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Nanocrystals (NCs) have been widely studied owing to their distinctive properties and promising application
in new-generation photoelectric devices. In photovoltaic devices, semiconductor NCs can act as efficient
light harvesters for high-performance solar cells. Besides light absorption, NCs have shown great
significance as functional layers for charge (hole and electron) transport and interface modification to
improve the power conversion efficiency and stability of solar cells. NC-based functional layers can
boost hole/electron transport ability, adjust energy level alignment between a light absorbing layer and

charge transport layer, broaden the absorption range of an active layer, enhance intrinsic stability, and
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Accepted 3lst January 2024 reduce fabrication cost. In this review, recent advances in NCs as a hole transport layer, electron

transport layer, and interfacial layer are discussed. Additionally, NC additives to improve the performance

DOI: 10.1039/d3na01063e of solar cells are demonstrated. Finally, a summary and future prospects of NC-based functional
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1. Introduction

Nanocrystals (NCs), sometimes termed as quantum dots (QDs)
or nanoparticles (NPs), with a size less than 100 nm, are popular
worldwide and have been paid extensive attention owing to
their outstanding photoelectric properties. In the energy field,
photovoltaic devices based on semiconductor NCs are among
the most potential systems with high power conversion effi-
ciency (PCE), good stability, low cost, facile fabrication, and
other advantages.'® In recent years, NCs have been widely used
as light harvesting layers in high-performance solar cells.
Semiconducting NCs such as PbX (X = S, Se, and Te), CdSe, and
CulnS, have been suggested as excellent light harvesters in
third-generation solar cells.*»'**>'">> Additionally, perovskite
NCs are also good alternatives for light harvesting in solar
cells. > *4162328 Begides active layers (light harvesting layers),
functional layers based on NCs, mainly including hole transport
layers (HTLs),>>*° electron transport layers (ETLs)'**”* and
interfacial functional layers (IFLs),'”** are of great importance
in solar cells. Notably, NC additives also boost the performance
of solar cells through defect passivation, plasmonic effect, solar
concentration, light up-conversion and down-conversion/
shifting, light scattering and reflection, and heat sinks.>**>**
To efficiently transport charge in solar cells, HTLs and ETLs
must have suitable energy levels matching the active layers such
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materials in solar cells are presented, addressing their limitations and suggesting potential solutions.

as dyes, Si, Pb-based light harvesting layers, and perovskite
films. For example, to fabricate high-performance perovskite
solar cells (PSCs), the work function of HTLs and ETLs should
have hole and electron transport layers aligned with the valence
band edge and conduction band edge of a perovskite. As is well
known, the energy levels of NCs can be easily controlled and
adjusted by changing their sizes, ligands, and dopants during
their synthesis process, which is favourable to satisfy the energy
alignment. Meanwhile, the easily-accomplished modifications
in NCs mentioned above also favour high mobility to allow
carrier transport and form a more effective current circulation
path. Furthermore, the transmittance of HTL or ETL based on
NCs can be improved during synthesis processes, which leads to
less light loss and thus, higher performance of solar cells.
Consequently, NCs are a good choice as HTLs and ETLs for
efficient solar cells and have gained much attention.

Some researchers found that inserting different IFLs in solar
cells could promote the power conversion efficiency (PCE) and
stability of the devices. Good IFL can modulate the formation of
adjacent layers (especially the perovskite layer in PSCs), opti-
mize energy alignment, and impede charge recombination. As
multi-functional IFL, NCs have been extensively investigated
due to their compatible properties, such as appropriate
morphology for compact, smooth films, gradual energy level to
transfer carriers, and self-stability to protect the devices.

Besides acting as a separate functional layer in efficient solar
cells, NCs have also been used as additives to improve active
layer quality, accelerate carrier transfer, convert infrared or
ultraviolet light to visible light, scatter and reflect light, sink
heat, and other functions.?>*® The addition of NCs could
enlarge the grain size of perovskite film, reduce the
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recombination, enhance charge extraction, improve the charge
mobility, broaden the spectral response range, and so on.

In this review, functional materials based on NCs for high-
performance solar cells are summarized. NCs as HTL, ETL,
IFL, and additives for NC-light-harvestor solar cells (NC-
LHSCs), PSCs, organic solar cells (OSCs), Si solar cells, and
dye-sensitized solar cells (DSSCs) are successively analyzed. In
Section 2, NCs as charge transport layers are analyzed in
detail. This can provide a deep understanding of the extensive
application of NCs in solar cells. As an important functional
layer, IFL based on NCs is summarized in the next section.
Section 4 describes NCs as efficient additives in different
functional layers due to their small sizes and excellent
photoelectric properties. Finally, we discuss the existing
challenges of NCs for boosting the performance of solar cells
and provide some feasible suggestions on these issues,
expecting to improve the performance of solar cells based on
NCs.

2. Nanocrystals as charge transport
layers

In this section, we focus on NCs-based charge transport layers
for solar cells, mainly including top/bottom HTL and ETL in n-i-
p and p-i-n solar cells.

2.1 Nanocrystals as HTL

As known to us, solar cells work as follows: absorption of sun
light, generation and separation of hole-electron pairs, trans-
port of holes through HTL and electrons through ETL, and
current produced by the flow of electrons through external
circuits. Solar cells using NCs as HTL are not exceptional, and
the typical structures of solar cells based on NC HTL are shown
in Fig. 1. According to the position of HTL, we call HTL between
the ITO/FTO and active layer as bottom HTL while the HTL
between metal electrode and active layer as top HTL.

2.1.1 Recent NC HTL. Semiconductor NCs have shown
great potential in photoelectronic devices due to their excellent
properties. The advances of NC HTLs for solar cells are listed in
Table 1, including the size of NCs, device structure, PCE, and
stability of solar cells.

Electrode
ETL

__Electrode

ETL
ITO or FTO

sJu N L/I/,/AG/H/T
/,,

ITO or FTO

Fig. 1 Typical structure of solar cells based on top (left) and bottom
(right) NC HTLs.
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Lead chalcogenide NCs, especially PbS, have been massively
used as efficient top HTL in NC-LHSCs.**** Additionally, other
metal chalcogenide NCs are also excellent choices as top HTL
for high-performance perovskite solar cells (PSCs), mainly
containing CulnS,/ZnS (core/shell),”” CdZnSe@ZnSe,*® Cu,-
ZnSnS,/Se,,* SnS,*° CulnSe,,** Ag-In-Ga-S,** Cu;,Sb,S13,%
Cu,SnS;,** CuGas,* and CulnS,.*® Metal oxide NCs of NiO have
shown potential for hole transport on top of the light harvesting
layer in PSCs and Si solar cells.®”* Besides NiO, some other
metal oxide NCs such as Mo0O,,” Co;0,4,”* Cu,0,”? CuCr0,,”
CuGa0,,™ and CsPbl; (ref. 75) have been used as efficient top
HTL for PSCs due to their excellent properties. It can be noticed
that when PbS NCs are used as top HTL in solar cells, the light
harvesting layers are mostly based on the PbS/Se family. There
are not many perovskite used as light harvest materials when
PbS/Se is used as top HTL. Only MAPbI; was applied in 2015,
and 7.88% PCE was gained.”® We suppose this is because the
PbS NCs with long carbon chains or 1,2-ethanedithiol are not
good at charge transport. If high-temperature annealing is
adopted to enhance the conductivity of PbS, the perovskite
underneath will be destroyed. This encourages us to regulate
the synthesis or modification of NCs with less or even no charge
transfer inhibition capture and improve their electronic
properties.

Similar to top HTL, NCs can also be applied as bottom HTL
for high-performance solar cells. NCs of PbS,”® Cu,ZnSnS,,”””®
NiO, and its doped derivatives,”*°* CuO,”* and ternary oxides of
CuCr0,,”** CuGa0,,” NiC0,0,,°*” ZnCo00,,”®* and doped
ternary oxide In:CuCrO, (ref. 99) have offered excellent hole
transport ability in PSCs and PTB7-Th-based organic solar cells
(OSCs).

