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Hierarchical analysis of the target-based scoring
function modification for the example of selected
class A GPCRs†

Katarzyna Rzęsikowska,a Justyna Kalinowska-Tłuścik *a and Anna Krawczuk *b

Computational methods, especially molecular docking-based calculations, have become indispensable

in the modern drug discovery workflow. The constantly increasing chemical space requires fast, robust

but most of all highly predictive methods to search for new bioactive agents. Thus, the scoring function

(SF) is a useful and broadly applied energy-based element of docking software, allowing quick and

effective evaluation of a ligand’s propensity to bind to selected protein targets. Despite many

spectacular successes of molecular docking applications in virtual screening (VS), the obtained results

are often far from ideal, leading to incorrect selection of hit molecules and poor pose prediction. In our

study we focused on docking calculation for the selected class A G-protein coupled receptors (GPCRs),

with experimentally determined 3D structures and a sufficient set of known ligands with affinity values

reported in the ChEMBL database. Our goal is to investigate how much the energy-based scoring

function for this particular target class changes when changing from the default to the re-estimated

weighting scheme on the specified energy terms in the SF definition. Additionally, we want to verify if

indeed more accurate results are obtained when considering different levels of the biological hierarchy,

namely: the whole class A GPCRs, sub-subfamilies, or just the individual proteins while applying default

or specifically designed weighting coefficients. The performed calculation and evaluation factor values

suggest a significant improvement of docking results for the designed SF definition. This individual

approach improves the accuracy of binding affinity prediction and active compound recognition. The

designed scoring function for classes, sub-subfamilies, or proteins leads to a significant improvement of

molecular docking performance, especially at the level of individual proteins. Our results show that to

increase the efficiency and predictive power of molecular docking calculations applied in classical VS,

the strategy based on the individual approach for scoring function definition for selected proteins should

be considered.

1. Introduction

The application of commercially available or in-house specifi-
cally designed computational methods has become a routine
step in the modern drug discovery process. Such an approach is
especially helpful in faster potential hit identification, lead
optimization, and reduction of the hit-to-drug timeline. This,
as a consequence, can significantly increase the efficiency of a
novel drug design. One of the commonly used techniques
during this process is the virtual screening (VS) approach1

which enables scanning of large libraries of putative ligands
and ranks active compounds ahead of inactive ones. The main
outcome of this method is to select the maximum number of
active ligands with a significantly high enrichment factor in the
result set. For this reason, the use of an effective and highly
predictive scoring function (SF) in the ligands poses evaluation
is a key component in a molecular docking-based VS procedure.

There are three main classes of SFs which are routinely
applied in the available docking software: force field-based,
knowledge-based and empirical.2 The first class includes those
implemented in AutoDock,3 Dock,4 or Gold (GoldScore)5 and
estimates binding free energy by calculating various energy
terms, for example, electrostatic or van der Waals. The
‘‘knowledge-based’’ class stands on statistical analyses of pro-
tein–ligand crystal structure complexes and is used in Gold
(ASP). The last type, ‘‘empirical’’, relies on binding energies
calculated as a weighted sum of every hydrophobic contact and
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hydrogen bond. The Piecewise Linear Potential (PLP)6 and
ChemScore7 functions along with the scoring function found
in Glide can be included in this class. The linear combination
of the two or more SF components from the same or different
classes (so-called hybrid scoring function) is a recognized
strategy,2,8 and demonstrates the better performance of dock-
ing calculations with comparison to single SF use.9–11 Recently,
with the highly developing artificial intelligence application in
drug discovery, the machine-learning-based class of SF was
additionally introduced.12 Despite the progress in scoring
function methodologies, the accurate prediction of protein–
ligand binding affinities remains a challenge. Benchmark
studies have shown that the calculated binding scores display
a poor correlation with experimental affinity.13–15 This can
result in a high percentage of false-positive compounds in the
hit list13,15 and therefore, increase the costs of the drug design
process. The above mentioned studies14,16 revealed another
major outcome: the tested scoring functions are not universal
enough, thus the performance of the entire benchmark may not
be consistent with the performance of individual targets. In
other words, when the given type of protein has only a few
representatives in the investigated group, there is a possibility
that the obtained results for the whole set do not match the
outcome acquired for these several proteins.

