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Full-dimensional potential energy surface
for acetylacetone and tunneling splittings†

Chen Qu, a Riccardo Conte, *b Paul L. Houston *cd and Joel M. Bowman *e

We present a full-dimensional potential energy surface for acetylacetone (AcAc) using full and

fragmented permutationally invariant polynomial approaches. Previously reported MP2/aVTZ energies

and gradients are augmented by additional calculations at this level of theory for the fits. Numerous

stationary points are reported as are the usual metrics to assess the precision of the fit. The electronic

barrier height for the H-atom transfer is roughly 2.2 kcal mol�1. Diffusion Monte Carlo (DMC) calcu-

lations are used to calculate the ground state wavefunction and zero-point energy of acetylacetone.

These together with fixed-node DMC calculations for the first excited-state provide the predicted

tunneling splitting due to the barrier to H-transfer separating two equivalent wells. Simpler 1d

calculations of this splitting are also reported for varying barrier heights including the CCSD(T) barrier

height of 3.2 kcal mol�1. Based on those results the DMC splitting of 160 cm�1 with a statistical

uncertainty of roughly 21 cm�1, calculated using the MP2-based PES, is estimated to decrease to

100 cm�1 for a barrier of 3.2 kcal mol�1. The fragmented surface is shown to be fast to evaluate.

1 Introduction

It is a truism that potential energy surfaces (PESs) play a central
role in all of computational chemistry. There has been breath-
taking progress in the past 15 years in developing so-called non-
parametric, machine learning approaches to fit large data sets
of electronic energies. These include permutationally invariant
polynomials (PIPs), Gaussian process regression (GPR), neural
networks (NN), combinations of all three as well as variants of
the GPR and NN approaches. Numerous reviews have appeared
that cover much of this field and we refer the reader to
a handful that provide a good overview.2–9 These methods
have steep scaling with respect to the number of atoms in the
molecule or cluster and the size of the data set. (By far the steepest
scaling is with respect to the electronic energy calculation.) Several
comparative studies of these methods have recently appeared.10–13

These methods all have in common that they do not rely on
a model for representing potentials, e.g., Lennard-Jones, LEPS,

exp/6, force-fields, etc. In this sense they are all non-parametric
in the language of machine-learning (ML). Also, they use a
universal set of inputs, also known as descriptors, for the
fitting. In the PIP approach the input is all Morse variables,
which are transformed internuclear distances. In the PIP-NN6,14

and PIP–GPR11 the input is a limited number of PIPs. This is
distinct from earlier approaches using models, where the
variables are molecule-specific. So, based on these aspects,
all the methods mentioned above (not a comprehensive list)
are machine-learning methods. However, there is a funda-
mental difference in the way the data are used in these
methods. In PIP and NN the parameters contained in those
approaches are optimized, generally using a least squares
minimization criterion. In PIP, where parameters are linear,
the optimization is performed by means of linear least-squares.
In NN the fitting parameters are non-linear and so the least
squares optimization is non-linear. The number of parameters in
both approaches can be thousands or even tens of thousands,
depending on the dimensionality of the space. As an aside, it is
worth noting that if Morse variables are used as the inputs for PIP
or PIP-NN, then the range parameter(s) of the variables could be
treated as additional non-linear parameters. The number of such
parameters is very small, however, compared to the thousands
of parameters just mentioned. In any case, in these methods
the data are used in the optimizations but not for prediction.
By contrast, other machine-learning methods use the data
explicitly for prediction. GPR is a prominent example of this
method. All these methods have the same goals, which are a
precise representation of the known data (GPR can reproduce
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the data exactly but, since this generally leads to a singular
matrix for prediction, ‘‘noise’’ is added to the data) and smooth
and accurate predictions. It is of course of interest to compare
the performance of these different ML approaches.

