive
couplings of glycosyl chlorides with aryl bromides. Ir-1 denotes
[Ir(dF(CF3)ppy)2(dtbbpy)]PFs; dtbbpy denotes 4,4'-di-tert-butyl-2,2'-
bipyridine; TMG denotes 1,1,3,3-tetramethylguanidine; PMP denotes
4-methoxyphenyl.

Considering the relevance of 2-(e-mannopyranosyl)trypto-
phan as a naturally occurring C-glycosylpeptide moiety, the
group of Goddard-Borger aimed to develop a method that would

EtOZC COLEt
Me CO,Me
AcO
AcO (3 3 equlv) Ac ’_I\‘ICOCFa
AcO N|Br2 DME (10 mol %)
CO,Me dtbbpy (15 mol %)
MgCl, (2 equiv)
(€] equ|v) iProNEt (6 equiv)
h le LED; OAc .
v (ﬂl;;’;);, " ) 78% yield
-nine aryl halide examples, 43-78% yield
Conditions for ings of peptide AcO OAc

a-(AcOsMan)Cl (3 equiv)

4CzIPN (2 mol %)

NiCl,*DME (5 mol %), di(MeO)bpy (7.5 mol %)
MgBr; (1 equiv), iProNEt (6 equiv), HyO (10 equiv)
hv (blue LED), NMP, 28 °C

A aash 2

Me” “OH

F4COCN
H

HNCOCF,
HNGOCFs 309, yield

- 11 couplings to oligopeptides, 8-55% yield

Scheme 12 Photocatalytic coupling of 2-bromotryptophan deriva-
tives with per-O-acetylated mannosyl halides. 4CzIPN denotes
1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene; dtbbpy denotes
4,4'-di-tert-butyl-2,2'-bipyridine; di(MeO)bpy denotes 4,4’-dime-
thoxy-2,2'-bipyridine.
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enable late-stage incorporation of this motif into peptide
substrates.*® Evaluation of reaction conditions for the reductive
coupling of acetobromomannose with a protected 2-bromo-
tryptophan revealed that the transformation could be accom-
plished in 78% yield upon irradiation with violet LEDs (390 nm)
in the presence of a nickel(n) complex, Hantzsch ester, iPr,NEt
and MgCl, in acetonitrile at room temperature (Scheme 12).
Other aryl and heteroaryl bromides, including 2-
bromotryptophan-containing dipeptides, underwent a-C-man-
nosylation under these conditions. The Hantzsch ester likely
serves as a photoreductant for the glycosyl bromide, generating
an anomeric radical that engages an arylnickel complex prior to
C-C bond-forming reductive elimination. An alternative
protocol was developed for C-mannosylations of more complex,
2-bromotryptophan-containing peptides; the 4CzIPN photo-
catalyst was employed in place of the Hantszsch ester, and
a mannosyl chloride was used as the glycosylating reagent.
These conditions were used to incorporate a 2-(¢-mannopyr-
anosyl)tryptophan moiety into a protected decapeptide in 30%
yield.

Nickel catalysis has been used to synthesize C-alkyl glyco-
sides from glycosyl bromides via reductive couplings with N-
hydroxyphthalimide esters or N-alkylpyridinium salts (Scheme
13).*” The procedure was applied to a range of primary and

NiBro+diglyme  Me_ O
(10 mol %)
bpp (25 mol %) e o

PhthNO
Me _ 3(equv)
w o o L|I (2 equiv)
Me o hv (blue LEDs)
& BocHN” ~co.Bn DMAMTBE, it

47% yield

(2 equiv) BocHN CO.Bn
— Representative products =
OBn
OBn
BnO
BnO
Me Me 44%yield AT
39% yield 78% yield (Ar = 3,4-(OCH,0)CgHy)

- 53 examples (10 glycosyl halides, 40 redox-active electrophiles), 39-83% yield

Proposed mechanism

EtO,C COLEt Lil
[ Et0,C COLE
PhthNO hv
Me N Me o
H N
H
Me><0 Me><Me

Br
mnf—l;li(ll)
EO,C. o~ _COEt I
HBr + | Ni(0)
NS

Me N% "Me
H

-PhthN-, CO,

R-
L,,/

Ni catalytic
cycle
EtO,C CO,Et
] o
” , a-Manf —Ni(lll)L,,
Me H Me r—Ni()L, R
Me><0 Me><Me
Me” 0"\ 9 50
R