In the present article, we focus on class A of the G protein-
coupled receptor (GPCR) family, as a selected protein family
with a well-established druggability profile. GPCRs belong to
one of the largest transmembrane receptor families that acti-
vate internal signal transduction pathways. They are activated
by various agents, for example, ions, neurotransmitters, odor-
ants, hormones, lipids, peptides, or proteins.17 Due to their
abundance in the human body and involvement in the etiology
of many diseases, they are the target of ca. 30% of all marketed
drugs.18 However, in most benchmark studies, they are not the
primary target of research, and even if they are considered, only
a few representatives are included in the study. While such sets
can be useful to test the overall performance of the molecular
docking program, they may fail in the case of more specific
proteins. The GPCRs are interesting targets in terms of mole-
cular docking studies due to the deep binding pocket which
almost completely encloses the small molecule ligands. More-
over, the percentage of sequence identity for the binding pocket
region for some receptors may reach up to 88% (e.g. M2 and M4
receptors based on the similarity matrix generated using
GPCRdb online server19). For the mentioned reasons, the
results obtained from benchmark studies where GPCRs are
not the primary target, may not apply for those proteins.
Although several docking experiments were a successful strat-
egy in the drug design,20 the molecular docking results may be
often misleading and questionable, despite a high score.21,22

The selected AutoDock software is not the top performing tool.
However, exhaustive research work on pose prediction for the
variety of selected protein–ligand complexes available in the
PDB, screened additionally against bioactivity data, shows that
good pose prediction does not always correlate with good
scoring, irrespective of the software used.23 Moreover, the

comparative studies indicate that none of the docking tools
truly outperforms the others and none of the scoring functions
is universal to correctly predict and/or evaluate the ligand’s
pose for all types of molecules and protein families.23,24 In view
of observations related to an irregularity in the performance of
scoring functions across various kinds of protein targets, we
aim to answer the question of whether the scoring function in
AutoDock 4.2 should be applied in the default mode or shall it
be re-defined for a particular family/class/protein hierarchy
level, on the example of class A GPCRs.

In recent years, more than 50 different docking software
packages have been developed. Although they differ regarding
scoring function types and conformational space search algo-
rithms, the limitations described in the previous section have
not been overcome to date. Over the last 20 years, more than
30% of published articles related to docking studies have used
AutoDock as the docking software.25 This free software (its
version AutoDock4, available under the GNU General Public
License) is widely used with approximately 10 000 citations
since its release in 2009. AutoDock4 was successfully applied
in the discovery of several potent inhibitors binding to pep-
tides, proteins, or genes.26–28 The used semi-empirical scoring
function is based on the AMBER force field and consists of five
weighted energy terms: dispersion/repulsion (a Lenard-Jones 6/
12 potential), hydrogen bond (directional hydrogen bond com-
ponents; based on 10/12 potential), electrostatic (Coulombic
potential), desolvation (based on the volume of surrounding
atoms, which shelter the given atom from solvent) and entropic
term related to the number of freely rotatable bonds in the
ligand.29 In view of observations related to an irregularity in the
performance of scoring functions across various kinds of
protein targets, we aim to answer the question of whether the
scoring functions applied in AutoDock 4.2 should be consid-
ered universal in the default mode or should it be re-defined for
a particular family/class/protein hierarchy level.