Based now on numerous applications using these methods,
some fairly general comments can be made about them.
A strength of the GPR approach is that it does produce a quality
PES from a relatively small amount of data.3,15 On the other
hand this approach becomes computationally very demanding
for datasets with more than 104 energies. By contrast, PIP/
FI-NN PESs with 4–7 atoms typically use more than 104 energies.6,8

For example, the recent PIP-NN and atom-based HD-NN PESs for
H + CH3OH were fit to 75 000 electronic energies.13 The PIP
approach developed in our group spans both these limits, i.e., it
can easily fit ca. 105 energies (and/or gradients) and it also provides
a faithful fit with very few configurations. This was explicitly the
focus of a recent paper assessing the performance, i.e., speed and
accuracy, of the GPR and PIP approach to PES fitting for four case
studies, H3O+, OCHCO+, H2CO (including cis- and trans-HCOH
isomers) and 10 atom formic acid dimer.11 That paper, which also
extended the GPR method to use PIP inputs, examined the fidelity
of GPR and PIP fits for these four molecules with respect to size of
the training set of energies as well as the time for fitting and
evaluation. One example is the PES for 5-atom OCHCO+. The
original PIP PES was constructed with just 8613 CCSD(T)-F12/aVTZ
energies.16 GPR, PIP–GPR and PIP fits were done using between
520 and 2600 scattered energies. All methods fit the training data
with about equal precision; however, the GPR precision was
significantly better for the remaining test data. The PIP fits were
roughly 60 times faster to evaluate than the GPR ones. Both fits,
using 1560 training data, gave harmonic frequencies at the mini-
mum and proton transfer saddle point with maximum differences
from direct ab initio results of no more than 4 cm�1.

Finally, on the matter of data size and PES fitting, we note
that our PIP software was recently extended to fit gradients as
well as energies.17 With this approach a PIP PES for CH4 was
obtained at the DFT level of theory with just 100 configurations.
In a more recent application, a PIP PES for 12-atom N-methyl
acetamide was reported using a dataset of 244 459 energies and
gradients.18 An even larger applicaton was to 15-atom tropolone19

with a data size of 311 328.
To summarize this short review of these ML methods,

all can achieve high precision, depending on the application.
In our opinion it is not particularly meaningful to focus on a
root-mean-square (RMS) error difference of even tens of cm�1

between methods, except in cases where the electronic energies
being fit are themselves within or less that level of accuracy.
Perhaps speed of evaluation of the PES and for many applica-
tions the gradient of the energy are more relevant.

As for applications, PESs for reaction dynamics are perhaps
the most demanding. By definition, reactions involve large
amplitude motions and so local methods, e.g., harmonic or
perturbative extensions of harmonic theory, are totally inadequate.
Second, bond breaking is demanding on electronic structure
methods. Third, many reactions of interest involve H-atom motion
and this can require a quantum or semi-classical treatment

of the dynamics. Thus, PESs for reactive systems are a major
challenge as they must describe large, indeed very large ampli-
tude motion. The above ML methods have been employed over
the past 10 or so years to develop high-dimensional PESs for
reactive systems.8,9,12,13,20–23 Some time ago Fu et al. reported a
PIP PES for the 7-atom O(3P) + C2H4 reaction (which included
spin–orbit coupling to the singlet PES). This PES was used in
quasiclassical trajectory calculations which yielded excellent
agreement with experiment for the branching ratio of numer-
ous products.23 Recently, Li et al. reported PIP-NN and HD-NN
PESs for several chemical reactions.12,13 The most recent exam-
ple is the 7-atom H + CH3OH reaction. Although these are both
neural network methods, they are different in the way the
potential is represented. In the HD-NN one the energy is
represented as a sum of atomic energies and there is a neural
network for each atom (identical atoms share the same set of
NN parameters). So in this example there are 7 NNs. For the
PIP-NN6 approaches there is one NN and the input consists of a
limited number of PIPs.6 (Also, see the related fundamental
invariant-NN (FI-NN) approach.8,14) The authors noted that the
PIP-NN PES is faster to evaluate than the HD-NN one. This is
as expected since the number of parameters in the NN in
each approach is about the same. However, the strength of
the atom-based HD-NN approach is that it scales linearly with
the number of atoms and so it is feasible to apply to large
systems, ideally of the same atom type. The strength of the PIP
and the PIP-NN approaches lies in the speed and high precision
for molecular systems of around 10 atoms. The speed of the
PIP-NN approach decreases significantly with the number of
atoms because the number of PIP inputs grows non-linearly
with the number of atoms.24,25 Recently, Zhang and co-workers
have extended the techniques in the FI-NN approach to ten
atoms,26 however, without yet reporting a 10-atom PES.

