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Peptide structure—activity/property relationship (P-SA/PR) studies focus on understanding how the
structural variations of peptides influence their biological activities and other functional properties. This
knowledge accelerates the rational design and optimisation of peptide-based drugs, biomaterials, or
diagnostic agents. These studies examine peptide structures from their primary sequences, essentially
encoded from the 20 amino acids. Current approaches often exclude peptide libraries with post-
translational and synthetic modifications. The molecular fingerprint MAP4 was recently developed to
map complex molecules’ sequence/structure diversity, including peptides. This study used structure—
activity landscape modelling to conduct the P-SA/PR studies of an exemplary dataset of 223
antimicrobial peptides against methicillin-resistant Staphylococcus aureus (MRSA). To this end, we
employed the MAP4 fingerprint to represent the chemical structures of the peptides, study their
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Accepted 31st August 2023 relationship(s) with the antibacterial activity, and seek the potential activity cliff(s). We identified critical
residues and structural motifs that play a crucial role in the anti-MRSA activity of the peptides. This is the
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Introduction

Peptides play essential roles in plant and animal physiology,
targeting various proteins, including growth factors, ion chan-
nels, receptors, and enzymes. They have a broad range of bio-
logical activities, all valuable starting points to treat human
disorders.'® However, discovering and designing biologically
active peptides could be deceiving; the peptide space is vast;
a peptide sequence of length N could lead to 20" possible
mutations solely with canonical residues. Adding post-
translational modifications (PTMs), synthetic constraints or
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residues, emphasising the quantification of structural similarity.

mutations to existing canonical sequences, and the number of
possible peptides becomes astronomical. It is impractical to
synthesise all sequences or investigate all functionally inter-
esting variants. Luckily, Nature has provided us with privileged
peptide ligands, reducing our search space to sequences with
preferred structures and functions.**

A central goal for computational peptide design is to create
novel sequences that carry the underlying properties of natural
peptides with defined structural and functional properties.
Multiple informatic approaches have proven helpful in acceler-
ating peptide design learning from their sequences or tridimen-
sional structures.*” In addition, the automation of peptide
synthesis on a solid support or the heterologous expression of
proteins across biological systems has reduced production costs,
making peptide space exploration accessible. These in silico
methods predominantly learn from primary sequences from
sizeable datasets rather than their structures due to the high costs
associated with solving structures experimentally.® Yet, current
sequence-based approaches need to systematically study PTMs
that can significantly affect the physicochemical, chemical, or
biological properties of peptides.” Chemoinformatics (also called
in the literature “cheminformatics” or “chemical informatics”)*
and bioinformatics are independent disciplines regarding the
focus of their study. The former focuses on small molecules,
whereas the latter focuses on using computational methods to
address biological entities. Computationally, one key difference
between both disciplines is how chemical structures are
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represented and handled. In biology, the chemical structures are
usually large (e.g., proteins, nucleic acids, receptors). They are
described in strings of letters or Cartesian coordinates (i.e.,
Protein Data Bank), unlike low molecular weight compounds
that are encoded in various molecular fingerprints.”” However,
some chemical structures are at the interface between traditional
small molecules used extensively in drug discovery and proteins
and nucleic acids in the biological realm. Peptides exemplify these
chemical structures; they vary in size, ranging from small mole-
cules to large proteins.

In recent years, new methodologies and technologies have
reduced the literacy gap between chemoinformatics and bio-
informatics. New molecular representations based on atom
connectivity allow the systematic study of complex molecules
that could be applied to mapping the structural diversity of
peptides. They may help in understanding the roles of PTMs in
their physicochemical properties or biological activities."
Different computational strategies to develop peptides are
based on analysing sequence alignments and physicochemical
similarity metrics.”® However, only some post-traditionally
modified peptides and their functional measurements are
documented, limiting the use of alignment algorithms and the
prediction of secondary structures.** Recent computational
methods have contributed to decoding the structure-activity/
property relationships (SA/PR) of peptides (P-SA/PR)."*'® A
growing number of methods based on primary sequences or
derived physicochemical features of peptides (e.g., machine-
learning methods, the de novo design, linguistic modelling,
pattern insertion methods, and genetic algorithms)"” represent
new research opportunities to explore P-SA/PR and guide a new
era of peptide-based drug design. Computational drug design
approaches have decoded the physicochemical and sequence-
activity relationships on peptides.*®** Such approaches remain
to be applied, describing the relationships between small
structural changes and their specific biological activity.