2. Methods
2.1. Preparation of ligands

For selected class A GPCRs, the database of ligands was
prepared based on the ChEMBL2430 database search. The
result was downloaded in the SMILES format. Few restrictions
of the search were implemented. Ligands without the given
inhibitor constant (Ki) and with more than 32 rotational bonds
were excluded as a consequence of the limitation in AutoDock
software. Additionally, solvents and ions were removed from
the ligand’s SMILES representation. The prepared set of ligands
was then divided into five baskets based on Ki values, namely
� B1 with Ki r 1 nM.
� B2 with Ki in range (1; 10 4 nM.
� B3 with Ki in range (10; 100 4 nM.
� B123 with Ki r 100 nM.
� B45 with Ki 4 100 nM.
The molecules for which the reported Ki values varied

significantly and did not allow a straight classification to an
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inactive basket (B45) or one of the active baskets (B1, B2, or B3)
were rejected. Ligands in the basket-divided set were converted
to the PDB format with Open Babel software31 and prepared for
the docking procedure, using the prepare_ligand4.py script
(AutoDock tools3). Three sets (training, testing1, and testing2)
were created using the aforementioned processed database.
The training set was utilized to generate new weights for SF in
AutoDock software and testing1 and testing2 sets to verify the
designed weighting accuracy. As the quantity of ligands varies
for individual receptors, to maximize the number of examined
receptors, the B1, B2, and B3 baskets contained four ligands
and the B45 baskets twenty-four molecules. The B123 basket
was established by merging all three active ones (B1, B2, and
B3). For each set (training, testing1, and testing2) molecules
were selected randomly and without repetition to ensure the
diversity of ligands. The ChEMBL codes of selected ligands and
their distribution within baskets and the three mentioned sets
are shown in Table S1 in the ESI† file.

2.2. Preparation of receptors

For each selected Class A receptor, we fetched from the Protein
Data Bank32 the structural data of human proteins with a
resolution upper limit equal to 3.5 Å. Combining this require-
ment with ligands availability, the set used in the study consists
of 24 protein structures. The PDB IDs of the receptor structures
are given in Table S2 of the ESI† file. The fetched protein
structures were pre-processed using the Protein Preparation
Wizard from Schrödinger Suite33 and initially prepared for
docking procedures by ligands and water molecule removal.
The selected target structures were inspected for steric clashes
and an appropriate ionization state in pH 7.4. The positions of
all hydrogen atoms were calculated and added to each struc-
ture. Additionally, all structures were aligned to B2-adrenergic
receptor coordinates (PDB ID: 2RH1) to facilitate the docking
calculation and analysis of obtained results. Selected proteins
were finally prepared for docking calculations using the pre-
pare_receptor4.py script (AutoDock tools3).

2.3. Molecular docking

All docking calculations were carried out using AutoDock4.23

software using the Lamarckian Genetic Algorithm. For each
receptor, a calculation was conducted with the default para-
meters except for the number of genetic algorithm runs, which
was set to 50 instead of 10. The centre position, number of
points, and the length of spacing in the grid file were identical
for each protein. The coordinates of the centre were determined
based on the positioning of native ligands, and the grid was
generated using 126 � 126 � 126 points with 0.208 Å spacing.
In all docking analyses, the energy components for poses with
the lowest energy were taken into further consideration.

2.4. Genetic algorithm

The training set was used to calculate new weights for five
energy components applied in AutoDock4.2, with the use of an
in-house script based on the genetic algorithm approach and
the optimal coefficient search. The final solutions of the

calculated weights were selected from ten separate runs of
the program (with random initial seed) each of which derived
results from a fixed number of generations (3000) with a
population size of 20. The testing1 and testing2 sets were used
to examine the performance of new weights to confirm or deny
the outcomes received from the training set.