Among reactive systems, perhaps the simplest ones are
isomerization reactions and, among these, symmetric double
well isomerizations are the most studied. Of these malon-
aldehyde is perhaps the most studied both experimentally
and theoretically. In 2008 we reported a PIP PES for the 9-atom
malonaldehyde27 This was a precise fit to highly-accurate ‘‘focal
point’’ electronic energies. This PES was subsequently used in
various full-dimensional calculations of the tunneling splittings
for H and D-transfer and finally agreement (to within less than
10%) with experiment was obtained for both. A much more
recent isomerization example is 15-atom tropolone, for which
we reported a PIP PES.19 For this PES, owing to the very high
computational cost of CCSD(T) calculations, DFT ones were done
for energies and gradients. Thus, this PES, without further
modification, will not yield quantitative tunneling splittings.

Clearly, there is major motivation to extend all ML methods
to large molecules of interest in chemistry and specifically
reaction dynamics. We recently described a strategy to do this
for the PIP approach.18,28 The key points derive from the fact
the fitting basis is made of permutationally invariant poly-
nomials of Morse variables. For an n-atom molecule there are
n(n � 1)/2 variables and so this quadratic dependence on n is not
favorable for large molecules. A second issue is the non-linear
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growth in the number of terms in the basis, for a fixed total
polynomial order. For example, for 12-atom N-methyl acetamide
there are 66 Morse variables and with a highly reduced permuta-
tional symmetry 33 111 111, which accounts for the symmetry of
the three H atom of the two distant methyl groups, the basis
contains 8040 terms (and unknown linear coefficients) at max-
imum polynomial order of 3, but grows to 95 965 at polynomial
order of 4. (Increasing the permutational symmetry reduces the
number of terms dramatically;2 however, with a much increased
cost to obtain them and often also to evaluate each basis function.)
The strategy mentioned above is briefly reviewed next.

2 Short review of fragmented
PIP theory

To begin, recall that in the PIP approach the potential is given
by the compact expression:

V ¼
Xnp
i¼1

cipi; (1)

where ci are coefficients, pi (the basis set functions) are PIPs,
and np is the total number of polynomials for a given maximum
polynomial order. The pi are generally functions of Morse
variables, which themselves are functions of the inter-atomic
distances, ra,b (by the usual exponential relationship exp(�ra,b/l),
where l is commonly chosen to be equal to 2 Bohr). The Morse
variables are denoted by xl. The linear coefficients are obtained
using standard least squares fits to large data sets of electronic
energies (and possibly also gradients) at ‘‘scattered’’ geometries.

In the usual approach, a serious computational issue arises
when the basis set is too large to be practically useful, either
because the number of coefficients is so large that the least
squares optimization becomes problematic or because calcu-
lating the PIPs becomes expensive. The size of the basis
depends in a complicated and non-linear way on the maximum
polynomial order, the number of Morse variables, and the order
of the symmetric group.25 This growth in the size of the PIP
basis was the origin of for the estimate of a 10-atom limit for
the method.25

However, as noted above, the fragmented basis approach
is an effective way to deal with this apparent 10-atom limit.
By fragmenting a molecule into groups of smaller moieties the
basis for each moiety can be calculated rapidly and then
combined with those of other fragments to provide a compact
and hopefully still precise representation of the PES.28 Consider
a simple example of a 5-atom molecule with atoms labeled as
1–5 and a scheme in which the molecule is fragmented into
three fragments, say {1,2,3}, {2,3,4}, {3,4,5}. In this 3-fragment
scheme the potential is given compactly by

V ¼
X
i

cipi x1;m1ð Þ þ
X
j

cj
0
pj
0
x2;m2ð Þ þ

X
k

ck
0 0
pk
0 0
x3;m3ð Þ;

(2)

where { p}, {p0}, and {p00} are PIP bases for the nth fragment,
n = 1, 2, 3, { c}, {c0}, {c00} are the corresponding linear

coefficients, xn represent the set of corresponding Morse variables,
and mn indicate a set of monomials built from the Morse variables.
Morse variables between atoms 1 and 4, atoms 1 and 5, and atoms
2 and 5 are assumed to be zero and hence not included in the
fragmented bases.