Ever since demonstrated as efficient HTL by Luther et al. in
2008,>** PbS NCs with a 1,2-ethanethiol (EDT) ligand (named as
PbS-EDT or EDT-PbS) have been massively applied for hole
transport in solar cells. From the established NC HTLs listed in
Table 1, we can find some regular patterns: (i) as top HTL, EDT-
linked sulphides were mainly used in NC-LHSCs but were not
popular in PSCs. This is because EDT will strongly attack the
perovskite materials in the n-i-p device and decrease the device
performance.® (ii) As bottom HTL, oxides are widely used and
sulphides are rare. We speculate that it is (iii) NiO, with high
hole transport quality mostly used to transport holes in PSCs.

The previous light harvesting NC layers are mainly based on
the Pb-based chalcogenide family or their mixture. NC-LHSCs
using NCs as HTL have gained high PCE above 13%,**° but
this is significantly lower than that of the theoretical value."
Some strategies were also adopted to modify the light-
harvesting NCs, which is not the keynote in this review. The
current relatively low PCE of NC-LHSCs may be on account of
non-radiative recombination resulting from the high density of
surface traps due to some intrinsic properties of NCs, such as
high surface-to-volume ratios. Using NC top HTL, the PCE value
can be improved. Some oxides, for instance, NiO, Ti-doped
MoO,, Co03;0,4, Cu,O, CuCrO,, and CuGaO,, have acted as
excellent top HTL in high-performance PSCs. As shown in
Fig. 2a, SnS NCs prepared by the one-pot hot-injection method

were utilized as top HTL in efficient and stable
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Table 1 Recent advances in selected NC HTLs for solar cells (EDT = 1,2-ethanedithiol, relative humidity = RH)

NC Active layer PCE (%) Long-term stability Ref.
Top HTL PbS-EDT CH;NH;PbI; 7.88 8% decay after 2 days 29
PbS 11.6 Null 30
10.4 100%, after 103 days in the dark under 32
ambient conditions
9.44 ~100%, after 4 months in ambient air 33
13.2 Null 37
10.4 ®96%, after baking on a hotplate in air for 38
120 min; @97%, after 60 min oxygen plasma
treatment
13.3 Null 39
10.5 Null 40
13.0 Null 41
PbS-PbI, 11.2 £ 0.22 Nearly no drop of PCE after 180 h under 44
continuous heating at 85 °C in ambient air
11.29 >90, after 600 h under ambient condition 45
PbS:F 12.7 Null 46
PbX,-PbS 8.16 Null 47
10.35 Null 48
10.6 Null 49
PbS-PbX,-KI; 12.1 94%, after 20 h continuous operation in air 50
PbSe-PbS 1.24 (infrared  ~95%, after 25 days in air 51
PCE)
PbSe-Pbl, 10.4 90%, after 30 days in ambient condition 51
CsMAFA-PbS 11.3 96%, after 1200 h shelf storage 53
MAPbDIL;-PbS 9.5 95%, after 2 months in ambient 54
environment
Sb,Se; 6.5 (certified)  Null 55
KPbS 12.6 83%, after 300 h under continuous operation 56
at MPP in ambient air
CulnS,/ZnS core/shell MAPbDI; 8.38 Null 57
CdZnSe@ZnSe CdZnSe@ZnSe 8.65 Null 58
Cu,ZnSnSe, MAPDI; 9.72 Null 59
Cu,ZnSnS, 10.72
SnS (CsPbIy)g.05(FAPbI3)o 79 13.7 ®99%, after 1000 h storage in air; @75%, 60
(MAPDI3)o.16 after 500 h under continuous 1 sun
(PbLs)o.03 illumination in a N, atmosphere at 25 °C
CulnSe, MAFAPbCIBrI 12.8 78%, after 96 h in air 61
Ag-In-Ga-S CsPbBr; 8.46 96.1%, after 240 h in air 62
Cu;,Sb,S:3 CsPbl, 10.02 94%, after storage in ambient air for 360 h 63
Cu,SnS; Cso.05(MAg.17~ 13.01 90%, after 1200 h in an ambient atmosphere 64
FAy.83)0.05Pb(I0.83BT0.17)3
CuGaS (FAPBI;); _,(MAPDBTr3;), 17.56 81%, aging for 30 days 65
CulnS, (FAPBI;); _(MAPDbBTr3), 18.81 91%, aging for 30 days 66
NiO MAPDI; 6.2 Null 67
MAPDI;NCs 10.89 Null 68
Ti-doped MoO, MAPDI; 15.8 ~95%, after 15 days with 50-70% RH 70
Co30, MAPDI; 13.27 Up to 2500 hours under ambient conditions 71
Cu,O CS0.05FA.§1MAg 14PbI, 55Brg 45 18.9 80%, after 30 days in air with ~30% RH 72
CuCrO, CS0.05(MAg.15FA.85)0.95 16.68 88%, after 500 h at the MPP under one sun 73
Pb(Io.g5Bro.15)3 and a N, atmosphere
CuGaO, MAPDI; 18.51 >85%, after 30 days at 25 °C with 30-55% 74
humidity without encapsulation
CsPbl, MAPDI; 17.0 Null 75
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Table1 (Contd.)
NC Active layer PCE (%) Long-term stability Ref.
Bottom PbS MAPDI; 7.5 Null 76
HTL Cu,ZnSnS, MAPDI, 15.4 Null 77
6.02 87%, after 43 days in N, atmosphere 78
Ni-NiO core-shell P3HT 0.86 Null 79
NiO, CS0.08(MAg 17FA¢ 83)0.02 12.8 Null 81
Pb(lo.ssBro.n)s
MAPbDI; 16.1 90%, after 60 days in air at RT 84
C50.05(MAo.17FA¢.83)0.95 18.6 >80%, after 1000 h 85
Pb(Io.9Bro.1)s
MAPDI; 17.60 93%, after 30 days 86
1.02 cm*: 90%, after 500 h in the thermal aging test 87
18.49 (rigid) (85 °C, 85% RH)
and 15.89
(flexible)
Cu:NiO, 15.01 86%, after 1 month in an ambient 88
(flexible, >1 environment at 25 °C with about 40%
cm?) humidity
18.3 Null 89
(Li,Cu):NiO, MAPDI;_,Cl, 20.80 95%, after 60 days of storage 90
NiO, CsPbI,Br;_, 16.1 85%, after 350 h light soaking 91
CuO MAPbI, 15.3 Null 92
CuCrO, 19.0 ~90, after 30 days in an Ar-filled dry glove 94
box and continuously irradiated by a UV
optical fiber with 5 mW cm >
CuGa0, 15.6 Null 95
NiC0,0, MAPDI;_,Cl, 18.23 ~90%, after 500 h illumination at AM 1.5G 96
ZnCo,0, PTB7-Th:PC,,BM 9.37 >60%, after 60 h in ambient environment 98
with 50% RH without capsulation
MAPDI;_,Cl, 18.14 >60%, after 110 h in ambient environment
with capsulation and under continuous 1
sun illumination soaking
In:CuCrO, CS0.05(MAg 15FA¢.85)0.95 20.54 ~90%, after 800 h of continuous radiationin 99

Pb(Iy.55Br0.15)3

(CsPbI3)g.05(FAPDI;) 76(MAPDI;)g 16 PSCs. The high PCE mainly
resulted from good surface coverage and an excellent hole
extraction ability demonstrated by Nyquist plots. Additionally,
SnS-based PSC presented better air stability than the 2,2',7,7'-
tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9"-spirobifluorene
(spiro-OMeTAD)-based device. Surface-modified Cu,O NCs
boosted the efficiency of PSC to 18.9% with distinctly better
stability than the reference device based on spiro-OMeTAD.*!
One important reason is the difference in hydrophobicities
illustrated by water contact angles in Fig. 2b. Ternary oxide
CuGaO,NCs with promising photoelectronic properties boosted
the n-i-p PSCs with higher PCE and stability than spiro-
OMEeTAD (Fig. 2¢).”