Physicochemical properties are commonly used to compare,
filter, and classify molecular structures of pharmaceutical
interest.**** They generally describe global changes in contrast
with more localised structural conformations, small chemical
changes, or fold peptide differences. Consensus similarity metrics
were recently implemented to compare peptide structures
considering features including tridimensional structure, topology,
backbone structure, drug-like properties, amino acid sequence,
and molecular fingerprints.””** From a conceptual point of view,
combining physicochemical, chemical, sequence and structural
descriptors commonly used in chemoinformatics and bio-
informatics would provide a comprehensive picture of the
peptides.” For example, different authors recently demonstrated
that predicting properties and designing new peptide structures
from the consensus description of known peptidic
information**” states that not all similar peptides conserve
identical properties. Such a highlight is related to the activity cliff
concept frequently used in chemoinformatics,”® two or more
peptides with high structural similarity but distinct functional
measurements. Activity cliffs have decoded the SA/PR studies of
linear and circular peptides against different endpoints.>*" Also,
the presence of activity cliffs in datasets reduces the performance
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of predictive models by challenging their ability to capture precise
relationships between chemical structures and biological activity
and their generalisability to new compounds.*** The novel
circular and topological fingerprint MAP4 is more sensitive to
identifying small structural changes in complex molecules, espe-
cially in peptides, than conventional fingerprints used in small
molecule drug discovery, such as MACCS keys, ECFP4, or ECFP6.*
Additionally, MAP4 fingerprint has opened the opportunity to
create and navigate in a representative chemical space of more
complex peptides,*** and it has been used to improve the
performance of artificial intelligence algorithms to predict
peptidic properties.*®

This study introduces a new approach to exploring and
describing the activity landscape of peptides with non-
canonical residues, including PTMs. Our case study uses an
exemplary dataset of 223 peptides with reported activity against
methicillin-resistant Staphylococcus aureus (MRSA) strains.”” It
is considered one of the most critical global health threats due
to its high pandemic potential.*’** Namely, the MRSA strains
create an emerging challenge for health systems by increasing
the costs associated with the recovery of patients.** Epidemio-
logically, MRSA stands out for efficient dissemination and
establishment in environments as diverse as hospitals and
communities and is related to different types of productive
livestock, whose repercussions range from human health to
food production and safety.**** Visualising peptide structure-
activity/property relationships studies using MAP4 fingerprint
accelerates the rational design and optimisation of bioactive
peptides, e.g., anti-MRSA peptides. The present approach allows
(1) mapping the anti-MRSA peptides sequence and studying
their structural diversity (using similarity metrics based on
MAP4 fingerprint) and (2) visualising peptide activity cliffs in
low-dimensional space (using an extension of a structure-
activity similarity map). To this end, we employed an atom-
connectivity fingerprint recently developed and well-suited to
represent peptides. We also discuss an interpretation of the
peptide activity cliffs.

Methodology
Protocol overview

This protocol was implemented in five steps: (1) we collected the
peptide sequence and bioactivity data from APD3 database®® of
natural or synthetic peptides, with anti-MRSA reported activity
expressed in mg mL ™', with <70 residues; (2) using each peptide
sequence and their non-canonical modifications, the SMILES
strings were was obtained manually drawing each peptide in the
software ChemBioDraw Ultra V.13; (3) using python programing
language the fingerprint MAP4 (ref. 33) was calculated for each
peptide. Additionally, paired calculations (i.e. molecular simi-
larity, paired difference activity, and paired difference molec-
ular weight) were done using the code freely available at https://
github.com/LopezLopezE/Peptide-Similarity.git; (4) the paired
data was visualised using DataWarrior software V. 5.5.0;**%¢ (5)
that allowed the identification of peptide activity cliffs (vide
infra). Fig. S1 in the ESIf illustrates a graphical overview of
this methodology.