2.5. Evaluation of the scoring system

Since ligands in the initial sets were originally classified into
five baskets based on binding affinity values, the top-scored
poses for each ligand have been also classified into one of the
baskets, to compare the performance of molecular docking
calculations. The AutoDock final score is expressed as binding
energy in kcal mol�1, and the obtained energy can be converted
into Ki value based on the following equation:34

Ki = e(DG/RT) (1)

This approach was applied in our study to convert the
calculated energy (obtained based on the designed new
weights) into Ki, and subsequently, assign the top-scored poses
of each ligand into the corresponding basket. As the ligands in
our study were divided and characterized by the Ki range
baskets, and not by the exact and individual affinity values,
the obtained new SF (with the new weighting scheme applied)
as well as the original SF (with the default weights) could not be
evaluated applying the commonly used ‘Scoring power’
method.13 For that reason, the variation of the enrichment
factor35 (EF) was used, in which instead of the fraction of the
database, the particular basket was tested:

EðbasketÞ ¼ Ht

Bi
� N
Na

(2)

where Ht is the number of true positives retrieved for examined
basket after docking calculations; Bi is the initial number of all
molecules assigned to the basket; N is the total number of
compounds; Na is the total number of molecules assigned to
the examined basket after docking calculation. Here we give an
example of this procedure: when the B1 basket for the 5-HT1B
receptor is considered, the total number of compounds (N) is 36
(4 ligands in B1, 4 in B2, 4 in B3, and 24 in B45) and Bi is set to
4. Let’s assume that after docking calculations 2 ligands were
assigned to the B1 basket (Na) of which 1 was true positives

(Ht). Using this data, the EF is equal to
1

4
� 36
2
¼ 4:5. Apart from

the EF metric, two more parameters were used to evaluate the
performance of new SF – the success rate calculated as the
percentage of adequately assigned ligands in a basket
Ht

Na
� 100%; referred to as %SR

� �
and the percentage of cor-

rectly classified ligands in the initial basket
Ht

Bi
� 100%; referred to as %A

� �
.
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3. Results and discussion

To investigate the influence and performance of various weight-
ing schemes on the scoring function results, all the selected
ligands were docked to corresponding targets. For each selected
receptor, 108 ligands were docked (36 ligands per training,
testing1, and testing2 sets). To answer the question of whether
the applied scoring functions should be specifically defined for
each of the studied targets, the initial protein set was analyzed
at three levels of biological hierarchy:36 the whole family (class
A GPCRS), four sub-subfamilies (serotonin, opioid, dopamine,
and muscarinic acetylcholine receptors) and individual pro-
teins (Fig. 1).

In total 24 different proteins were examined which belonged
to thirteen various sub-subfamilies of the class A GPCRs. Only
sub-subfamilies containing at least three experimentally deter-
mined structural representatives were taken under considera-
tion. Thus, from the set shown in Fig. 1, seventeen groups were
analyzed: whole (family level), serotonin, opioid, dopamine,
and muscarinic acetylcholine receptors (sub-subfamily level)
and 5-HT1B, 5-HT2B, 5-HT2C, D2, D3, D4, M1, M2, M4, d, k and
NOP receptors (protein level). For each ligand–protein complex,
five energy components were extracted from docking results,
using a script from the AutoDock tools. Data for sub-subfamily
and family levels were obtained by combining the outcomes for
relevant individual proteins.

3.1. The default weighting scheme results

The EF values for the training set are shown in Table 1. The
scores of other evaluation parameters (%SR and %A) are shown
in Table S3 in the ESI† file. Comparison of the data in Table 1
shows a substantial difference in the EF value for the B1 basket,
calculated for considered GPCRs at the family level (class A),
with respect to results obtained for each receptor. For discussed
proteins (50% of investigated targets), the value of EF is equal
to 0.00, whereas for all analyzed receptors it reaches a 1.10
numerical score. Thus, the assumption can be made that the
recognized ligands were not evenly distributed between pro-
teins but assigned either to one or few structurally similar