In n-i-p type solar cells, NiOx and its doped family oxide NCs
are the most popular NC HTLs because of their facile synthesis
and outstanding photoelectronic properties.**'** Meanwhile,
sulphides of PbS and Cu,ZnSnS, together with multi basic
oxides of CuCrO,, CuGaO,, NiCo,0,, ZnCo,0,, and In:CuCrO,
are valuable substitutes for NiOy family. Ligand-free NiO, NCs
in ethanol (E-NiO,) are spin-coated onto a substrate to form
a smooth and compact NiO, film that has good hole extraction
capability. As seen in Fig. 3a, this E-NiO, bottom HTL can be

1334 | Nanoscale Adv, 2024, 6, 1331-1360
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used both in rigid and flexible PSC, producing high PCE and
stability. Similar to top HTL, ternary oxide NCs like CuCrO,
were also utilized as bottom HTL for high-performance solar
cells. The low-temperature solution-processed CuCrO, NCs
provide suitable electronic structure, charge carrier transport
properties, and greater UV light-harvesting, demonstrating its
potential as an efficient HTL for highly efficient and photostable
n-i-p PSCs (Fig. 3b).

2.1.2 Advantages of NC HTL. One important inherent
advantage of semiconductor NCs is their bandgap variation
along with modification. The conduction band, valence band,
and Fermi level of PbS NCs can be modified by changing surface
ligands (Fig. 4), thus enhancing the performance of solar
cells.>®* Fig. 4 shows that the energy level of PbS NCs is easily
changed in a large range by different ligands, facilitating energy
matching with the light-harvesting layer and other functional
layers. Compared with mostly used organic HTLs of spiro-
OMeTAD, poly(3,4-ethylenedioxythiophene):poly(styrene-
sulfonate)  (PEDOT:PSS) and  poly[bis(4-phenyl)(2,4,6-
trimethylphenyl)amine] (PTAA), inorganic NCs show higher
stability with good hole transport ability, suggesting great
potential for boosting solar cell performance. Equally

© 2024 The Author(s). Published by the Royal Society of Chemistry
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VCH.

important, facile synthesis and low cost would be helpful for the
commercialization of new-generation solar cells.

2.1.3 Potential NC HTL. To further develop more strategies
for fabricating high-performance solar cells and boost the
device PCE and stability, we should find more potential NCs for
efficient hole transport in solar cells. According to the previous
reports and our understanding, excellent NC HTLs should
satisfy the following requirements: (i) matched energy level
alignments with other functional layers; (ii) high hole mobility
and conductivity; (iii) enhancing the quality of adjacent layers;
(iv) intrinsic resistance to heat, light and water; (v) convenient
fabrication with low cost; and (vi) high transmittance for
bottom HTL and reflectivity for top HTL. NCs have many good
properties such as easily-controlled energy level, excellent
spreading and filling ability due to their small sizes, stable
intrinsic structure, skilled synthesis process, and variant
surface ligand. Considering the above rules and the advantages

© 2024 The Author(s). Published by the Royal Society of Chemistry

of NCs, besides the existing NC HTLs, some other p-type
sulphide and oxide NCs have huge potential for efficient and
stable solar cells. Additionally, semiconductor NCs with
enhanced hole-transporting ability by p-type doping are also
good alternatives.

2.2 Nanocrystals as ETL

2.2.1 Recent advances of NC ETL. As important as HTL,
ETL is also of great significance for high-performance solar cells
to transport electrons and block holes, and it acts as well as
a trap passivating layer and water/oxygen preventing layer. The
typical structure of solar cells based on NC ETL is shown in
Fig. 5.

ZnO is good at electron transport in photoelectrical devices
due to excellent properties such as bandgap (3.3 eV), low cost,
high electron mobility (~107°-10> cm® V! s7'), and matching
energy levels.'*®'** ZnO NCs with different sizes have been used

Nanoscale Adv., 2024, 6,1331-1360 | 1335


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3na01063e

Open Access Article. Published on 01 2024. Downloaded on 30-10-2025 02:10:32.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

Nanoscale Advances Review
) - —o—l-\ll‘ 10
hy e & 204 &2 ——WoNIO,
—_ -3.9 < .
% \ 4.2 /ro\_u E E w08
2 ) — €15 <154 -4
] 2 Ag E £ 086
z z z z ¥
B g i L 4
Bl | e - g - s E 04 oo,
E I . E JAmAcem?] VIV FFOPCEI%) 'E IimAem?) VoV] FF PCE%] - _,_“7\”‘
5] -§.28 =——— £ S5{eN0, s 107 079 1849 B e z -
%’ 54 E WNIO, 2013 106 076 1702 § 0y W s 02
) "E?‘ 6.1 '= = (W.NIO, 1971 102 on 1427
A S ———— ——r D —————— : i 00
73 00 02 04 06 08 10 12 00 02 04 06 08 10 12 0 100 200 300 400 500
< Voltage (V) Voltage (V) Time (hours)
t ) = CuUCrO/ITO/GIss s 20
-~ —— NiOITO/Glass €
- UV region o roioiass G 20p 184
-g A8eV <§ -.‘3 > 4
é 28V %‘ —o—CquO, } \ | ;
$ l § 0 —e—NiO, | € % o CuCro,
< € n
. - - g 12t o NiO
K SdeV - \
e 1 10
200 400 $0 07 o4 o5 08 10 12 0 200 400 600 800 1000
Wavelength (nm) Potential (V) Time (h)

Fig.3

(a) Energy level diagram of the materials used in the device, J-V curves of rigid and flexible PSCs, normalized PCE. (b) UV-vis spectra of the

CuCrO; and NiO, layer with optimum thickness with energy level in the inset. Adapted with permission.®”°* Copyright 2018, Wiley-VCH.

as efficient top ETL in NC-LHSCs, OSCs, and PSCs.**848%91,101-108
TiO, and SnO,NCs are as popular as ZnO for electron transport
due to their outstanding photoelectronic properties of high
mobility and conductivity.**® Certainly, these oxide NCs can be
modified by doping, ligand changing, and other strategies.
Tetrabutylammonium hydroxide (TBAOH)-capped metal oxide
NCs for SnO, also extend to TiO,, ITO and CeO,NCs as top ETL
for PSCs.' TiO,NCs have always been as the top ETL for
PSCs.'™ CeO,,"** In,0; and its Sn doped derivative formed
bilayer ETL,"** and CdSe"** were also used for high-performance
n-i-p PSCs. As efficient bottom ETL, modified TiO, by Sn, Al, Co,
Cu, and N doping and N, F and S co-doped graphene NCs were
widely used in dye-sensitized solar cells (DSSCs) based on N719
and N3 ({cis-Ru(H,dcbpy),(NCS),, Hydcbpy = 4,4-dicarboxy-
2,2/-bipyridyl }).*****° Additionally, TiO,, CdS NCs-modified
TiO,, and Nb-doped TiO,NCs were applied for electron trans-
port in PSCs with high PCE and stability.”***** Meanwhile,

TiO,NCs have been widely applied in n-i-p solar cells using
chalcogenide NC as light harvesters, such as CdSe, CdS, and
PbS.*** "% Similarly, ZnO NCs were used as ETL for n-i-p PbS-

ITO or FTO

P o

ITO or FTO

Fig.5 Structure of solar cells based on top (left) and bottom (right) NC
ETLs.