Scheme 13 C-Glycosylation via couplings of glycosyl halides with
redox-active electrophiles. bpp denotes 2,6-bis(pyrazol-1-yl)pyridine.
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secondary redox-active electrophiles, including amino acid and
peptide derivatives. The scope of glycosyl donors employed
includes armed furanosyl and pyranosyl bromides or chlorides.
The authors proposed that EDA complexes were formed from
the redox-active electrophile, Hantzsch ester 3 and a Lewis basic
additive (lithium iodide and triethylamine for the NHP esters
and N-alkylpyridinium salts, respectively). Visible light excita-
tion resulted in electron transfer from 3 to the redox-active
electrophile, leading to fragmentation and alkyl radical forma-
tion. The radical cation derived from 3 served to reduce Ni(i) to
Ni(0), which underwent oxidation to the glycosyl bromide.
Reaction of the alkyl radical with the resulting glycosylnickel(ir)
complex, followed by reductive elimination, generated the alkyl
C-glycoside product.

Visible light-induced, Pd-catalyzed Heck-type reactions have
been employed as an alternative approach for the synthesis of C-
glycosides.*® Using a Pd(Xantphos) complex as catalyst under
blue LED irradiation, ester-protected pyranosyl bromides
underwent 1,2-trans-selective couplings with styrene derivatives
to yield C-vinyl glycosides (Scheme 14). Isopropylidene-
protected mannopyranosyl and mannofuranosyl donors also
underwent stereoselective coupling. The authors proposed that
oxidative addition of a photoexcited Pd(0) species provides
access to the anomeric radical intermediate that engages the
alkene to form the carbon-carbon bond.*

Wang and co-workers used thiosulfonates as trapping agents
for anomeric radicals, enabling a photocatalytic synthesis of
thioglycosides from glycosyl bromides (Scheme 15).* The
authors found that tris(trimethylsilyl)silanol, in combination
with K;PO, and the 4CICzIPN photocatalyst, a potent photo-
reductant, resulted in efficient S-glycosylation upon blue light
irradiation. The hydrodehalogenation product was obtained
using other potential reductants such as iPr,NEt, Hantzsch
ester or ascorbic acid. The protocol yielded a«-1,2-cis-configured
thioglycosides from ester-protected gluco- and galactopyranosyl

Pd(Xantphos)Cl, (5 mol %)
Xantphos (6 mol %)
K,COj3 (2 equiv)

AcO _OAc AcO _OAc

o o~ Et3N (1.5 equiv)
PMP
AcO v ZUPMP T bl LEDs) N
AcO toluene, rt
Br
(1.5 equiv) 75% yield

- 46 examples (15 glycosyl bromides, 31 alkenes), 30-75% yield

AcO _OAc
hv .
P Pd(0) %S'
Pl \ACO

AcO _OAc
Pd photocatalytic O
cycle A"Oé &A- Pd()Br

AcO _OAc
O&/\/ - Ac&/\/

AcO Pd(l)Br

Proposed mechanism

—HBr

~

HPd(I1)Br

S pwp

Scheme 14 Visible light-induced, Pd-catalyzed coupling of glycosyl
halides with styrene derivatives.
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- 50 examples (15 glycosyl bromides, 31 thiosulfonates, PhSeMs) 30-86% yield
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Proposed mechanism
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Scheme 15 Photocatalytic synthesis of thioglycosides from glycosyl
bromides. 4CICzIPN denotes 1,2,3,5-tetrakis(3,6-dichlorocarbazol-9-
yl)-4,6-dicyanobenzene.

bromides, whereas manno-configured bromides gave 1,2-trans
stereoselectivity. An exception to this pattern was per-O-acety-
lated xylosyl bromide; the 1,2-trans-selectivity obtained for this
substrate likely arises from axial attack on an anomeric radical
in the 'C, conformation.* Tolerance for benzyl, isopropylidene
ketal, silyl ether protective groups and functionalized thiosul-
fonates, along with applications to the synthesis of S-furano-
sides and selenoglycosides, were demonstrated. The proposed
mechanism for radical generation involves reduction of
photoexcited 4CICzIPN by the silanoate, followed by a Brook-
type rearrangement to generate the silyl radical that engages
in halogen atom transfer with the glycosyl halide. Trapping of
the anomeric radical with the thiosulfonate releases a sulfonyl
radical that serves as an oxidant to close the photocatalytic
cycle.