Digital Discovery, 2023, 2, 1494-1505 | 1495


https://github.com/LopezLopezE/Peptide-Similarity.git
https://github.com/LopezLopezE/Peptide-Similarity.git
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00098b

Open Access Article. Published on 01 2023. Downloaded on 06-11-2025 18:42:25.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

The methodology used in this study is a distinctive manner
to represent the non-canonical modifications on peptides that,
compared with traditional peptide sequence alignments or
other similarity metrics, offer a more realistic structure-activity
approximation.

Data set

To analyse the landscape of anti-MRSA peptides, we collected
a total of 223 peptide sequences from the Antimicrobial Peptide
Database,*® of which 101 examples (~45.29%) have a half
minimum inhibitory concentration (MICs,) value measured
against clinical isolation of MRSA strains. In total, 122 peptides
(~54.71%) have MICs, value reported against at least one of the
26 characterised MRSA strains. We transformed all MIC;,
values to a negative decimal listed logarithm scale, namely
PMICs, = —log;o MICs,. The values range from 3.89 to 6.78 and
are listed in ESI - Table S17 alongside the peptide sequences
and SMILES representations. In some cases, the same peptide
has been evaluated against different strains; we only kept the
higher value of the pMICs, range.

Activity landscape modelling

We studied the activity landscape of the 223 peptides through
two approaches that are frequently used with small organic
compounds: Structure-Activity Similarity (SAS) map and the
Structure-Activity Landscape Index (SALI) widely used in che-
moinformatics. Both approaches are explained hereunder. A
SAS map is a low-dimensional graph for analysing the SAR of
the compound dataset. SAS maps are one of the early
approaches to studying activity landscapes and rapidly identi-
fying activity cliffs. Activity cliffs are pairs of compounds with
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high structure similarity but significantly different biological
activity.”® SAS maps are based on systematic pairwise compari-
sons of the compounds in a data set. A general schematic
representation of a SAS map is presented in Fig. 1.

SAS maps generated in this study represented all 25185
pairwise comparisons between the 223 peptides. The map dis-
played structure similarity with the MAP4 fingerprint and the
MinHashed distance® on the X-axis. The Y-axis showed the
activity difference using the pMICs, values of each peptide pair.
The Z-axis expressed differences in molecular weight between
each pair of peptides. The data points in the SAS maps were
further coloured by their SALI value. This index quantifies the
activity landscape using the expression proposed by Guha and
Van Drie'*® (eqn (1)):

where A; and A; are the activities of the i and j molecules and
sim(i,j) is the similarity coefficient between i and j. Herein,
sim(i,j) was computed with the MAP4 fingerprint and the Min-
Hashed distance function. The SALI values were further map-
ped onto the SAS map using a continuous colour scale from
blue (low SALI values) to red (high SALI values associated with
activity cliffs).

Chemical space of anti-MRSA peptides

A visual representation of the chemical space of anti-MRSA
peptides was constructed using a Treemap (TMAP). TMAP
allows the visual representation of many chemical compounds
through the distance between the clusters and the cluster's
detailed structure through Local Sensitive Hashing (LSH) forest
data structure, enabling c-approximate k-nearest neighbours (k-
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Fig. 1 Graphical representation of a Structure—Activity Similarity (SAS) map (A) and an extension of a SAS map (B). A SAS map is based on
a pairwise comparison of each compound on a data set. Each data point in the graph in the map represents a pair of compounds. SAS map is
based on the activity differences of the pair of compounds against a specific biological endpoint and their molecular distance. (A) Map with four
regions: () identifies a pair of compounds with low activity difference and low molecular distance (also called scaffold or R-hopping, or similarity
cliffs); (I) represents a pair of compounds with low activity difference and higher molecular distance (smooth SAR cases); () represents pair of
compounds with higher activity differences and higher molecular distance (activity cliff); and (IV) represent pair of compounds with a discon-
tinuous SAR#” (B) An extension of the conventional SAS map (extended SAS map) implemented in this study adds the molecular weight
differences as a new axis.
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NN).* MAP4 fingerprints for peptides were encoded using the
MinHash algorithm. The number of nearest neighbours, k = 50,
and the factor used by the augmented query algorithm, kc = 10,
were used to develop the TMAP graphs. The activity values were
represented using a colour scale from red (most active peptide;
6.78 pMICs,) to blue (most inactive peptide; 3.89 pMICs).