3-5 T T T T T L) T
NH, SH ’ ! . . — === ] Conduction
_ e Band
SH kl Br -1 40F = = 4 .~ Transport
3 o s === =
e | S asf— BB = B 3
0* OH 13— B e %
.c | D — o — 1] [em | instrument
] g 50 pa— — — ] accuracy
SH N | — Standard
K|' SH 55k _— ] _I_:{'devuation
. —
HS . 1 - =B — Valence
"':HS ! SH .SH 6.0 1 L 1 1 1 1 1 1 1 1 1 1 -
” 5 2 0 3 5 B B ¥ F f & &
SH 8 2 & ®© @© @ ®© @ W I o
i F o o+ & & F
SH Z ~ - -

Fig. 4 Energy band position of PbS NC films for different surface ligands. Adapted with permission.2*® Copyright 2014, American Chemical

Society.
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Table 2 Recent advances in NC ETLs (bathocuproine = BCP)

View Article Online

Nanoscale Advances

NC Active layer PCE (%) Long-term stability Ref.
Top ETL ZnO PbS-PbX, 10.35 Null 43
PCDTBT:PC¢;BM 2.66 Null 100
CsPbI;NCs 13.1 80%, after 40 h under 25 °C 103
with 30-40% RH
MAPDI; 17.2 66%, after 120 days stored in 105
air
MAPDI; 16.1 90% after 60 days in air at RT 84
C5S0.05(MAo.17FA¢ 83)0.05Pb(I0.6Br0.1)3 18.6 >80% after 1000 h 85
CsPbI,Br;_, 16.1 85%, after 350 h light soaking 91
Ag modified BCP:ZnO MAPDI; 15.5 Null 106
In:ZnO MAPbDI; 16.2 85% after 460 h of light 107
soaking
TBAOH-SnO, MAPbI; 18.77 90% after aging at 45 °C for 108
240 h, followed by 65 °C for
240 h and 85 °C for 240 h
TiO, C5S0.05(MAo 15FA¢.55)0.95Pb(T0.85BT0.15)3 20.5 ~90% after 350 h MPP 109
tracking test
Carbide-TiO, CsPbI,Br 14.8 ®>94%, after 1000 h at 85 °C 110
in dark under N,; ®>90%,
after 1000 h at 60 °C under
continuous illumination
CeO, MAPDI; 16.7 100%, after 200 h in air with 112
30% RH
Sn:In,05/In,0; (bilayer) C50.05(MA¢.15FA0.85)0.95PD(Io.85BT0.15)3 20.65 ®91.9% after 69 days under 113
85 °C;@91.8% after 2000 h,
12 h continuous 1 sun
illumination and then 12 h
interval in the dark
CdSe MAPDI; 15.1 Null 114
Bottom ETL Sn:TiO, N719 6.24 Null 115
ALTiO, 4.27 Null 116
Co:TiO, 4.85 Null 117
Tig.04CUg.0602 N3/electrolyte 6.51 Null 118
TiO, modified by N, F and N719 11.7 ~85.5, after one month 120
S, co-doped graphene NCs
TiO, Cs-FA-MA mixed cation perovskite 19.03 84%, after 30 days 121
CdS NCs-modified TiO, MAPDI; 8.16 Null 122
Nb-doped TiO, C5S0.05(MAo.15FA¢.55)0.05Pb(T0.85BT0.15)3 18.97 Null 123
TiO, Cds 4.59 Null 125
Cu,O doped TiO, CdSe/CdS/ZnS/electrolyte 3.01 Null 126
TiO, Mn-CdSe 3.55 Null 128
TiO, CdSe/ZnS/Si0,/Cu,S 4.00 Null 129
Cl@ZnO PbS 11.6 Null 30
ZnO PbX,-PbS 9.5 95%, after 2 months in 33
ambient environment
MgZnO PbS 10.4 100%, after 103 days in the 32
dark under ambient
conditions
ZnO Lead halide-PbS 12.7 Null 46
ZnO PbS 13.1 £ 0.1 Null 37
ZnO PbS NC 12.44 Null 140
Cs-ZnO PbS 10.43 97%, after 3 months under 20 °© 144
C and 30% RH without any
encapsulation
ZnO CsPbBr;-CsPb,Br; 6.81 No detectable decay after 100 146
days under 25 °C and 45% RH
ZnO PTB7-Th:PC,,BM 12.02 Null 147
Na-ZnO p-DTS(FBTTh,),:PC,,BM 9.2 90%, after 28 h 149
SnO, N719 3.2 Null 151
Ni:SnO, 3.6
Zn:Sn0O, 4.2
SnO, Eosin-Y 3.89 Null 155
Sng.9,0,:Sbg 05 4.15 Null 156

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 2 (Contd.)
NC Active layer PCE (%) Long-term stability Ref.
SnoO, PBDR-T & ITIC-4 12.023 ®>90%, up to 75 h after 157
exposure to an ambient
atmosphere with continuous
illumination; ®>95%, after
storage in N, for 200 h with
continuous illumination
PM6:Y6 14.9 81%, after 15 days stored in the 158
air at RM without
encapsulation
PTB7-Th:PC,;BM 10.30 Null 159
PM7:1TC6-4F 13.93 Null
PM6:Y6 15.38 94.3%, after 100 h light aging
Cl@SnO, CsPbI;NCs 14.5 80%, without encapsulation 27
under 1-sun light soaking and
50% relative humidity for 8 h
Ga:Sno, C5S0.05(MAo.17FA¢.53)0.95Pb(I.83BT0.17)s 18.18 Null 161
SnO, CsPbI;/FAPDI; 16.07 96%, after 1000 h in ambient 162
storage
Csx(MAy.17FAo.53)(100—x/Pb(Lo.53Br0.17)3 17.92 89%, after 2500 h stored under 163
20 £+ 5% RH
MAPDI; 13.90 Null 164
(flexible
device)
(CsPDbI3).04(FAPDI;) g2(MAPDBI3)0 14 20.34 + 90%, after 720 h storage 165
0.5
C80.05(MAg.17FA¢ 83)0.95Pb(Lo.3BT0.17)s 20.79 Null 167
FAPDI; 25.39 ®M80% after 1000 h in ambient 168
(0.0803 air at 25% RH and 25 °C
cm?) without sealing; ®70.5% after
700 h light soaking; ®95%
(encapsulated cell) after 100 h
MPP tracking and 2 h dark
recovery under ambient
conditions
23.3 (1 Null
cm’®
21.7 (20 Null
cm’
20.6 (64 Null
cm?®
SnO,/TiO, (bilayer) CsPbIL,Br 15.86 ®~95%, after 1 month storage 169
in N, glovebox without
encapsulation; @>80%, after 1
month stored under RT and
20-30% RH without
encapsulation
SnO,/InP-ZnS (bilayer) PM6:Y6 15.22 >80%, after 500 h in N, 170
without encapsulation
Ni:Co5S, N719 6.01 Null 171
Ni:Co,S; 6.82
NiCo,S, 7.43
Zn,Sn0, 49+ 0.2 172
Y:SrSnO; FAp.85MA¢.15Pb(I0.85Br0 15)3 19.0 91%, after 1000 h stored in N, 173

based NC-LHSCS,30’32’35‘39’40’44’45‘58’131_145 PSCS,146 and OS(Cs.147-149
SnO NCs as ETL for DSSCs,*****¢ for OSCs,*””** and for
PSCs,>”'%1%® have been demonstrated. Additionally, a bilayer of
Sn0,/TiO, (ref. 169) and SnO,/InP-ZnS'° were used for PSCs
and DSSCs. Ni-doped Co;S, and Co,S; and ternary sulphide NCs
of NiCo,S, and Zn,SnO, have been used for DSSCs,*"*'”> while

1338 | Nanoscale Adv., 2024, 6, 1331-1360

doped SrSnO; NCs for PSCs.'”® NCs have been used as IFL for

NC_LHSCS 49,141,174-179 OSCS 180-185 DSSCS 186-195 PSCS 196-212 and Si
’ ) ki )

solar cells.”**?*° FAPbBr; perovskite NCs have been used as

a multifunctional luminescent-downshifting passivation layer

for GaAs solar cells.”**
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Fig. 6 Summary of the explored and potential elements as dopants in TiO,-based electron transporters for PSCs in the periodic table, as in

201725 Copyright 2017, Wiley-VCH.

From the reported literature listed in Table 2, selenide NCs
of CdSe, and doped sulfide NCs of Ni:Co,S,, Ni:Co,S;, and
Ni:Co,S, have shown their potential, suggesting more substi-
tutes for traditional NC ETL. The advantages of NC ETL and
some potential NCs suitable as ETLs are discussed in the
following sections.