3.2. Other classes of glycosyl radical precursors

While glycosyl bromides show versatile reactivity as precursors
to anomeric radicals, they are prone to hydrolysis and their
synthesis often requires harsh reagents. Efforts have been made
to identify alternative anomeric substituents that can be acti-
vated towards homolytic bond cleavage under photocatalytic
conditions. In 2019, Wang, Zhang and co-workers disclosed
a photocatalytic, decarboxylative reaction for the synthesis of
furanosyl C-glycosides (Scheme 16a).** In the presence of the
organic photocatalyst 4CzIPN, a nickel salt and 2,2"-bipyridine
(bpy), per-O-benzylated ribofuranose-1-carboxylic acid was
coupled with a range of aryl, heteroaryl and vinyl halides. The
requisite glycosyl-1-carboxylic acid starting material was
synthesized in 30% overall yield from the per-O-benzylated
glycosyl 1-acetate by C-glycosidation with cyanide followed by
hydrolysis. The resulting B-C-glycoside products are of potential
interest as nucleoside analogs. While most of the synthesized
compounds were per-O-benzylated ribofuranosyl C-glycosides,
the method was also used to synthesize a 2-deoxyfuranoside and
a ‘reversed’ glycoside (see Section 4.2). The depicted

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Proposed mechanism
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Ar—Br
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BnO COH Cu(OAc)2 (20 moI %) BnO
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96% yield
- 38 examples (4 carboxylic acids, 25 alkynes) 45-96% yield
CO,H 1r-2 (1 mol %)
K2003 “ equlv)
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80% yield

- 34 examples (7 carboxylic acids, 17 alkynyliodine(lll) reagents) 10-95% yield

Scheme 16 Photocatalytic, decarboxylative couplings of glycosyl-1-
carboxylates with (a) bromoarenes;** (b) alkynes;** and (c) alkynylio-
dine(in) reagents.>* bpy denotes 2,2’-bipyridine; Ir-1 denotes [Ir(dF(CFs)
ppy)2(dtbbpy)]PFs; chxn denotes trans-1,2-diaminocyclohexane; Ir-2
denotes [Ir(dF(CF3)ppy),(d(CFs)bpy)lPFe.

photocatalytic cycle draws on mechanistic proposals for related
synergistic nickel/photocatalytic decarboxylative couplings.***
C-Alkynyl glycosides have also been synthesized from
glycosyl-1-carboxylates via decarboxylative couplings with
terminal alkynes. Zhu and Messaoudi employed a copper() co-
catalyst along with Ir-1, while irradiating with blue LEDs under
an air atmosphere, to accomplish this transformation (Scheme
16b).** Similarly to the reaction shown in Scheme 16a, the
method was primarily used to access per-O-benzylated B-C-
ribofuranosides, but tolerance of alternative substitution
patterns (2,3-O-isopropylidene ketal protection, deoxygenation
at C2) was demonstrated, along with an example of reversed
glycoside synthesis. The proposed mechanism for carbon-
carbon bond formation involves reductive elimination from
a Cu(m) species generated from the anomeric radical (produced
via SET from photoexcited Ir-1 and the carboxylate as described
in the preceding paragraph) and a Cu(u) acetylide. Oxidation by
0, was invoked to close the photocatalytic cycle (Ir(u) to Ir(i))
and to generate the reactive copper acetylide (Cu(i) to Cu(wu)).
An alternative approach to the synthesis of alkynyl C-glyco-
sides from glycosyl-1-carboxylates was disclosed by the group of
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Zhang, who used alkynyliodine(ur) reagents as coupling agents
under irradiation with blue LEDs in the presence of Ir-2
(Scheme 16¢).>* Per-O-benzoylated ribofuranosyl-1-carboxylates
were coupled with phenylacetylene derivatives to give B-C-
alkynyl glycoside products. Stereoselective couplings of per-O-
benzylated furanosyl and pyranosyl donors were also demon-
strated. The authors proposed that after addition of the glycosyl
radical to the ethynylbenziodoxolone, the alkyne product was
generated by elimination of an iodanyl radical, which under-
went reduction with concomitant regeneration of the Ir-2
photocatalyst.