Results

Data set description

We collected 223 anti-MRSA peptides from APD3 alongside
their pMICs, values. Most peptides were identified from
amphibians (88/39.5%), followed by bacteria (36/16.4%) and
mammals (28/12.6%) (Fig. 2A). We observed diverse properties
profiles in Fig. S2 in the ESI,i showing differences in their
topological polar surface area (TPSA, ranging from 315.05 to
3010.60 A), molecular weight (MW, from 408.09 to 6643.81 g
mol "), and lipophilicity index (XlogP, from —34.79 to 11.89).
TPSA and MW positively correlate with pMICs;, values except for
a few outlying peptides. In contrast, XLogP values negatively
correlate with pMICs, values independently of the structures.
Additionally, beta-sheet peptides presented higher TPSA and
MW than the helical counterparts, whereas both structural
groups shared similar lipophilicity ranges (XlogP ~ —5 to 1); see
Fig. S2 in the ESI.{ Overall, this data set contained peptides with
canonical (200/89.69%) and non-canonical/modified (23/
10.31%) amino acids - see Table S1 in the ESI.f Regarding the
structural diversity of the anti-MRSA peptides (Fig. 2B), most
peptides do not have identified structures (59.6%). Yet, alpha-
helices predominate among all known structures (32.7%).
Most structures of anti-MRSA peptides were solved using
nuclear magnetic resonance spectroscopy (30/13.5% — Fig. 2C).
A substantial part of the peptide structures (42/13.8%) were
computationally predicted, and the largest group has not been
associated with any predicted or experimental structure (139/
62.3%).

Activity landscape modelling

Fig. 3A shows an extended SAS map annotated with SALI values
of 25185 pairwise comparisons between the 223 peptides,
which facilitated the identification of activity cliffs. Namely, the
extended SAS map allowed the pairing of peptides with high
structural similarity as determined by MAP4/MinHashed
distance function (similarity > 0.40) but with a sizeable anti-
MRSA activity difference (pMICs, difference > 0.90) and with
low MW difference (MW difference < 650). Based on these
criteria, we selected, as representative examples, the peptide
pairs 1-11 (Fig. 3A). Sequence alignment of pairs 1-11 (Fig. 3B)
confirmed that the peptides had similar amino acid sequences
(47% to 100%). However, the similarity calculated based on
their peptide chemical structures did not necessarily have
a linear relationship with the identity of peptide sequences
(Fig. 3C). This observation suggests that the MAP4 fingerprints
helped compare the peptide chemical structures and their
primary sequences. Nevertheless, the 2D and 3D alignments of
amino acids provided additional and intuitive information to

© 2023 The Author(s). Published by the Royal Society of Chemistry
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decode the P-SA/PRs. For example, the peptide pair 1 (Fig. 3C)
shows a lower fingerprint-based similarity (0.866) in contrast
with their sequence identity (100%). This data suggested that
the fingerprint-based similarity could be sensitive to small
structural and atom-connectivity changes in short peptides
containing less than 20 residues. Interestingly, the peptide pairs
1-11 exhibited good relationships between their fingerprint-
based similarity and sequence-based identity. Hence, our
fingerprint-based similarity metric might help quantify the
similarity between more extensive sequences (i.e., 20 residues or
more).

Fig. 4 illustrates the structural similarity between additional
representative peptide pairs 12-15. The fingerprint-based
similarity protocol allows the identification of small structural
changes (pair 12), changes in a unique amino acid sequence
(pair 13), N-terminal modifications (pair 13), multiple amino
acids changes (pair 14), and structural changes associated with
post-traditional modifications (pair 15).

Visualisation of chemical space

In addition to the extended SAS map, we explored the anti-
MRSA peptide landscape using a tree manifold approximation
and projection (TMAP, Fig. 5). A TMAP shows the k-nearest
neighbours of each peptide (represented with a sphere) using
the MAP fingerprint and the MinHashed algorithm as
a distance metric. Namely, the TMAP facilitates the discovery
and intuitive visualisation of structurally related compounds.
For example, the peptides AP02565 and AP02566 (pair 1 in
Fig. 3) had identical sequences and were located close to each
other in TMAP. It is worth mentioning that a TMAP-based
distance depends not on the % identity of amino acids (AA)
but on an alternative representation that depends on structural
fingerprints (vide supra). Consequently, the peptide pair 1 did
not share the exact coordinates.