In this example, and in general, there are some Morse
variables in common among the fragments, and thus there
are some redundant basis functions in this expression in
terms of common Morse variables. These issues were pointed
out previously;18,28 however, they were not serious numerically,
because the linear least squares method used is able to deal
with a modest number of identical basis functions. Nevertheless,
there is motivation to eliminate these redundant basis functions
and thereby reduce the size of the basis. We do note the
redundant-term issue is similar to one that two of us identified
earlier for developing PIP representations of interaction poten-
tials that should rigorously vanish in asymptotic regions where
there is no inter-fragment interaction. In that case the issue was
basis functions involving Morse variables of fragments that do
not go to zero at large internuclear distances where there is no
inter-fragment interaction. An effective pruning procedure was
then employed to eliminate such basis functions and applied to
several systems.29–31

It is worth recalling the key point that motivated the frag-
ment approach. The PIP basis can be generated by starting with
‘‘seed’’ monomials24 given by eqn (3)

x
n1
1 x

n2
2 . . . xnll ; l ¼ nðn� 1Þ=2; (3)

where the Morse variables are indexed by an integer. Clearly for
large molecules, many internuclear distances are large and thus
the corresponding Morse variables are approximately zero, and
so basis functions containing these variables are also zero.
One way to take advantage of this is to simply prune the full
basis and then remove those basis polynomials with very small
Morse variables. However, this requires obtaining the full
fitting basis first before pruning, and this could already be
prohibitive. So a fragmented approach was proposed in which
the basis is a union of PIPs for fragments of the molecule.
In order to maintain permutational invariance for the final
basis set, atoms that are assigned to permute with one another
must appear together whenever they appear in any of the
fragments.

As noted already this approach was applied successfully to
cis and tran-NMA (including the saddle point(s)) between them.
Very recently it was applied to 15-atom tropolone,19 where a full
PIP basis was also used.

Here we apply the fragmented PIP approach to obtain a PES
15-atom acetylacetone (AcAc). (We use the PES to obtain the H
and D-tunneling splitting.) It is worth going over the history of
AcAc PEs for the usual reasons and also since the molecule is
an excellent example of the rapid pace of progress mentioned
above. In 1997 Hinsen and Roux reported an empirical valence
bond (EVB) potential (using input from a well-known force field
and limited HF calculations).32,33 The barrier for the H-atom
transfer of roughly 9 kcal mol�1 is about a factor of three larger
than the current best value from CCSD(T) calculations of
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3.2 kcal mol�1.34 (This large overshoot of an HF-based barrier is
certainly in-line with many other calculations of barriers using
HF theory.) This was followed in 2001 with a systematic study of
the barrier height using DFT/B3LYP and MP2 theory and a
variety of basis sets by Mavri and Grdadolnik.22 To quote from
that paper ‘‘For description of the intramolecular degrees of
freedom. . . one would need 39-dimensional hypersurface,
which is impossible to construct. . ..’’ Considering accuracy
based on MP2 calculations and speed the authors went on to
develop a 4d EVB potential based on B3LYP/6-311+G(2d,2p)
calculations with a classical barrier of around 2 kcal mol�1.
In 2015 Meuwly and co-workers developed and employed a
full-dimensional semi-empirical molecular-mechanics-proton
transfer PES (with input from MP2 calculations) to calculate a
classical IR spectrum and to compare with a new experimental
spectrum. In 2020, Meuwly and co-workers using a novel Neural
Network approach in the PhysNet software35 developed a
full-dimensional PES for AcAc based on MP2/aVTZ energies and
gradients.1 This PES was used in molecular dynamics calcula-
tions of the infrared spectrum. Thus, in 19 years a full dimen-
sional PES for 15-atom AcAc has gone from ‘‘impossible’’ to
a reality.

In this paper we apply the fragmented PIP approach to
obtain a new PES for AcAc. Although a NN-based PES for AcAc
has recently been reported,1 as noted above, we decided to
augment the data set for that fit with additional MP2/aVTZ
energies and gradients to obtain and investigate a new PES. The
two approaches are very different and so it is worthwhile to
report on this new PES, providing additional insight on accu-
racy and computational timing. We use the new fit in diffusion
Monte Carlo calculations of the ground vibrational state wave-
function and zero-point energy and fixed-node DMC calcula-
tions of the first excited state in the H and D-atom transfer
motion to obtain the tunneling splitting. Also, a simple 1d
approach to obtain the tunneling splitting is also used, mainly
to determine the effect of increasing the barrier height on the
tunneling splitting.