receptors instead. The results analysis for baskets B2 and B3
leads to a similar conclusion. The calculated values for these
baskets are in a range from 0 to 3.6. Additionally, the compar-
ison of EF values for three receptors belonging to the same
sub-subfamily revealed high discrepancies also within the sub-
subfamily. For example, the EF value in the B2 basket for the d
receptor is 3.60, whereas for the NOP receptor it is equal to 0.00.
These observations suggest that when differentiating very active
(B1), medium active (B2) and weakly active (B3) compounds,
one should consider applying different weights for different,
individually considered targets. The %A and %SR values
demonstrate a similar tendency. The obtained %A scores for
some proteins are very high, and reach even 100% (for example,
M2R in the B3 basket) which means that all initial ligands were
assigned to this basket. However, there are cases within the
same sub-subfamily where the obtained %A is four times lower
(i.e. %A = 25% for the M1R, which belongs to the same sub-
subfamily as the above-mentioned M2R). The average values for
12 analyzed proteins are in a reasonable range, and similar to
the scores obtained for the whole family (approximately 27%
and 40% for 12 proteins and 23% and 38% for the whole
family, calculated for B2 and B3, respectively). The problem
arises when the level of success rate (%SR) is considered. The
average values are notably low (ca. 13% for both B2 and B3
baskets). It means that only 13% of all assigned compounds
reached the calculated Ki in the range of 1 nM to 10 nM (for B2).
The highest score is obtained for the d receptor in the B2 basket
and is equal to 40%. However, it is a single case where such a
high score was obtained, and for most investigated proteins it
was in the range of 0 to 20%. Although the primary goal of
virtual screening (VS) is to identify possible hits, the more
compounds are selected for experimental evaluation, the
higher the cost of finding a new promising hit is. In other
words, the desired outcome of VS calculations is the set of
compounds characterized by both: a very high %A and %SR.

Fig. 1 The biological hierarchy of GPCRs selected for this study. The
family level is highlighted in yellow, sub-subfamily level in green, and
protein in blue.

Table 1 Calculated EF values for each level of biological hierarchy:
protein, sub-subfamily (examined set highlighted in bold), and family
(examined set in bold capital letters) for original and new weights applied

Examined receptor
group

EF for default weights EF for new weights

B1 B2 B3 B123 B45 B1 B2 B3 B123 B45

WHOLE 1.11 1.01 1.07 1.10 1.09 2.92 1.69 2.45 1.14 1.12
Serotonin 0.00 1.29 1.17 0.98 0.99 3.60 2.70 3.00 1.33 1.11
5-HT1B 0.00 1.42 1.50 1.11 1.17 3.60 3.00 3.00 1.83 1.42
5-HT2B 0.00 0.00 1.29 1.00 1.00 4.50 3.00 3.00 1.64 1.14
5-HT2C 0.00 1.50 0.90 0.75 0.90 3.00 9.00 3.00 1.50 1.16
Dopamine 0.00 0.96 0.64 1.07 1.07 2.70 2.57 2.00 1.36 1.13
D2 0.00 1.29 0.00 1.00 1.00 3.00 3.00 4.50 1.65 1.41
D3 0.00 1.50 0.56 1.09 1.07 4.50 4.50 4.50 1.93 1.30
D4 0.00 0.00 1.13 1.13 1.13 6.00 3.00 4.50 1.71 1.23
Muscarinic 0.00 1.50 1.66 1.26 1.15 1.29 1.42 1.80 1.38 1.45
M1 0.00 1.29 0.90 1.06 1.03 2.25 6.00 2.25 1.38 1.50
M2 0.00 2.57 1.89 1.15 1.20 1.50 4.50 3.86 1.44 1.50
M4 0.00 0.00 2.00 1.71 1.23 3.60 4.50 9.00 1.91 1.20
Opioid 0.00 1.50 1.17 1.07 1.06 1.64 4.50 2.57 1.36 1.11
Delta 0.00 3.60 1.20 1.00 1.00 3.60 4.50 4.50 1.91 1.20
Kappa 0.00 0.82 0.82 1.00 1.00 1.80 4.50 3.00 1.41 1.18
NOP 0.00 0.00 1.35 1.23 1.18 2.70 4.50 9.00 1.50 1.13
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The results of molecular docking with the default SF do not
fulfil this criterion. The results of the three-evaluation metrics
obtained for B123 and B45 were slightly better than for the
three separated active baskets (B1, B2, and B3). The calculated
EF values for basket B123 vary between sub-subfamilies, though
the occurring discrepancies are not as significant as for baskets
B1, B2, and B3. The EF values are approximately equal to 1,
except for B123 for M4R, where it is 1.71. The average %A and
%SR values are also significantly higher than for active baskets
(63.89% and 44.44%, 36.75% and 71.64%, for B123 and B45,
respectively). The obtained results suggest that the original
weights are trustworthy enough to distinguish active and
inactive compounds and no differentiation between family or
sub-subfamily is necessary.