In contrast, the peptides AP02565 and AP02567 (pair 2 in
Fig. 3) are structurally different, e.g., 69% of AA sequence
identity and 0.561 fingerprint-based similarity, and were
located farthest apart compared to the peptide pair 1. The TMAP
representation illustrates the peptide pairs' subtle and complex
structural relationships. For example, the peptide pair 13
(AP00166 and AP00883) presented multiple AA changes and N-
terminal modifications, whereas AP03059 and AP03481 (pair 15)
only differed by forming a disulfide bond.

The peptide pairs 1-11 had a medium-to-high structural
similarity (AA sequence identity between 22-100%) but were
associated with a significant change in their pMICs, values.
However, the fingerprint-based similarity values (measured
with MAP4) positively correlated with identity values (R* = 0.31,
Fig. S4 in the ESIT). Moreover, fingerprint-based similarity
values showed a higher inverse correlation (—0.12) with the
activity difference values of each peptide pair compared to their
identity values (—0.06). Higher similarity or identity values were
correlated with lower activity difference values. This observation
suggests that fingerprint-based similarity measures comple-
ment the insights derived from sequence alignments but do not
replace them. Similarity metrics explore the atom-connectivity
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Fig. 2 Diversity of the 223 anti-MRSA peptides according to (A) their source organisms, (B) their known secondary structures, and (C) their
experimental methods used to solve their structures [CD stands for circular dichroism, NMR: nuclear magnetic resonance spectroscopy and X-
ray: X-ray crystallography].
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1 AP02565 — AP02566 318.4 uM 2.1uM 0.96 0.866 1.1 147.2 100.00
2 AP02565 — AP02567 318.4 uM 2.4 uM 0.90 0.561 1.61 33.0 69.57
3 AP03010 — AP02656 32 uM 0.4 uM 1.90 0.453 4.19 38.0 55.26
4 AP03010 — AP03022 32 uM 0.63 pM 1.70 0.447 3.96 1211 56.78
5 AP03010 — AP03311 32 uM 0.68 uM 1.66 0.387 4.31 90.2 52.78
6 AP01705 — AP00577 25 uM 1.33 M 1.27 0.790 6.06 15.9 89.19
7 AP01947 — AP02108 2414 yM 0.99 uM 1.38 0.750 5.56 72.0 91.67
8 AP00281 — AP00498 64 uyM 1.12 uyM 1.75 0.651 5.03 67.9 76.47
9 AP01754 — AP02656 50 uM 0.4 uM 2.14 0.454 3.93 38.0 61.11
10 AP00281 — AP00310 64 uyM 0.33 pM 2.28 0.452 4.16 614.2 47.06
11 AP00281 — AP00418 64 uM 0.45 pM 2.15 0.452 3.93 574.4 55.8

Fig. 3 Structural and sequence similarity between the 223 anti-MRSA peptides: (A) modified (extended) structure—activity similarity map; each
sphere represents a pairwise comparison of the chemical structure (quantified utilising MinHassed distance/MAP4 fingerprints), activity differ-
ence, and molecular weight difference. The spheres are coloured according to the SALI values using a continuous scale from low (blue) to high

(red) values. An interactive visualisation has been implemented using the DataWarrior software; see File S1 in the ESI.} (

B) Sequence alignment

and (C) summary characterisation of 11 representative peptide activity cliffs (pairs). SALI: Structural—Activity Landscape Index.

in peptides, while sequence identity describes the residual
differences. Therefore, using the small structural/sequence
changes in peptides helps to rationalise the peptide structure—
property relationships.