Of course, AcAc is just one example of the rapid progress in
the field. Already in 2005 permutationally invariant PESs for
CH5

+ and H5O2
+ based on fitting tens of thousands ‘‘gold

standard’’ CCSD(T)/aVTZ energies were reported.36,37 The six
and seven atom molecules were already ‘‘large’’ by the stan-
dards in 2005 and in both cases the PESs dissociated smoothly
to fragments, CH3

+ + H2 and H3O+ + H2O, respectively.

3 Computational details
3.1 PIP bases

PIP software that incorporates gradients into fitting was intro-
duced recently and first applied in a demonstration to CH4

17

and in the first application of the fragmentation approach to
N-methyl acetamide.28,38 This software was refined for the
fragmented approach to eliminate redundant basis functions39

and very recently applied to obtain a full-dimensional PES for
tropolone.19

We investigated two bases for the fits to the present data set.
The first, which we assumed would be the benchmark, was a
full PIP basis of maximum polynomial order three. The atom
numbering scheme employed is shown in the top panel of
Fig. 1, which also gives the minimum energy structure of AcAc.
The symmetry designation for this fit is {1,2,2,2,6,1,1}, meaning
that the two oxygens (atoms 2 and 3) are treated as equivalent,
as are the two carbons (atoms 4 and 5), the two end carbons
(atoms 6 and 7), and the six hydrogens (atoms 8–13) on the
terminal carbons. The remaining H atoms and the central
carbon are treated as unique.

The second fit we examined was based on fragmentation of
AcAc into four fragments and again using a maximum poly-
nomial order of three. The details of this approach have been
described previously.18,28,39 The permutational symmetries and
atom numbers (using the scheme in the bottom panel of Fig. 1)
are as follows: symmetry {1, 1, 1, 1, 1, 1, 1, 1, 1} with atoms {1, 2,
3, 4, 5, 6, 10, 11, 12}; symmetry {3, 1, 1, 1, 1, 1, 1, 1, 1} with
atoms {13, 14, 15, 1, 2, 3, 4, 5, 10, 11, 12}; symmetry {3, 1, 1, 1, 1,
1, 1, 1, 1} with atoms {7, 8, 9, 1, 2, 3, 4, 5, 6, 10, 11}; and
symmetry {3, 3, 1, 1} with atoms {7, 8, 9, 13, 14, 15, 6, 12}.
We will refer to this fragmentation as 4-(9,11,11,8), where the
numbers in parentheses represent the number of atoms in each
fragment.

Properties of these basis sets are shown in Table 1 along
with their performance. At this point we just note that while the
fragmented basis has more terms it is faster to evaluate for both
the potential and gradient. This may seem counter intuitive;

Fig. 1 (top) Numbering scheme used for the full-symmetry basis set.
(bottom) Numbering scheme used for the 4-(9,11,11,8) basis set.
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however, it must be recalled that the higher symmetry of the
full basis results in more complex polynomials, which in this
case ends up in significantly increased computational effort.
We go back to this table after we discuss the database of
energies and gradients.

3.2 Potential energy surfaces

The database for the potential energy surface consists of
ab initio energies and gradients at 5454 different molecular
configurations, using MP2/VTZ level of theory. Of these con-
figurations, 5000 were provided by the authors of ref. 1, while
an additional 454 configurations were generated through grids
of points near the transition state to H transfer and near the
global minimum, as well as by running ab initio molecular
dynamics trajectories at an energy of 4000 cm�1. A histogram of
the distribution of energies is provided in Fig. 2. At these
configurations, energies and full gradients were obtained and
used in the database. Subsequently, an additional 4 points were
added as a result of locating some holes using diffusion Monte
Carlo studies (see below). For the 4-(9,11,11,8) basis, in order to
guarantee that the H-transfer potential is symmetric, the data-
base is expanded by including geometries after the permutation
shown in Fig. 3.

Fits using these PIP bases were inverse energy weighted and
also gradients were weighted by a factor of 1/3 relative to
energies. The precision of these PESs are given in Table 1.
As seen the fragmented PES fit is more precise. In particular,
the barrier to H atom transfer, TS(H) in Table 2 is given more

precisely in the fragmented PES than in the full basis PES. This
is important for the predictions of splittings.

3.3 Diffusion Monte Carlo calculations

Diffusion Monte Carlo (DMC) simulation is an approach to
compute quantum zero-point energy (ZPE) of a molecule, and if
the fixed-node approximation is applied, it can also be used to
calculate the energies of certain excited states.40,41 In this work,
we calculate the ground-state splitting of the H-transfer motion
by calculating the energies of the ground state and the relevant
excited state. This is done for H, a single D (the transferring
atom) and fully deuterated AcAc.