2.2.2 Advantages of NC ETL. Compared with common
organic ETLs such as fullerenes (Cgo/C;0) and phenyl-C61-
butyric acid methyl ester (PCBM), semiconductor NCs can
easily overcome the shortcomings of poor stability, high cost,
and unsuitable energy levels. In detail, PCBM film degrades at
85 °C, indicating its thermal instability."** The cost of synthesis
and purification for organic electron transport materials is
higher than most semiconductor NCs.>*> Moreover, the semi-
conductor NCs can offer adjustable energy levels by easily

controlling the size. The above advantages strongly demon-
strate that semiconductor NCs are a very good choice as efficient
ETL in high-performance solar cells.

2.2.3 Potential NC ETL. Thanks to their unique application
advantages in solar cells, NC ETLs have been widely used,
boosting the devices to higher PCE and stability. More oxide
and chalcogenide NCs as well as their doped congeners are
anticipated alternatives. As we know, TiO,NCs always act as
splendid ETL in solar cells. The properties of TiO,NCs can also
be improved by doping, enhancing the device performance. As
shown in Fig. 6, many elements were successfully doped in TiO,,
as ETL for PSCs. Meanwhile, more elements are potential
dopants for high-quality TiO, and this suggests that there is
much room for doped-TiO,NC ETL. Additionally, we reasonably

Fig. 7 Typical position sketch of interfacial layers in solar cells.
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Table 3 Recent advances in selected NCIFLs
IFL and its adjacent layers PCE (%) Functions Ref.
PbCdS TiO,/PbCdS/CdS 3.35 Enhance light absorption; suppress interfacial 174
recombination
CdS + amine/ZnS TiO,:Al**/CdS + amine/ZnS/ 2.4 Decrease electron-hole recombination 175
electrolyte/CuS
Cu,S CIZS + mp-TiO,/electrolyte/Cu,S/ 1.13 Null 176
electrode
CdSe ZnO/CdSe/PbS 7.9 Suppress interface recombination; contribute additional 141
photogenerated carriers
NiO PbS-EDT/NiO/Au 10.4 Improve hole extraction efficiency; suppress the 49
penetration of moisture and oxygen; good band alignment
PbS-EDT PbS-TBAI/PbS-EDT/P3HT 8.7 Adjust the valence band; improve charge transfer 177
CsPbBr; PbSe-MPA/CsPbBr;/Au 7.22 Suppress carrier recombination 178
ZnO Mg-doped ZnO/ZnO/PbS 7.06 Decrease the interface recombination 179
CdSe Zn0O/CdSe/P3HT:PCBM 2.25 Increase conductivity; electron transport and hole block 180
CulnS,-ZnS TiO,/CulnS,-ZnS/PCDTBT:PC,;BM  7.01 Increase the electron extraction; reduce impedance 181
CdSe P3HT:PCBM/CdSe/Al 3.08 Down-conversion, reduce charge recombination 182
ZnCdS TiO,/ZnCdS/PTB7:PC5,BM 7.75 Suppress the recombination; reduce the series resistance 183
SnoO, ITO/SnO,/ZnO 7.16 Enhance optical transmission; reduce energy barrier; 184
suppress carrier recombination
Ag,Se TiO,/Ag,Se/N719 5.89 Null 186
Cds TiO,/CdS/N719 7.54 Suppress the charge recombination; increase the optical 187
absorption
CeOy:Eu®* N719/CeO,:Eu’/electrolyte 8.36 Down-convert UV light to visible light, light scattering 190
NaGdF:Eu®* FTO/TiO,/N719/electrolyte/Pt/FTO/  9.34 Act as luminescent down-conversion centers and light 191
NaGdF:Eu®* scatterers in the ultraviolet and visible domains
CaCe,(MoO,),:Er’*/Yb**  Electrolyte/CaCe,(M0O,),:Er**/Yb*"/ 7.78 Convert the NIR and UV radiation to visible emissions 192
Pt
NaYF,:20%Yb, 2% N719/NaYF,:20%Yb,2% 7.664 Convert NIR and UV lights to visible lights 193
Er@NaYF,:7%Eu Er@NaYF,:7%Eu/Pt
SIF,:Pr**-yb** FTO/StF,:Pr**-Yb**/Ti0,-N719 9.07 Absorb blue light and emit green and red light 194
BawO4:Pr* TiO,/BaWO4:Pr**/N719 8.08 Absorb UV light and emit blue, green, and red light 195
MAPDBTr o], 4 TiO,/MAPbI;/MAPDbBTr, oI, 4 13.32 Facilitate hole transfer from MAPbI; to HTL 196
CulnS MAPDI;/CulnS/spiro-MeOTAD 13.8 Enhance charge transfer; suppress charge recombination 198
pathways
MgO FTO/MgO/SnO, 18.23 Smoother surface; less FTO surface defects; suppressed 199
electron-hole recombination
Cds TiO,/CdS/MAPbI; 10.52 Longer electron lifetime; lower charge carrier 200
recombination rate
SnO, PC4;BM/SnO,/Al 19.7 Block holes; enhance the conductivity; reduce the 201
recombination
CI-SnO, FTO/Cl-SnO,/CsMAFAPDI;Br;_, 17.3 Fill the pinholes; passivate the trapping defects 202
FAPDX; MAPbDI;/FAPbX;/C60 7.59 Enhance absorption 203
PbS MAPbDI;/PbS/spiro-OMeTAD 19.24 Enhance hole extraction; retard interfacial recombination; 204
improve perovskite film morphology
CuO, NiO,/CuO,/MAPDbI; 19.91 Lead higher transfer efficiency and lower carrier 205
recombination
MAPDBTr o], 4 SnO,/MAPDbBr;/MAPDbBr, o], 1 20.21 Optimize the energy level; improve hole extraction 206
Co-CuGaO, CS0.05(MAg 15FA0.85)0.05Pb(I0.85B10.15)3/ 20.39 Reduce the energy gap; prevent direct contact between PVK 207
Co-CuGaO0,/spiro-OMeTAD and oxygen and moisture
MoS,:RGO MAPDI;/Mo0S,:RGO/spiro-OMeTAD  20.12 Extract holes and block electrons 208
CsCu;S; MAFAPbDI;/CsCusS;/spiro-OMeTAD  22.29 Favor for energy levels; reduce carrier recombination 209
Cu,_,S@SiO,@Er,03 TiO,/Cu,_,S@Si0,@Er,03/MAPbI;  17.8 Upconvert infrared light to visible light 210
NaYF.:Yb*! Er*'/ IR-783 + NaYF,:Yb*" Er*"/ 20.5 Convert IR to visible light, scatter light 212
@NaYF,:Yb*" Nd** @NaYF,:Yb*" Nd** + Au/
CsMAFAPbBrI
MoS, SiO,/MoS,/MoO, 22.8 Provide electron-blocking and hole-extraction properties 213
PbS PbS/c-Si solar cell 12.6 Luminescent solar concentrator 214
Cds Si solar cell/CdS 9.37 Reduce the reflectance spectral ranging from 250 to 216

1340 | Nanoscale Adv., 2024, 6, 1331-1360
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Table 3 (Contd.)