Overview of anti-MRSA peptides sequence alignments

Alignment analysis of the 223 anti-MRSA peptides resulted in
a consensus sequence (“FLKKIAKVLGKAG” - Fig. S3 in the
ESIt), which was characterised by being enriched in lysine (Lys —
K). The consensus sequence has a net charge of +4 and a 54%
hydrophobic ratio.”*** Although these physicochemical

© 2023 The Author(s). Published by the Royal Society of Chemistry

characteristic based on the consensus sequence has been
associated with potent anti-MRSA activity, also has been asso-
ciated with hemolytic effects.’® The sequence alignment of the
twenty most active peptides within our dataset showed
a consensus sequence (“CKFKAGICHKLKCIAHKYKGGVCK” -
Fig. S5 in the ESIt), having a high net charge of +7.5 (ref. 53-55)
and 46% hydrophobic ratio. We remarked on the presence of
four cysteines (Cys - C) in the active consensus peptide
sequence, which contributes to the stability of the tertiary
structure,’*® for example, in peptides, e.g. AP03010, AP03022,
and AP03311 in Fig. 6 (vide infra).
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Fig. 4 Representative anti-MRSA peptide pairs 12—15. Chemical changes observed between each peptide pair are coloured in red, whereas

shared chemical structures are depicted in black.

In summary, these results suggested that the structural
similarity calculations based on MAP4 fingerprint and Min-
Hashed function provide a means to explore the peptide activity
landscape. Methods such as extended SAS maps and SALI
enable the landscape study of the 223 anti-MRSA peptides,
rapidly uncovering small structural changes associated with
significant modifications in the pMICs, values. However, this
methodology is general and could be adapted to study any other
properties of peptides, ie., P-SA/PR. We noted that TMAPs
helped visualise different features of peptides' peptide property
landscape. Nevertheless, it is essential to acknowledge that
TMAPs, similar to other visualisation techniques, rely signifi-
cantly on structural representation (such as a molecular
fingerprint) and are mainly influenced by the relative size of

1500 | Digital Discovery, 2023, 2, 1494-1505

peptides. Therefore, we recommend limiting the usage of TMAP
visualisation to peptides of similar size ranges.

Discussion

Studying peptide structure-activity/property relationships (P-
SA/PR) is a re-emerging topic that exhibits a large applicability
domain, including medicine, pharmacology, biotechnology,
and material industry.>”~* Synthesising peptides on a large scale
has been advancing faster than the computational methods to
design them. Fortunately, computational strategies are
constantly developed to support the experimental design of
peptide libraries at medium-large scale, reducing this technical
gap. However, it remains challenging to fully decode the P-SA/

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 TMAP of the 223 anti-MRSA peptides. Each sphere represents a peptide, and the inter-spherical distance represents the structural
relationships between peptides. Each sphere is coloured using a scale of blue (higher peptide length) to white (lower peptide length).

PR since Nature can be highly complex. Interestingly, peptides
could solve many current clinical, biological, chemical, phar-
macological, and agrochemical issues.***-%

For this reason, it is crucial to use novel approaches to
quantify and understand their SA/PR studies. Additionally,
antimicrobial peptides (AMPs) containing non-canonical amino
acids present several advantages over their canonical counter-
parts (e.g. higher solubility, higher target affinity, higher
stability). One of the earliest reported benefits is the improved
bioavailability by reducing proteolytic degradation, achieved by
incorporating p-amino acids at protease cleavage sites.®® AMPs
with non-canonical amino acids also enhance selectivity by
offering a broad range of structures and functionalities not
present in the twenty canonical amino acids.®

Peptide analysis heavily relies on the alignment of canonical
AA sequences in FASTA format,*® as pinpointing the specific
position of active motifs is crucial for SAR analysis.*® However,
aligning sequences becomes a challenge when dealing with
peptides containing non-canonical amino acids, and we have

© 2023 The Author(s). Published by the Royal Society of Chemistry

suggested adapting the SMILES code® to analyse these
peptides. We aim not to replace existing alignment techniques
but to complement them. We intend to establish a more robust
methodology for identifying highly potent sequences and
motifs by analysing both canonical and non-canonical groups
within a global screening. Activity and property landscapes have
been extensively studied for small organic molecules using
structural fingerprints to quantify the similarity of chemical
compounds. However, due to the lack of a robust molecular
fingerprint to represent peptides, the activity/property rela-
tionships had not been developed for (short) peptides. However,
new fingerprints like MAP4 and notations based on hierarchical
editing language for macromolecules (HELM) have opened new
avenues to unifying the complex chemical diversity (from small
molecules to peptides without non-canonical residues) under
a single representation.*®”® Using unifying fingerprints (like
MAP4) and notations (like HELM) allows us to explore beyond
the canonical realm of peptides, including PTMs or synthetic
elements, to the peptide chemical space.