The simple unbiased algorithm,40–42 briefly described next,
was applied. An ensemble of random walkers is used to
represent the nuclear wavefunction of the molecule. At each
step, a random displacement in each degree of freedom is
assigned to each walker, and this walker may remain alive (and
may give birth to a new walker) or be killed by comparing its
potential energy, Ei, with a reference energy, Er. For the ground
state, the probability of birth or death is given as:

Pbirth = exp[�(Ei � Er)Dt] � 1(Ei o Er) (4)

Pdeath = 1 � exp[�(Ei � Er)Dt](Ei 4 Er), (5)

where Dt is the step size in imaginary time. For excited state,
in addition to the process described above, any walker that
crosses a node is instantly killed. In most cases the node is

Table 1 Basis sets investigated for AcAc. Weighted RMS error values
(wRMSE) are in cm�1 and cm�1 per Bohr for potentials and gradient
components, respectively. Times are in s for an average over 10 tests
using a 2.7 GHz Intel Core i7 processor. Each test is for evaluation of 5000
configurations, and the time listed is for evaluating all 5000 configurations

Full symmetry 4-(9,11,11,8)

Monomials 52 616 3609
Polynomials 6207 24 030
N(fitted points) 5454 5454
wRMSE (pot) 49 22
wRMSE (grad) 29 16
Time (pot/grad) 0.95/80.91 0.43/26.61

Fig. 2 Histogram of energies for geometries used as the dataset for
acetyl-acetone. The bin size for the abscissa is 500 cm�1. The database
has 5500 energies and (not shown) 45 � 5500 gradient components.

Fig. 3 Permutation that must be allowed to describe H-transfer in Ac–Ac.

Table 2 Energies relative to the GM (in cm�1) of the 7 stationary points,
and comparison with MP2/aVTZ ones

Full symmetry 4-(9,11,11,8) MP2/aVTZ

GM 0 0 0
TS(T)-I 176 159 77
TS(T)-II 270 399 468
TS(T)-III 418 541 519
TS(H) 714 745 763
TS(HT)-I 703 820 970
TS(HT)-II 678 864 1171
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unknown in Cartesian coordinates, but for certain modes such
as H-transfer in symmetric wells, a very reasonable approxi-
mation can be made for the node as described in detail below.

After removing all dead walkers, the reference energy is
updated using the equation

ErðtÞ ¼ hVðtÞi � a
NðtÞ �Nð0Þ

Nð0Þ ; (6)

where t is the imaginary time; hV(t)i is the average potential
over all the walkers that are alive; N(t) is the number of live
walkers at time t; a is a parameter that can control the
fluctuations in the number of walkers and the reference energy.
Finally, the average of the reference energy over the imaginary
time gives an estimate of ZPE (or the energy of the excited state
in a fixed-node calculation).

For AcAc, DMC calculations were performed in two coordi-
nate systems: the Cartesian and normal coordinates. Calcula-
tions done in normal coordinates are not rigorous because the
Hamiltonian is given as

Ĥ ¼ �1
2

X3N�6
k¼1

@2

@Qk
2
þ V Q1; . . . ;Q3N�6ð Þ; (7)

which neglects the vibrational angular momentum terms. The
hope is that this error cancels out for tunneling splitting, which
is the difference between two energies. The advantage of
using normal coordinates is that the node for the fixed-node
calculation is much easier to define. The node is just Qim = 0,
where Qim is the coordinate of the imaginary-frequency mode of
transition state of the H-transfer. That is, whenever the value of
Qim changes sign, the walker should be removed. On the other
hand, using Cartesian coordinates is ‘‘exact’’ for the ground
state, but more approximations are involved when defining the
node for the excited-state calculations. For H transfer, we
assume that the node is where the transferring H is equidistant
from the two O atoms (i.e., rHO2 = rHO4, using the numbering
scheme for the 4-(9,11,11,8) basis). Initially, the H atom is
closer to one O (say O4), so if rOH4 becomes larger than rOH2

in a walker, that walker crosses the node and should be
instantly removed. Also a small correction was made for the
excited state by taking recrossing into consideration.41

Ten DMC simulations were performed for each state and
each coordinate system, and for three deuterated isotopologues
(all H, all D, and one D). so the total number of simulations is
10 � 2 � 2 � 3 = 120. In each simulation, 30 000 walkers were
equilibrated for 5000 steps, and then were propagated for
50 000 steps to compute the energy, with a step size of
5.0 a.u. In these simulations, B1011 potential energy evaluations
are required; clearly these cannot be done without an
efficient PES.