IFL and its adjacent layers PCE (%) Functions Ref.
Zn,Cd;_,S-ZnS:Mn Si solar cell/Zn,Cd; _,S-ZnS:Mn 14.271 + 0.268 Down-conversion 217
Cdy.5Zny 5S-ZnS:Mn Si solar cell/Cdy.5Zny 5S-ZnS:Mn 17.90 Down-convert UV light of 250-450 nm to yellow-orange 218

light at 583 nm
NaGdF,:Ce@NaGdF:Nd/ c-Si solar cell/ 0.8 (under Expand the spectrum of quantum cutting in the NIR 219
Yb@NaYF, NaGdF,:Ce@NaGdF,:Nd/Yb@NaYF,; 254 nm
illumination)

CsPbCl, sBr, 5:Yb**,Ce*"  c-Si solar cell/CsPbCl, sBr, 5:Yb**,Ce®*" 21.5 Larger absorption cross-section, weaker electron-phonon 220

coupling and higher inner luminescent quantum yield
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Fig.8 (a) Schematic illustration of the possible electron transfer process in bare CdS and PbCdS/CdS based solar cells and J-V curves of CdS and
PbCdS/CdS based solar cells. (b) The perovskite can directly contact the FTO surface along a shunt pathway in the absence of SnO; ETLs; the
MgO; layer can inhibit the penetration of perovskite reaching the FTO surface, and the best performance of the PSCs with and without MgO. (c)
Corresponding energy level diagram of PSCs, steady-state PL spectra of the perovskite film deposited on the PCg;BM layer and PCg;BM:SnO,
bilayer, J-V characteristics in the illumination for the devices based on the PCgBM layer and PCg;BM:SnO, bilayer. (a) Adapted with permis-
sion.** Copyright 2017, Elsevier. (b) Adapted with permission.*®® Copyright 2017, Wiley-VCH. (c) Adapted with permission.2®* Copyright 2018,
American Chemical Society.
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think this strategy is also applicable to other oxide NCs like
SnO, due to its comparable nature with TiO,.

3. Nanocrystals as IFL

Besides HTL and ETL, another essential layer is the interfacial
functional layer (IFL). Interfaces play a non-ignorable role in
improving both PCE and stability through many paths. The
position of a typical IFL is shown in Fig. 7. The IFL can be
located at different positions in the solar cells to make different
contributions. NCs IFL can enhance light absorption, decrease
carrier recombination, improve charge transport ability, reduce
impedance, convert ultraviolet (UV) or near-infrared (NIR) light
to visible light, enhance optical transmission, decrease trap
states of the active layer, and so on. Table 3 shows the recent
advances of NC IFLs, and the detailed discussion is as follows.

3.1 Suppressing recombination

As shown in Fig. 7, IFL is a separate layer between the charge
transport layer/active layer or charge transport layer/electrode.
So, it can convincingly act as a functional layer to prevent
hole-electron recombination. Ternary semiconductor NCs of
PbCdS were deposited on TiO, as an IFL to impede the direct
contact between ETL and the active layer of CdS, thus sup-
pressing recombination efficiently and boosting the device PCE
significantly (Fig. 8a). As the same, oxide NCs of MgO and SnO,

View Article Online

Review

film inserted between ETLs and electrodes blocked holes and
reduced recombination (Fig. 8b and c).****

3.2 Charge transport improvement

As we know, charge transport ability inevitably affects the
performance of solar cells. As shown in Fig. 9a, MAPbBr o, ;-
NCs with good energy alignment enhance the hole transport
ability and the PCE of the PSCs. Co-CuGaO, NCs with ~20 nm
size were synthesized by hydrothermal method and used for
surface passivation at the interface of perovskite and spiro-
OMEeTAD. Furthermore, the larger bandgap and lower valence
band energy of Co-CuGaO, reduced the energy gap between Co-
CuGaO, and perovskite. Considering that the reduced energy
gap improved hole conduction and electron blocking, the PCE
of PSCs was enhanced from 18.60% to 20.39%.°” MoS,NCs were
also used to improve hole transport and the device PCE and
stability (Fig. 9b).

3.3 Light conversion and harvest enhancement

It is known that the active layer of recent solar cells cannot
respond to the whole solar spectrum, resulting in energy loss
and relatively low efficiency. Broadening the absorption of the
active layer is an efficacious strategy to reduce energy loss and
enhance the performance of solar cells. CdS NCs with general
Stocks shifts were used in Si solar cells for spectral range
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Fig. 9

(a) TRPL spectra of the perovskite film with and without MAPbBrl, NCs, schematic diagram of band bending in the heterojunction

structure formed by the perovskite and MAPbBrl, NCs. (b) Steady-state PL measurements of MAPbI3 after the deposition of spiro-OMeTAD and
different IFL/spiro-OMeTAD, I-V characteristics of tested PSCs using different IFLs, normalized PCE trends vs. time extracted by /-V charac-
teristics under 1 sun illumination, periodically acquired during the shelf life test for the PSCs. (a) Adapted with permission.2°¢ Copyright 2020,
American Chemical Society. (b) Adapted with permission.2°® Copyright 2018, American Chemical Society.
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Adapted with permission.?*® Copyright 2017, American Chemical Society. (c) Adapted with permission.??® Copyright 2017, Wiley-VCH.

enhancement.”*® In Fig. 10a, we can see that Mn-doped NCs
expand the spectral range response of solar cells by absorbing
short-wave lights and emitting the characteristic light around
580 nm, suggesting a larger range of light harvesting by active
layer and PCE improvement. Zn,Cd;_,S/ZnS:Mn** NCs were
also used to broaden the light response range of Si solar cells.*"”
Furthermore, Mn-doped semiconductor NCs have a large Stocks
shift, avoiding self-absorption and thus reducing energy loss.
Sr,CeO,4 NCs with down-shifting properties could improve the
stability of organic P3HT:PCBM solar cells without significant
loss of short-circuit current.'® Certainly, by using NCs with
a Stocks shift for expanded light harvesting, the photo-
luminescence yield and other photoelectronic properties
should keep the rules of high-performance solar cells.

Besides the above NCs, rare elements are good at light
conversion due to their special energy levels. Undoped and
doped NCs based on rare elements were massively applied to

© 2024 The Author(s). Published by the Royal Society of Chemistry

broaden the light response in solar cells and efficiently boost
the device performance. As seen in Fig. 10b and ¢, Yb*", Ce*",
and Nd** based NC layers efficiently convert light and enhance
the device performance. Additionally, Eu**, Er**, and Pr** were
also used for efficient solar cells.

3.4 Energy level optimization

To ensure propitious charge transfer among the functional
layers in solar cells, un-matched energy levels are a tricky issue
that we need to address. One origin of the open-circuit voltage
(Voc) loss of NC-LHSC, Si solar cells, PSCs, and OSCs is mainly
analyzed quantitatively via the energy difference between
bandgap and the Schokley-Queisser limit voltage.’® For n-i-p
solar cells, band alignment between the active layer and ETL
directly limits the splitting of the quasi-Fermi level. For p-i-n
solar cells, the band alignment between HTL and active layer
has a great impact on the V,.. The conduct band of recent HTL
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(a) Energy level diagram of PSCs with the ITO/TiO2/PVK/Co-CuGaO,/spiro-OMeTAD/Au structure, dark [-V curves of devices based on

spiro-OMeTAD and Co-CuGaO,/spiro-OMeTAD, forward and reverse scan J-V curves based on spiro-OMeTAD and Co-CuGaO,/spiro-
OMeTAD. (b) Band edge alignment and photocarrier dynamics in the resultant device. (c) Schematic illustration of an NC-luminescent solar
concentrator, PL spectra of PbS NC-luminescent solar concentrator with different concentrations of PbS, and J-V curves for solar cells with and
without PbS NC-luminescent solar concentrator. (a) Adapted with permission.?®” Copyright 2022, Elsevier. (b) Adapted with permission.2°?
Copyright 2019, Elsevier. (c) Adapted with permission.?*> Copyright 2015, Springer.

is relatively deep, and the barrier for electron transport is not
sufficient, resulting in electron leakage and reducing the device
performance. Therefore, energy level is of great importance to
improve the performance of solar cells. Shown in Fig. 11a and b,
Co-doped CuGaO, and SnO,NCs film were used for energy level
optimization for high-performance solar cells, illuminating the
large potential of NCs as ITL for reducing V,, loss of solar cells.