Digital Discovery, 2023, 2, 1494-1505 | 1501
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Fig. 6 Conformational differences between selected peptides are
studied in this work. Each peptide is represented with a different
colour: red (AP02565), green (AP02566), blue (AP02567), yellow
(AP03010), cyan (AP03022), and orange (AP03311). The tridimensional
representation of each peptide was modelled by PEP-FOLD.”®

As mentioned in the introduction, identifying activity cliffs is
a key element in designing molecules. In this case, the study of
important structural motifs in peptides makes it possible to
identify those non-canonical amino acids or modifications that
give certain properties (e.g., anti-MRSA activity) to peptides.
That is, it allows rationalizing which structural motifs or non-
canonical modifications could be added to other peptide
sequences to hybridize them and improve their already known
properties or conversely, eliminate those molecular portions
that eliminate the desired property.

Meanwhile, bioinformatics approaches enable the identifi-
cation of activity cliffs using the sequence alignment of
peptides. Chemoinformatics approaches (e.g., molecular simi-
larity metrics) based on topologies, connectivity, tridimensional
features, and molecular properties offer a new alternative to
studying more complex molecules,” like peptides. Additionally,
a previous study using different fingerprints (e.g., MACCs keys,
ECFP4, ECFP6, and atom pairs) permitted the construction of
peptide landscapes using unique peptides with the same
number of amino acids.”” In contrast, this work shows an
application of methods typically used in chemoinformatics to
study small organic molecules to study the P-SA/PR studies
using the concept of activity/property landscapes.

The anti-MRSA peptide landscape explored in this work
(Fig. 3A) indicated a total of 16 953 (~67.31%) peptide pairs in
quadrant I (scaffold or R-hopping peptides); 152 (~0.60%) in
quadrant II (smooth SAR peptides); 8055 (~31.99%) in quadrant
III (peptide activity cliffs, like pairs 2-5); and 25 (~0.10%) in
quadrant IV (peptides without a with a discontinuous SAR, like
pair 1). Namely, most of a third part of the peptide pairs have
considered activity cliffs, which could limit the model ability of
these data sets to develop a predictive model of anti-MRSA
activity. We pointed out a direct SA/PR study based on pair-
wise comparisons could be established. For instance, in peptide
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pair 1 (Fig. 3), the terminal phenylalanine (Phe/F) could be
associated with their biological activity difference. This aligns
with X-ray diffraction studies, which suggested that a terminal
Phe residue in peptide structures could enhance the stability of
the helical conformation.” Furthermore, He et al. confirm that
the activity of antimicrobial peptides depends on the strength of
their helical structure.” Therefore, the protocol presented here
to describe the activity landscape of the 223 anti-MRSA peptides
could identify minor peptide differences involved in their
activity.

Another critical example that remarks the impact of one
unique AA change on the peptide structure/sequence is the
peptide activity cliff 2 (AP02565-AP02567, Fig. 3), which suggests
a crucial role of asparagine (Asn - N). Their tridimensional model
(as generated with PEP-FOLD) (Fig. 6) reflects the impact of this
AA change on the stability of the helical peptide structures.
Additionally, quantum methods confirm this observation and
remark on the importance of Asn on peptide reactivity.”

Although the predicted tridimensional structures of the
peptides forming activity cliffs are similar (pairs 3 (AP03010-
AP02656); 4 (AP03010-AP03022); and 5 (AP03010-AP03311) in
Fig. 3 and 6), their values of TPSA are different which suggest
changes in their solubility (Table S2 in the ESIt). Such differ-
ences could be associated with changes in their biological
activity.”” Additionally, the differences between the cationic
area®*>”77® (involved in the membrane interaction on MRSA
strains) of each peptide pair could be associated with their
variations in biological activity (Table S2 in the ESIY).