Diao and co-workers have explored dihydropyridine-(DHP)-
derived glycosyl esters as precursors to anomeric radicals
under photocatalytic conditions. The key preparative advantage
is the ability to access the requisite substrates by esterification
of readily available glycosyl hemiacetals. The group's initial
report involved C-aryl glycoside synthesis from aryl halides in
the presence of a Ni(u) complex (Scheme 17).* The proposed
pathway for formation of the anomeric radical is depicted.
Oxidation of the dihydropyridyl group by the excited photo-
catalyst, followed by deprotonation, results in a radical that can
fragment with loss of a substituted pyridine. Further decar-
boxylative fragmentation results in the anomeric radical, which
engages the Ni(u) aryl halide complex as shown previously
(Schemes 11 and 16a). The reduced photocatalyst is responsible
for reduction of Ni(1) to Ni(0). Manno- and ribofuranosides
bearing isopropylidene ketal or ether protective groups at the 2-
and 3-positions were coupled effectively to give B-configured
products (1,2-trans-stereoselectivity). Reactions of pyranoside-

CO,Et
2 COMe  4CzIPN (1 mol %)
NiBry*DME (5 mol %)
bpy (7mol%)  BnO o Ar
X NH
EtO,C NaZCO3 (1.8 equiv) ‘\H/
hv (blue LED)
dioxane, 91 °C BnO _OBn
72% yield
Repr ive products
COzMe

Me Me

BnO OBn Me
M AN
OXJQ‘
o

Ar
84% yield

29% yield 50% yield
e Me
- 40 examples (18 glycosyl esters, 21 bromoarenes), 10-92% yield
Prop d mechanism
o) C02Et
BnO O)J\DH PC__’H'ic B
o N
EtOQC
BnO OBn
EIOZCfICOZEI
NS
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J
BnO .
BnO (0]
-CO,
O— 2 o
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Scheme 17 Photocatalytic C-arylations of dihydropyridine-derived
glycosyl esters. 4CzIPN denotes 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-
dicyanobenzene; bpy denotes 2,2’-bipyridine; Ar denotes 4-(MeO,C)
C6H4.
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derived glycosyl esters were also conducted, with good yields
being obtained for 2,3-O-isopropylidene-bearing,
configured substrates and 2-deoxy congeners, versus lower
yields (>30%) for other protected gluco-, galacto- and man-
nopyranosides. Various aryl and heteroaryl halide partners
could be employed, with the exception of readily oxidizable
heterocycles (e.g., furan and pyrrole derivatives).

A related method for the synthesis of C-acyl glycosides was
reported by the Diao group in 2021 (Scheme 18a).>® In place of
the aryl bromide coupling partner, a carboxylic acid was used to
acylate the anomeric radical in the presence of diethyl dicar-
bonate as activating reagent.”” 1,2-Trans stereoselectivity was
obtained with a variety of pyranosyl and furanosyl DHP esters,
although strongly disarmed systems gave lower yields (e.g., 23%
for a 2,3,4,6-tetra-O-acetylated mannopyranoside DHP ester).
The scope of carboxylic acid partners was likewise broad,
including primary, secondary and tertiary aliphatic acids as well
as benzoic acid derivatives.