3.5 Concentrating luminescent solar radiation

Solar radiation is geographically extensive, but the energy
density is not high. So, concentrating solar light for higher
density is a feasible strategy to improve solar cell performance.
PbS NC luminescent solar concentrator (LSC) was found to
show potential advantages over silicon solar cell panels
(Fig. 11c). They can reduce the size of solar cells and offer great
flexibility in design, which results in cost reduction with any
desired shape. One of the attractive LSCs is based on NCS.

1344 | Nanoscale Adv, 2024, 6, 1331-1360

3.6 Prevention

The main reason for unstable solar cells is the invasion of
oxygen and water. IFL between the active layer and HTL, ETL, or
electrode can arrest this invasion to a great degree and increase
the stability of solar cells. The above-mentioned IFL of Co-
CuGaO, NCs in Fig. 11a not only acts as a hole transport
accelerator but also prevents the direct contact of perovskite
with oxygen and moisture, boosting the stability of the PSCs.>"’

4. Nanocrystals as efficient additives

Besides an independent layer to improve the performance of
solar cells, NCs have also been used as additives for boosting
active layer quality, carrier transfer acceleration, spectral
response broadening due to plasmonic effect, light conversion,
light scattering/reflection, heat sinking, and some other func-
tions. Table 4 lists the recent progress of NCs as efficient
additives for high-performance solar cells.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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NC Added layer NC additives and the mixture PCE (%) Functions Ref.
SnO,-Sb,0; Bottom ETL Sn0,-Sb,0; + TiO, 7.7 @®Improve the electron mobility 222
and light harvesting; @avoid the
recombination
PbS PbS + m-TiO, 5.04 (MDEnlarge the grain size of 223
CsPbBr; perovskite film;
®@suppress the activation of
intrinsic trap sites of m-TiO,
PbS + TiO, 14.95 Downshift the conduction band of 227
TiO,, promote the driving force of
an electron injection
Cu-Zn-In-S-Se (CZISSe) CZISSe + mp-TiO, + CsPbBr; 5.37 (MEnhance charge extraction; 225
@reduce charge recombination
Ho*'-Yb**-F~ tri-doped TiO, Ho*-Yb**-F~ tri-doped TiO, + 9.91 + 0.3  Convert NIR light to green light 232
TiO,
Gd; 54Erg 46(M00,); (GMO:Er) GMO:Er + TiO, 3.41 Convert NIR light to the visible 233
region (near 550 nm)
B-NaYF,:Yb**/Er*"/ B-NaYF,:Yb*'/Er**/Sc** @NaYF, + 20.19 Convert NIR to red and green light 243
Sc*' @NaYF, TiO,
SrAl,O,:Eu®* SrAl,O,:Eu*" + TiO, 4.64 Elevation of the Fermi energy level 245
of TiO,, improves light harvesting
ZnSTe Bottom HTL ZnSTe + PEDOT:PSS 2.31 Reduce series resistance, increase 230
shunt resistance, improve
mobility
NaCsWO;@NaYF,@ Top HTL NaCsWO;@NaYF,@NaYF,:Yb,Er 18.28 + @®Wwiden the perovskite spectral 231
NaYF,:Yb,Er + spiro 0.34 response range; @increase the
light reflection; ® prolong the
light path, and light absorption
NaLuF,:Yb,Er@NaLuF, NaLuF,:Yb,Er@NaLuF, + PTAA 15.86 Convert NIR light to visible light, 237
scatter light
Li(Gd,Y)F,:Yb,Er Li(Gd,Y)F,:Yb,Er + spiro-MeOTAD  18.34 Convert NIR to visible light 242
SnO, Active layer SnO, + P3HT-PCBM 3.39 Reduce the recombination 224
Fe-doped SnO, Fe-doped SnO, + P3HT 3.04 Extension of photogenerated 247
exciton lifetime, overcome the
burn-in regime faster
NaYF,:Yb,Er/NaYF, NaYF,:Yb,Er/NaYF, + N719 9.15 Convert NIR light to visible light 235
(450-700 nm)
TiO,:Sm>* TiO,:Sm>" + P25 + N719 5.31 Convert UV to visible light 244
SnS SnS + MAPDI; 14.26 (@®Provide more nucleation sites 226
for the growth of perovskite
grains; @ accelerate carrier
transfer and reduce the
recombination
NaYF,:Yb/Er NaYF,:Yb,Er + MAPDbI; 17.8 Broaden the solar spectral use to 236
NIR light, minimize the non-
absorption energy loss
IR-806-B-NaYF,:Yb,Er IR-806-B-NaYF,:Yb,Er + 17.49 Convert NIR light (800-1000 nm) 238
MAPbLEr**-Yb*" doped Zn to visible emissions
Ho*'-Yb**-Li"-doped TiO, Ho*'-Yb**-Li"-doped TiO, + 16.88 + Convert NIR to visible light, 240
FAMAPDBrI; 0.5 improve electron injection
efficiency, and decrease
recombination
B-NaYF,:Yb*" Tm** @TiO, B-NaYF.:Yb*" Tm** @TiO, + 16.27 Convert NIR to visible light, serve 241

MAPbDI,

as the light scatter centers

4.1 Active layer quality improvement and carrier transfer
accelerator

The performance of solar cells largely depends on the quality of
the active layer, such as the purity of Si for Si solar cells and the
composition of perovskite for PSCs. For example, defects
unavoidably exist at the surface of perovskite thin film during

© 2024 The Author(s). Published by the Royal Society of Chemistry

the low-temperature fabrication process, and reducing defects
is a very useful way to improve the performance of PSC.>** This
subsection discusses NCs as outstanding additives in the active
layer for boosting its quality and carrier transfer acceleration.
Sn0,-Sb,0; NCs were used to modify TiO, nanorod arrays
for electron mobility improvement and electron transport

Nanoscale Adv., 2024, 6, 1331-1360 | 1345
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resistance reduction. This NCs modified ETL enhanced the PCE
of CH3;NH;PbI; ,Cl, PSC from 6.5% to 7.7%.**> PbS NCs
suppress the activation of the intrinsic trap sites, provide
nucleation sites to enlarge the grain size, and suppress the
charge combination in CsPbBr; PSCs (Fig. 12).>** Adding SnO,
NCs of size around 5 nm into the active layer of P3HT:PC4;BM
made electrons more easily pass through the active layer and
accelerate the electron transfer, improving the PCE of OSC from
2.67% to 3.39%.2** S,0;> -capped Cu-Zn-In-S-Se NCs with
~5 nm size was introduced in the perovskite precursor of PbBr,
solution to boost 22.6% enhancement of the PCE of inorganic
Cs-based PSCs, which was due to promoted crystallization of
CsPbBr; and hole extraction.”*® SnS NCs with an average size of
6.9 nm were implanted into the active layer of carbon-based
HTL-free mesoporous PSCs, and the device gained a high PCE
of 14.26% with a 12.42% improvement. This improvement was
demonstrated by more nucleation sites for the growth of
perovskite grains and the accelerated carrier transfer.””® PbS
NCs doped TiO, nanotubes (TNTs) modified the electronic and
optical properties by downshifting the conduction band of TiO,
ETL from —4.22 to —4.58 €V and promoting the driving force of
an electron injection to the conductive electrode.””