4 Results and discussion
4.1 Potential energy surface

Seven low-energy stationary points can be located on the PES:
the global minimum (GM), 3 transition states with respect to

the torsion of the two methyl rotors (denoted as TS(T)-I, TS(T)-II,
and TS(T)-III), the transition state of the H transfer (denoted as
TS(H)), and 2 higher-order saddle points with imaginary frequen-
cies in both H-transfer motion and the methyl torsion (denoted
as TS(HT)-I and TS(HT)-II). The geometries of GM and TS(H) are
shown in Fig. 4, and the coordinates and harmonic frequencies
of all the 7 stationary points can be found in the ESI.† The GM
has Cs symmetry, while the H-transfer transition state is a C2v

structure.
The energies of the 7 stationary points from two PESs are

shown in Table 2, and compared with MP2/aVTZ values. It can
be seen that the 4-(9,11,11,8) PES has better agreement with
MP2 than the PES using full symmetry basis, as expected, due
to the smaller fitting errors shown in Table 1. The 4-(9,11,11,8)
PES also shows better agreement with MP2 harmonic frequen-
cies; the mean absolute errors (MAE) in frequencies are listed in
Table 3.

There are two methyl rotors in AcAc; by allowing the permu-
tations of the three H atoms in each rotor, the fragmented
4-(9,11,11,8) can still ensure the 3-fold symmetry of the methyl
rotors, as is shown in Fig. 5.

From data reported in Table 1 it is possible to estimate
the computational cost of a single AcAc energy evaluation
performed on a 2.7 GHz Intel Core i7 processor. We found
the 4-fragment surface to be faster than the full symmetry one.
The result for the 4-fragment surface is about 0.08 ms per
energy, while one gradient call is about 55 times more expen-
sive at about 5 ms. This is to be compared with values reported
in ref. 1 for an NN PES of the smaller malonaldehyde molecule.

Fig. 4 Geometries of GM (top) and H-transfer saddle point (bottom).
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In that paper one potential and one gradient evaluation on a
faster (3.4 GHz) processor were timed at 4 and 9 ms respectively.
This fact hints at substantially increased efficiency of our frag-
mented PIP PES. However, we cannot rule out that part of the PIP
speedup might be due to the way the surface was coded (Fortran
90 for the PIP PES; Python for the NN malonaldehyde PES) rather
than the way it was built. Overall, then, our PES is full-dimensional
and does describe satisfactorily the region of the stationary
points shown.

4.2 Splitting dynamics

All DMC and 1d calculations are done with the fragmented PES,
which is both faster and more precise than the full basis PES.
Before discussing the tunneling splitting dynamics, we present
the ZPEs of three isotopologues of AcAc and the ground-
state wavefunction, which are also important properties and
closely related to tunneling. The ZPEs of un-deuterated, singly
deuterated, and fully deuterated AcAc from DMC calculations
in Cartesian coordinates are 26 637 � 16 cm�1, 26 048 �
7 cm�1, and 21 223 � 12 cm�1, respectively. The numbers from
DMC in normal coordinates are 26 587 � 6 cm�1, 26 005 �
8 cm�1, and 21 177 � 16 cm�1; the difference between
Cartesian and normal coordinates, roughly 45 cm�1, is due to
the neglect of vibrational angular momentum terms when
using normal coordinates.

Fig. 6 shows the isosurface depiction of the ground vibra-
tional state wavefunction. As seen the ‘‘structure’’ is close to the
H-transfer saddle point with an effective symmetry of C2v.

The tunneling splittings of H-atom and two deuterated
isotopologues obtained from DMC calculations and a 1d
approach (described below) are summarized in Table 4. As
seen, the DMC results using Cartesian coordinates and normal
coordinates are in good agreement and this indicates a small
systematic uncertainty in using these different approaches.
It should be noted that statistical uncertainties for each set of
DMC calculations are larger than these differences. Also, we
stress that these DMC splittings are not expected to be abso-
lutely accurate owing to the MP2/aVTZ underestimation of the
H-atom transfer barrier height by roughly 1 kcal mol�1. At the
suggestion of a Reviewer we investigated using a CBS extra-
polation based on MP2/aVDZ and MP2/aVTZ energies.43

We found a 0.1 kcal mol�1 lowering of the H-transfer barrier
height doing this. This is a small change and actually in the
direction away from the higher CCSD(T) barrier, so we did not
pursue this further.