DHP esters have also been employed as precursors to C-
glycosyl amino acids and C-glycosyl peptides via radical addi-
tions to dehydroalanine derivatives (Scheme 18b).*® Couplings
with chiral oxazolidine 4 took place with high levels of dia-
stereoselectivity at the newly formed o-amino acid chirality
center. Both furanosyl and pyranosyl DHP esters participated in

manno-

(a) o) NTs

4CzIPN (0.5 mol %) [e]
o DHP NiCl,*DME (5 mol %)

Me o NTs (MeO),bpy (7 mol %) Me o
B Bi
no o + (E0,0),0 (13equiv)  O"0 o
lo) hv (blue LED) o
Me>< HO,C dioxane, 90 °C Me><
Me Me
86% yield

—————————— R e presentative products m——

BnO OBn BnO
_0 BnO

Me’ Me
74% yield 66% yield
85% yield

- 44 examples (19 glycosyl esters, 25 carboxylic acids) 19-88% yield

® Q

yk{ Me
Me_ O M M N
>< e>< © coz’ +Bu Me><
Me” o\ O 00 ° (4, 1.0 equiv)

— 7
}—DH Ir-1 (2 mol %)

hv blue LED

(5,15 69% yield t-Bu
equiv) dloxane 85 °C aonly  Chz
20:1d.r.
- 27 glycosyl esters, 28—-87% yield
a-Manf. X
o iPr
\)]\ (1.5 equiv) H\)J\ )\
(Boc),l COpMe Ir-1 (2 mol %) ( Ir 1 (2mol %) (Boc),N”* - N7 “cogme
hv (blue LED) SN N
dioxane, 85 °C Me Et
53% yield
1.2:1dr

- 15 dehydroalanine derivatives, one thiazoline, 34-86% yield

Scheme 18 Photocatalytic C-glycosidations of dihydropyridine-
derived glycosyl esters. (a) C-Acylation by coupling with esters. (b)
Addition to dehydroalanine derivatives. 4CzIPN denotes 1,2,3,5-tet-
rakis(carbazol-9-yl)-4,6-dicyanobenzene; (MeO),bpy denotes 4,4'-
dimethoxy-2,2’-bipyridine; Ir-1 denotes [Ir(dF(CFz)ppy).(dtbbpy)]PFs.
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the reaction, with variable levels of 1,2-trans stereoselectivity
being obtained depending on the sugar configuration and the
choice of protective groups. Consistent with the work of Diao
and co-workers,>® the transformation was most efficient when
employing substrates derived from armed sugars. Mannofur-
anosylations of protected dehydroalanine moieties in di-, tri-
and tetrapeptide substrates were demonstrated, giving rise to
roughly 1:1 mixtures of diastereomers at the a-amino acid
chirality center.

Activation of alcohols by addition to azolium salts, followed
by photocatalytic oxidation, has been employed to achieve
deoxygenative arylation reactions in the presence of a Ni(u) co-
catalyst (Scheme 19).*° C-Aryl glycosides were generated from
glycosyl hemiacetal substrates, and the protocol was applied to
substrates having free OH groups at positions other than the
anomeric center (e.g.,, C2 of a ribofuranoside, C1 of
a fructopyranose).

Walczak and co-workers achieved the synthesis of thio-
glycosides from glycosyl stannanes in the presence of a copper(i)
catalyst with irradiation by blue LEDs (Scheme 20).°° The
authors proposed that the absorption of light served to promote
homolysis of the disulfide reagent to generate thiyl radicals,
which were then trapped by a glycosylcopper(i) complex.
Equatorially configured gluco- and 2-deoxypyranosyl stannanes
gave rise to axial thioglycosides as the major products, an
observation consistent with an outer-sphere mechanism
involving an anomeric radical intermediate.

Glycosyl trifluoroborates have emerged as another class of
useful precursors to anomeric radicals. The group of Hirai
synthesized p-configured 2-deoxypyranosyl trifluoroborates
from the corresponding glycal-derived N-methyliminodiacetic
acid (MIDA) boronate esters.®* Congeners bearing silyl ether

#Bu N* BFy~ CO,Me
\
(¢} Y
CO,Me ) / _
BnO OH tBu (1.6equiv) gno
TFO?/ . N7 ‘ pyridine, t-BuOMe; o
NS
then Ir-3 (1.5 mol %) Bi
BnO  OBn NiBry-dtbbpy (5 mol %) BnO  OBn
Br quinuclidine (1.5 equiv) 82% yield
(1.7 equiv) (1.0 equiv) hv (blue LEDs) >20:1 i
t-BuOMe/DMA, rt
- three glycosyl hemiacetals, 59-92% yield
-two examples of deoxygenation at non-anomeric OH groups
Pr d mechanism
Ph
+Bu N* B
A\
o m tBu