1346 | Nanoscale Adv, 2024, 6, 1331-1360

4.2 Plasmonic Effect

Semiconductor NCs have exhibited localized surface plasmon
resonances (LSPR), and this plasmonic effect has been used in
many fields, such as solar photovoltaics, in-door energy
comfort, water splitting, and so on (Fig. 13). Compared with
traditional LSPR materials (noble metals), the semiconductor
LSPR NCs allow a wide range of wavelength tunability from
visible towards near-infrared (NIR) and further to mid-IR,
leading to larger absorption of solar light. Higher absorption
of the active layer in solar cells increases the current intensity
and thus, the device performance. DSSCs based on plasmonic
effect by ZnO or SnO, and TiO,/SnO, have been investigated.>**
From Fig. 13, it can be seen that different oxides, sulfides, and
selenides such as MoO;_,, Cs,WO;, TiO,_,, CdO;_,, doped
In, 03, doped ZnO, Cu,_,S, Cu,In,S,, Cu,_,Se, etc. broaden the
response spectra from 500 nm to nearly 3800 nm. Effective light
harvesting due to the plasmonic effect shows great potential in
solar cell application. Given the limited self-absorption bands
of solar cells, the above oxide and sulfide NCs can be applied as
additives to widen the light harvesting range. Clearly, this will
reduce energy loss and raise the device performance in
a considerable way.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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4.3 Light conversion

As discussed in Section 3, light conversion is an efficient way to
boost the PCE and stability of solar cells. Based on this point,
NC light-converting layers were investigated in the previous
part. It is also true that light conversion can be realized by NC
additives, which will be summarized in this part.

4.3.1 Up-conversion. Rare-earth (RE) elements are famous
for light up-conversion and further application in solar cells. RE
element-doped semiconductor NCs have been added as addi-
tives in active layers and charge transport layers for high-
performance DSSCs and PSCs. NIR lights were up-converted
to visible lights and thus elevated the device PCE due to wider
solar radiation absorption (Fig. 14). The RE element-based NCs,
which can be used in up-converting materials as additives in
solar cells, mainly contain Yb, Er, Ho, and Sc doped materials
like Ho-Yb-F doped TiO,, Er-Yb doped ZnO,, Ho-Yb doped
Gd,03, Yb-Er doped NaYF, and Yb-Er doped Li(Gd,Y)F,. As
shown in Fig. 14, the schematic energy diagram for Yb®* and
Er’** are suitable for up-conversion and the related solar cells
gain high efficiency. The up-conversion NCs can be added in the
active layer, ETL, and HTL in different solar cells like OSC,
DSSC, and PSC. The original active layers cannot absorb the
whole range of sunlight and thus result in energy loss. After
assembling NCs with up-conversion ability, the non-responsive
long-wavelength range of sunlight will be converted to shorter
wavelengths and absorbed by active layers to re-generate hole-
electron pairs. This strategy can enhance the utilization of the
infrared range of sunlight and the performance of solar cells.

4.3.2 Down-conversion and down-shifting. = Down-
conversion and down-shifting NCs are advantageous for high-
performance solar cells due to the efficient utilization of UV
lights. Typical Sm**-based TiO,NCs were used in DSSCs and
obvious improvement of PCE was gained (Fig. 15) through

© 2024 The Author(s). Published by the Royal Society of Chemistry

converting ultraviolet to visible light. Better performance of
solar cells was obtained by means of down-converting NCs such
as ZnS:Er in Si-based devices and CeO,:Gd in OSC.?***° The
shortest wavelength response by perovskite is about 400 nm.>*®
The energy of sunlight with wavelengths shorter than 400 nm
will be wasted. Furthermore, the UV lights can damage the
perovskite or organic active layer and reduce the device stability.
So, the PCE and light stability of solar cells can be increased by
using down-conversion or down-shifting NCs.

4.4 Light scattering and reflection

Light scattering and reflection are well-known for boosting the
optical absorption of different solar cells. TiO,:Zn NCs can
scatter light and promote the performance of conventional
DSSCs.*” Due to the ultralow (<1%) photoluminescence
quantum yield, NaLuF,:Yb,Er@NaLuF,NCs acted as scattering
centers and extended the sunlight optical path by combining
scattering and reflecting sunlight.?” NaYF4:Yb*",Tm*" NCs
serve as scatter centers to enhance light harvesting for PSCs.***
We can conclude that NCs are good at light absorption
enhancement due to light scattering and reflecting, and this is
an available approach for improving the device performance.

4.5 Heat sinks

Except for optical management, heat control is also important
for solar cell operation because elevated temperatures may
increase energy loss and destroy the devices. In the traditional
photovoltaic/thermal (PV/T) system, the temperature of thermal
energy is always limited by the operation temperature of PV
cells. The oleylamine solution of CuySsNCs was adopted in the
spectral splitting filter to harvest the moderate-temperature
heat. After successful thermal energy collection, the maximum

Nanoscale Adv., 2024, 6, 1331-1360 | 1347
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overall efficiency of the present PV/T collector is 34.2%, with
a 17.9% improvement.>® In a concentrator photovoltaic
nanocrystal-phase change material (PCM) hybrid system, Al,O3,
CuO, and SiO, were used to save energy and offer safe operating
conditions. Compared with pure PCM (0 wt%), Al,03;-PCM at
5 wt% increased the thermal conductivity, and the melting rate
reduced the solar cell temperature. The electrical efficiency was
improved from 6.36% to 8% and gained temperature uniformity
from 20 °C to 12 °C. This strategy would be recommended for
residential and industrial applications in solar cells.”*®

4.6 Other functions

ZnSTe NCs with an average of 2.96 nm in the active layer
demonstrated increased photo-generation and improved effi-
ciency by reduced series resistance and improved mobility.**®
Fe-doped SnO, NCs incorporated into the active layer of
P3HT:PCBM improved the J;. of OSC due to the extension of
photogenerated exciton lifetime as a result of the magnetic
field. Meanwhile, these NC-reinforced devices showed the
tendency to overcome the burn-in regime faster and indicated
the diluted magnetic semiconductor NCs had the potential to
increase the stability of the devices.**’

5. Summary and outlook

In recent years, NCs as functional layers and additives have
been widely used in solar cells, significantly enhancing their

1348 | Nanoscale Adv., 2024, 6, 1331-1360

performance. Here, we summarize NCs-based HTL, ETL, IFL,
and additives for solar cells. NCs can boost the device perfor-
mance in many ways, such as increasing the charge transport
ability, suppressing charge recombination, broadening light
harvest, and so on.

Based on previous investigations, we propose some prom-
ising strategies to enhance the performance of solar cells by
using NCs.

(I) Optical management. Full spectrum absorption under
low-cost conditions: both up-converting and down-shifting
materials. For down-shifting, doped NCs with large Stokes
shift, such as Mn or Cu doped NCs, have great potential due to
no self-absorption, facile synthesis, and low cost. Cu’, Ag"
doped n-type metal oxide NCs,**® Fe,_,S, NCs,*" and In doped
CuxS NCs,***with great potential for spectra broadening are also
suggested for high-performance solar cells. CaMoQ:Er*",Yb**
NCs would offer great potential for conserving energy in Si solar
cells.”*® Certainly, the photoluminescence efficiency of NCs is
very important when they are used to convert light in solar cells.
Excellent optical management of solar cells can utilize more
sunlight and improve the device performance.

(IT) Electronic optimization. The charge transfer ability is
mainly determined by the electronic properties of charge
transport materials. The performance of solar cells can be
improved by electronic optimization. One approach is
a component change of materials such as n doping for n-type
NCs and p doping for p-type NCs. Finding more suitable
dopants for NCs will further boost the PCE and stability of solar

© 2024 The Author(s). Published by the Royal Society of Chemistry
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cells. Meanwhile, the size and ligand control of NCs are also
considered to optimize their electronic properties and fabricate
better-performance solar cells.

(1) Interface engineering. Interfacial layers between
different functional layers show different functions in solar
cells. In further developments, more NCs IFL will be used to
improve device performance by preventing direct contact
between the active layer and charge transport layer, impeding
the entry of water and oxygen, and protecting and destroying
the active layer with UV lights.*** So, NC IFL, with good photo-
electronic properties, can adjust energy alignment, accelerate
charge transport, enhance light harvest, and protect the active
layer.

(IV) Cross utilization. The metal-organic framework (MOF)
materials can improve the efficiency and stability of solar cells
due to their unique properties.”® NCs with small sizes can be
considered to mix with MOF and enhance the performance of
devices. In addition, NCs can be utilized as light harvesters,
HTL, ETL, and IFL, so we suggest their application in all-NC
solar cells.
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