3.2. New weighting schemes

To investigate whether the individual weights for the energy
components in a scoring function may influence the perfor-
mance of molecular docking calculations, new weights were
calculated for all selected twelve proteins as well as four sub-
subfamilies and whole class A, separately. New weighting
coefficients were computed in two rounds: (1) for baskets B1,
B2, and B3 and (2) for B123 and B45. The second round was
introduced due to different observations of EF values for the
default weights (see Table 1). The performed calculations,
however, are based on parameter training, using limited-sized
sets, hence few restrictions were implemented. To avoid over-
training of the obtained SFs, the number of recognized com-
pounds belonging to the B123 basket was set to a minimum of
50% of all molecules in that basket (%A min. 50%). Such an
approach ensured that the scoring function is not too specific
and hopefully will be transferable to ligands that are structu-
rally different from those in the training set (testing1 and
testing2 sets). As shown in Table 1, the calculated values of
EF for new parameters are, in most cases, higher than the
corresponding ones obtained with the default weights. The only
three exceptions are observed in the B45 and B2 baskets for
muscarinic acetylcholine sub-subfamily. Usually, the purpose
of VS is to identify the active ligands and not inactive com-
pounds. Thus, only value for the muscarinic sub-subfamily
worsened after applying newly designed SF. The differences
in EF values calculated for the new and the default weights are
more noticeable for baskets B1, B2, and B3 than B123 and B45.
To examine the impact of new weights, the ratio of EF for new
and original SF was calculated. The values above 1.00 indicate
that the new SF performed better than the original one. For the
cases where the ratio could not be calculated as EF for original
SF was equal to 0, only EF for new SF was considered. As it can
be shown in the example of baskets B1, B2, and B3 (Fig. 2), the
use of the new, specifically designed weights significantly
improved the performance of the scoring function.

The initial purpose of this study was to elucidate if the
improvement of the molecular docking performance requires
that the scoring function is individually designed for each class,
family, or target, separately. From EF values for the original
weights, no definitive conclusions could be drawn. However,

data analysis of results for baskets B1, B2, and B3 obtained for
the training set with new weights indicated several interesting
conclusions (Fig. 2). First of all, the average ratio EFnew/
EForiginal is 3. The most significant difference can be identi-
fied for receptor D3R, basket B3, where the new EF is eight
times higher than the corresponding one obtained for the
original SF. The dopamine receptors (D2, D3, and D4) show
one of the highest EF ratios, i.e. for D3R it is 4.50, 3.00, and 8.00
for B1, B2, and B3 baskets, respectively. The remaining recep-
tors in the dopamine sub-subfamily also have, in most cases,
evaluated rates greater than or equal to the average value. What
is more, the new EF values for D2, D3, and D4 receptors are
higher than the ones for the dopamine sub-subfamily (Fig. 3).
This trend is also noticeable for other sub-subfamilies,
although it is not as evident as in the above-mentioned exam-
ple. For almost all proteins, EF values for the individual

Fig. 2 The calculated ratios EFnew/EForiginal for B1 (yellow triangles), B2
(green squares), and B3 (blue circles) baskets. The average values for each
basket are shown as dotted lines colored correspondingly to the applied
basket coloring. For cases where EForiginal was equal to 0 only EFnew for
SF was considered.