These results indicate the dependency of the activity cliffs
with the descriptors used to quantify the similarity between
pairs of peptides.” For example, using the TPSA instead of the
MAP4 fingerprint as a descriptor, the peptide pairs 2-5 would
no longer be considered activity/property cliffs. Namely, these
results indicate that the anti-MRSA activity does not depend
uniquely on the peptide sequence and the features encoded on
MAP4 fingerprints. The anti-MRSA activity also depends on
other criteria, like the tridimensional similarity and the physi-
cochemical properties. We remark that selecting the molecular
representations is crucial in decoding the P-SA/PR. The same
applies to virtually any other computational study: structure
representation is vital.

During the past five years, the concept of SA/PR has been
adapted to design and develop novel peptidic entities. The idea
of P-SA/PR has been used to discover and create lipopeptides
and cyclic peptides®*** and decode the membranolytic mecha-
nism of different peptides.®” However, there are complex chal-
lenges to resolve towards consolidating the in silico peptide
design area.'”***%® Limited access to quality data and the
balance of active and inactive reports make generating new
information and knowledge challenging. However, methods
that prioritise the selection of the most representative structure
could resolve (almost in part) this issue. Additionally, imple-
menting the “Sequence-Structure-Function relationships”
concept on peptides is a crucial step forward to exploiting the
potential of peptide data. Besides, the biological issues (i.e.,
immunogenicity, proteolytic degradation, permeability, and
toxicity) have been superficially explored.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Current methodologies used to study P-SA/PR have limita-
tions, and the activity landscape approximation presented in
this work is no exception. The fingerprint-based similarity
(using MAP4 and the MinHassed distance) is a new method to
explore and describe the landscape of any peptide property.
However, the results of this study suggest that this methodology
could be highly sensitive to structural changes on peptides with
less than 20 residues, which could limit their applicability, and
remarks on the importance of developing new molecular
representations focused on peptides. For this reason, we
recommend using multiple criteria and methodologies to
understand the P-SA/PR. For example, a combination of activity
landscape approaches, classical alignment sequence analysis,
and 3D approximation help decode the P-SA/PR studies. The
present work contributes to establishing a helpful workflow
based on structure similarity metrics to explore P-SA/PR and
quickly identify non-canonical peptide activity cliffs.

Conclusions

This work presents a new method to explore and describe the
landscape of any property of peptides based on the MAP4/
MinHashed distance function. We constructed and discussed
the activity landscape of 223 anti-MRSA peptides. For the case
study, it was concluded that (1) the fingerprint-based similarity
values (as measured with MAP4/MinHashed distance function)
have a positive correlation with the sequence-based identity
values (R*> = 0.31), suggesting that fingerprint-based similarity
measures complement the insights derived from sequence
alignments, but do not replace them; (2) around 31% of paired
anti-MRSA peptides were consider activity cliffs. These findings
highlighted the challenges of developing predictive models with
such a dataset. As part of this work, we introduced the extended
SAS map (using MW differences values of each peptide pair)
that facilitated the rapid identification of peptide activity cliffs.
The fingerprint-based similarity using MAP4 is an excellent
addition to starting a new peptide design/development
campaign; however, as with any in silico approach, each has
advantages and limitations. Therefore, activity landscape anal-
ysis should be combined with classical sequence alignment
used in bioinformatics and physicochemical descriptors to
explore the SPR in peptides in detail.

The primary perspective of this research is to utilise
fingerprint-based similarity calculations to create consensus
virtual screening protocols. These protocols incorporate various
factors, including 2D and 3D structure similarity, chemical
properties similarity, and sequence identity. The objective is to
identify peptide structures that possess specific properties.
Additionally, the methodology outlined in this study would be
applied to curate peptide datasets helpful in developing artifi-
cial intelligence techniques for predicting peptide properties.
Finally, molecular similarity landscapes of non-canonical
peptides allow the possibility to study, decode, and optimise
multiparametric properties in parallel, such as classical multi-
parametric landscapes, like DAD maps (Dual Activity Differ-
ences maps).3*5

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Data for this paper, including the anti-MRSA peptides dataset
(Table S1t) and interactive peptide activity cliff visualisation
generated by DataWarrior software (File S1t), are available at
Figshare repository at https://doi.org/10.6084/
m9.figshare.23264933.v1.
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