BnO BnO o]
B
L. oS %
—HBF,

BnO  OBn BnO  OBn FBu

+Bu Ir(Hty* = Ir(1l)
~H*

Ph
nO t+Bu BnO o
\ —y \ ‘\ﬁ/ _<
BnO  OBn BnO OBn

Scheme 19 Photocatalytic, deoxygenative arylations of alcohols
mediated by an azolium salt. Ir-3 denotes [Ir(ppy),(dtbbpy)]PFg; dtbbpy
denotes 4,4'-di-tert-butyl-2,2’-bipyridine.

+Bu
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CuCl, (20 mol %)

dtbbpy (25 mol %) PMBO
PMBO KF (3 equiv) PMBO (e}
PMBO& + PMPS—SPMP ———————  PMBO
PMBO SnBug hv (blue LEDs)
1,4-dioxane, 120 °C SPMP
(1.5 equiv) 60% yield

- 21 examples (9 glycosyl stannanes, 12 disulfides, (PhSe),) 45-88% yield

Scheme 20 Visible light-induced, copper-catalyzed couplings of
a glycosyl stannane with a disulfide. dtbbpy denotes 4,4'-di-tert-butyl-
2,2’-bipyridine; PMP denotes 4-methoxyphenyl.

and cyclic silylene protective groups were prepared by this
route. Upon irradiation with blue light in the presence of Ir-1
and a nickel(n) complex,*> the anomeric trifluoroborates
underwent couplings with aryl, heteroaryl and vinyl bromides to
generate o-configured 2-deoxy-C-glycosides (Scheme 21a). An
alternative approach to the synthesis of glycosyl trifluoroborates
was reported soon after by the group of Walczak, who subjected
glycosyl chlorides to a sequence of lithium-halogen exchange,
borate quenching and transesterification to the MIDA boronate
prior to trifluoroborate formation.** The method provided
access to o-stereoisomers, and was conducted on 2-deoxypyr-
anosyl chlorides as well as derivatives having a free 2-OH group.
Tolerance for benzyl and silyl ether groups was demonstrated,
and trifluoroborates bearing free OH groups could be further
elaborated by glycosylation reactions with trichloroacetimidate
donors. C-Arylations using Ir-1 and a nickel co-catalyst resulted
in a-configured products from 2-deoxypyranosyl starting mate-
rials, and mixtures of anomers (~2:1 to 4:1 o : B) from gluco-
and galacto-configured variants having free 2-OH groups
(Scheme 21b). Trapping of the glycosyl radicals by C-S and C-Se
bond formation was also demonstrated. The methods reported
by the two groups likely proceed by similar mechanisms, with
SET from the trifluoroborate to the excited photocatalyst serving
as the key step to generate the anomeric radical. Conforma-
tional and stereoelectronic effects in the radical intermediate
control the stereoselectivity of C-glycoside formation, regardless
of the initial configuration of the trifluoroborate starting
material.

@

Br Ir-1 (4 mol %) M
Me NiClye DME (10 mol %) P
TBSO dtbbpy (10 mol %) -0
TBSO BFsK
KZHPO,, (2 equiv)
hv blue LEDs oTBS CFs

F.-80 78% yield

13:1 a:ff

- 24 examples (three glycosyl trifluoroborates, 18 bromoarenes) 18-78% yield

(b)
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BnB?10 + L, BnO 0

CsF (1.5 equiv) BnO
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. OM dioxane, rt

(1.5 equiv) e ! 88% yield

- 22 examples (10 glycosyl trifluoroborates, 12 iodoarenes), 51-96% yield
- trapping with ArS/ArSe electrophiles demonstrated (without Ni catalyst)

Scheme 21 C-Glycoside formation from glycosyl trifluoroborates via
photocatalysis reported by (a) Hirai and co-workers;®! (b) Walczak and
co-workers.®® Ir-1 denotes [Ir(dF(CF3)ppy).(dtbbpy)]PFs; dtbbpy
denotes 4,4’-di-tert-butyl-2,2’-bipyridine.
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Scheme 22 Synthesis of S-glycosides from methallyl glycosyl
sulfones.