Fig. 3 The EF scores for the new SF for B1 basket, divided into three
evaluated levels of biological hierarchy: family (blue circle), sub-subfamily
(green squares), and individual protein (yellow triangles). The average
EFnew value for basket B1 is shown as a dashed red line.
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receptors are greater than or equal to EF for corresponding sub-
subfamilies. Only in the case of the serotonin receptor (5-
HT2CR) for the most active ligands in the B1 basket, the EF
score is lower than for sub-subfamily. The observed tendency is
not observed when shifting from class A to sub-subfamily. For
example, the muscarinic acetylcholine receptor sub-subfamily
has lower values in all three baskets (1.29, 1.42, and 1.80)
compared to class A (2.92, 1.69, and 2.45 for B1, B2, and B3,
respectively), whereas the serotonin (3.60, 2.70 and 3.00) recep-
tor sub-subfamilies perform better than class A for each basket.

A similar analysis can be carried out considering the differ-
entiation between active (B123) and inactive (B45) molecules.
Only in two cases, the EF values for new weights appeared to be
lower than the corresponding ones for the default weights (for
M4 and NOP receptors in the inactive basket). Receiving inferior
values is not an optimal result. However, most scientists use
docking to search for active, not inactive compounds, and
therefore, the obtained result is an acceptable outcome. The
values obtained for B123 reveal the significant influence of the
uniquely designed scoring function. While for original weights,
the EF values range from 0.75 to 1.71 with average values equal
to 1.10, for new SF the minimum value is higher than the
average for original SF (1.14 for the whole GPCR family). The
transition from family to sub-subfamily as well as from sub-
subfamily to selected receptor significantly improves the VS
calculations. For example, for the muscarinic acetylcholine
receptors sub-subfamily the EF is equal to 1.38 and for the
receptors belonging to this sub-subfamily is 1.38, 1.44, and 1.91
for M1, M2, and M4 receptors, respectively. Apart from an
increase in the EF scores, the application of the new weights
can also influence the values of %A and %SR. For all the groups
in the B1 basket, the new %A is at least 7%, whereas, for the
original weights, values not equal to 0 are obtained only for the
whole class A. The average %A in B1 is equal to 54.17% and
the average scores for the other baskets remain at the same
satisfactory level. At the same time, the average values of %SR
significantly increase from 0.00%, 12.95%, 12.53%, 36.75% and
71.64% to 37.08%, 50.00%, 50.10%, 55.05% and 85.30% for B1,

B2, B3, B123 and B45 baskets, respectively. In a few cases, the
%SR is even equal to 100% (e.g. B3 basket for M4 receptor).
Considering initial restrictions on ligands abundance in the
resulting set, the obtained values are very promising towards
new potential hit identification.

3.3. Testing sets

To ensure that the performance of calculated scoring functions
can be reproduced, two different testing sets were applied
(testing1, testing2). The number of compounds and docking
calculations parameters were the same as for the training set.
The resulting values (for original weights) for the testing sets
are comparable to the ones in the training sets (see Tables S3,
S4, and S5 in the ESI† file). For most receptors, the EF scores for
the most active ligands in the B1 basket are equal to 0.00,
similar to the training set. The most significant difference
between those three mentioned sets is noticeable for the
maximum EF value. For the training set, it is equal to 3.60
(for dR in B2 basket), while for the testing set it is obtained for
muscarinic acetylcholine receptors (4.5 for M1R in B2 for the
testing1 set and 9.0 M4R in B1 for the testing2 set). The highest
value for the training set is 2.5 times lower than for testing2.
The value obtained for M4R in B1 for the testing2 set is the
highest possible and indicates that all ligands assigned to the
basket B1 correspond to Ki not greater than 1 nM. The results
confirm that molecular docking calculations carried out with
AutoDock software are transferable and consistent for various
databases of ligands. However, the EF values for new SF are
only slightly worse. For 9 cases in testing1 and 11 in testing2
sets, the obtained scores for new weights are lower than for the
original SF. Despite slightly worsened EF values for new SF, the
trends observed for the training set are still noticeable.

The average EF for all active baskets (B1, B2, and B3) are 2.64
and 3.03 for testing1 and testing2, respectively. Like in the
training set, the improvement related to designing individual
weights for the class, sub-subfamily or receptor is explicitly
visible for the basket B123 (Fig. 4). In some cases, the new EF
values are even around 2.5 times higher for receptors than for

Fig. 4 The distribution of EF values calculated for new SF for B123 in testing1 (left) and testing2 (right) sets divided into three levels of biological
hierarchy: family (blue circles), sub-subfamily (green squares), and protein (yellow triangles).
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adequate sub-subfamily (e.g. opioid sub-subfamily in the test-
ing1 set or dopamine sub-subfamily in the testing2 set, see
Tables S4 and S5 in the ESI† file). Overall, the results obtained
for testing sets confirm that individually designed SF weights
performed at the same level for all three examined sets.

4. Conclusions

In this research work, the performance of individually designed
scoring functions for class A GPCRs, four sub-subfamilies, and
twelve receptors was compared with the original scoring func-
tion applied as default in AutoDock4.2. Calculations were
performed for a set of 108 ligand–protein complexes, dividing
ligands for each receptor into three sets: training, testing1, and
testing2. Protein structures were fetched from the Protein Data
Bank and ligand–protein binding affinity values were obtained
from the ChEMBL database. Only the top-ranked pose per
complex was examined.

The investigation presented here is highly relevant to the
field of computer-aided drug discovery. It is because there is no
meticulous research to determine the performance of the
scoring function on different kinds of protein targets, whereas
most virtual screening calculations are carried out for one or a
few specific targets. In this study, we focused on twelve proteins
of class A GPCRs which belong to four different sub-
subfamilies. To ensure the diversity of the ensemble, another
12 receptors from the same class but different sub-subfamilies
were considered. Newly designed scoring function coefficients
were calculated for each selected target as well as sub-subfamily
and whole class A. The comparison of the calculated evaluation
factors: EF, %A, and %SR for all obtained data, showed a
significant improvement in the docking results comparing to
the default SF settings. In particular, the accuracy of binding
affinity prediction tends to be increased when individually
designed weighting coefficients are applied. Additionally, the
active compounds recognition success rate increases by nearly
a factor of 2. The most important finding is that the design of a
specific scoring function for class, sub-subfamily, or protein
(three different levels of biological hierarchy) leads to a sig-
nificant improvement in molecular docking performance.

Notwithstanding the promising results of this manuscript,
we also see the need to further improve and expand our
research. In the future studies, different activation states of
the receptors should be still taken into consideration and
carefully evaluated as it may significantly influence the shape
and size but also electrostatic potential of the active binding
site. Additionally, prediction of ligands binding to allosteric
sites of the GPCRs remains a challenge but could be an
interesting direction of our study. Both above-mentioned
effects could affect the definition of the scoring schemes.
Despite these aspects, the presented results clearly show that
the individual approach for scoring function calculation in
virtual screening strategy can lead to a higher probability of
hit molecule identification. Thus, considering the chosen
receptor–ligand system, the estimation of weights for the

scoring function would be beneficial before VS calculations.
Even though this approach requires increased computational
time, the calculations of new and individually designed weights
for the force field scoring function can decrease the number of
failures and in consequence, reduce the costs of identifying and
examining the lead molecule.
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