Niu and co-workers have pioneered applications of glycosyl
sulfones as precursors to anomeric radicals. Couplings of
methallyl glycosyl sulfones with disulfides were achieved upon
irradiation in the presence of catalytic Eosin Y, generating
products with an axially oriented S-glycosidic linkage (Scheme
22).** The ability to employ unprotected glycosyl sulfones is
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a key advantage of this class of precursors. A first-generation
variant of the protocol employed pre-synthesized mixed disul-
fides as reagents, whereas the second-generation protocol relied
on in situ disulfide formation using an isothiazolone reagent.
Direct conjugations of unprotected carbohydrates to complex
peptides, as well as a Cys-containing mutant of an affibody,
were demonstrated. Computational modelling supported
a proposed mechanism involving addition of a thiyl radical
(likely formed by energy transfer from electronically excited
Eosin Y) to the methyallyl group, followed by fragmentation
with loss of SO, to form the glycosyl radical. The latter engages
disulfide to form the S-glycoside with the release of thiyl radical,
which can propagate a chain process.

The Niu group developed conditions for couplings of glycosyl
methallyl sulfones with iodoarenes to form C-aryl glycosides.*
Ru(bpy);Cl,-6H,0 was employed as photocatalyst, along with
a nickel(r) co-catalyst and sodium toluenesulfinate (Scheme 23).
The latter was proposed to undergo oxidation to form a tolue-
nesulfonyl radical, which adds to the methallyl group, ulti-
mately leading to the formation of glycosyl radical in a manner
similar to that shown in Scheme 22. Binding of the glycosyl
radical to an arylnickel(n) species, followed by reductive elimi-
nation, generates the C-aryl glycoside. 1,2-Trans-selective
couplings of gluco-, galacto- and manno-configured pyranosyl
sulfones, as well as a ribofuranosyl derivative, were achieved,
generally without protection of the sugar OH groups; indeed,
a direct comparison between the free glucopyranosyl sulfone

OMe Ru(bpy)3Cl, - 6H,0 (1 mol %)
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Scheme 23 Photoredox/nickel co-catalysis for synthesis of C-aryl
glycosides from methallyl glycosyl sulfones. (MeO),bpy denotes 4,4'-
dimethoxy-2,2’-bipyridine; TMG denotes 1,1,3,3-tetramethylguani-
dine; PMP denotes 4-methoxyphenyl.
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and the corresponding per-O-benzylated species showed that
the former gave a higher yield (81% versus 68%). In addition to
iodoarenes, a variety of iodinated heterocyclic partners were
successfully subjected to the protocol, including derivatives of
benzothiophene, pyridine, quinoline and indole. Computa-
tional modelling suggested that the use of unprotected glycosyl
radical precursors accelerated the addition to the arylnickel(u)
complex.

The group of Koh has achieved couplings of glycosyl heter-
oaryl sulfones with unsaturated reaction partners upon irradi-
ation in the presence of CsOAc and Hantzsch ester 3 (Scheme
24).°° The authors proposed that a ternary EDA complex derived
from the sulfone, 3 and CsOAc underwent photoexcitation and
radical formation via electron transfer. Loss of the sulfinate
anion generates the glycosyl radical, which can be trapped by
additions to alkenes or alkynes, or by cross-couplings with
haloalkene, heteroaryl sulfonate or disulfide reagents. The
protocol was applied to unprotected heteroaryl glycosyl
sulfones, as well as derivatives bearing ester, ether, silyl ether
and ketal protective groups. a-Selectivity was obtained using
a range of pyranosyl radical precursors, including derivatives of
glucose, mannose, galactose and N-acetylneuraminic acid, as
well as 2-deoxy congeners, while 2-deoxyribofuranosyl sulfones
gave rise to mixtures of anomers.

Sodium glycosyl sulfinates have been explored as precursors
to anomeric radicals by the groups of Niu® and Hirai.®® Niu's
group generated the sulfinate salts from carboxyethyl sulfone
precursors via B-elimination, while Hirai and co-workers used
a base-mediated cleavage of 2-pyrimidyl sulfones. The protocol
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