In view of this, we investigated the dependency of the
splitting as a function of the barrier height, using a simple
1d approach. In brief, a 1d potential, denoted V(Qim), which is
the minimum energy path as a function of the imaginary-
frequency mode (Qim) of the H-transfer saddle point, was
obtained by optimizing all the other coordinates at fixed Qim

values except the methyl rotors, which cannot be described
using rectilinear normal coordinates. These are held fixed at
the saddle point values all the way along the path. Then 1d-DVR
calculations were done using the 1d potential to compute the
energies of the ground and first excited states, and thus the
splitting.

Table 3 Mean absolute error (MAE) in harmonic frequencies compared to
those computed at MP2/aVTZ level of theory. All values are in cm�1

Full symmetry 4-(9,11,11,8)

GM 22.2 14.4
TS(T)-I 19.0 13.2
TS(T)-II 28.2 18.1
TS(T)-III 24.0 15.7
TS(H) 31.8 20.4
TS(HT)-I 31.0 21.5
TS(HT)-II 38.2 23.5

Fig. 5 Torsional potential of the two methyl rotors, using the 4-(9,11,11,8)
basis. Rotor 1 consists of atom {6,7,8,9}, and rotor 2 consists of atom
{12,13,14,15}, using the numbering scheme in the bottom panel of Fig. 1.

Fig. 6 Isosurface depiction of the ground vibrational state wavefunction.

Table 4 Ground-state tunneling splittings of three deuterated isotopo-
logues of AcAc obtained by the specified approaches. The numbers
in parenthesis indicate the barrier height

All H One D All D

DMC (Cartesian) 160 43 37
DMC (normal) 156 40 36
1d-DVR (586 cm�1) 141 57 57
1d-DVR (763 cm�1) 113 41 40
1d-DVR (1119 cm�1) 74 22 21
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Owing to fixing the methyl rotors the 1d Qim potential has a
barrier to H or D transfer of 586 cm�1 relative to the minima at
Qmin = �27.9 a.u. for H transfer and Qmin = �36.8 a.u. for D
transfer. Thus, The 1d Qim barrier is about 160 cm�1 less than
the barriers of 745 cm�1 for the fitted surface or 763 cm�1 for
the MP2 result. The 1d-DVR splittings for H and D transfer were
found to be 141 cm�1 and 57 cm�1, respectively for this barrier
height of 586 cm�1.

In order to investigate the dependence of the splitting on the
barrier height a simple potential morphing approach was
used.44–46 Specifically, the morphed 1d potential is Ṽ(Qim) =
f (Qim)V(Qim), where V(Qim) is the potential from the original
PES, and f (Qim) is the scaling factor, which is 1.0 at the minima
(Qim = Qmin) and equal to a value greater than 1.0 that can bring
the barrier to the desired height at Qim = 0.0. The scaling factor
we employed is

f (Qim) = (Rbh � 1)[1 � s(Qim)] + 1, (8)

where Rbh is the ratio between the desired barrier height plus
159 cm�1 and the actual barrier height from the PES (which is
745 cm�1), and s is a switching function that is 0 at Qim = 0 and
is 1 at Qim = Qmin. Note that adding 159 cm�1 to the desired
barrier height is due to the fact that the minimum in the 1d Qim

potential has an energy of 159 cm�1 instead of 0. The switching
function has the form

s ¼ 10
Qim

Qmin

� �3

� 15
Qim

Qmin

� �4

þ 6
Qim

Qmin

� �5

: (9)

The results from various morphed potentials are summarized
in Table 4. As seen and as expected, the splittings decrease
significantly in going from the barrier height of 763 cm�1 to
1119 cm�1.

The simple morphing of the 1d Qim potentials would not be
expected to work for the PES in full dimensionality. (Indeed the
attempt to do so was not satisfactory.) A multi-dimensional
approach is probably needed and we present some preliminary
thoughts on this in the next section.

To summarize this section, we finally use the 1d-DVR
splitting results in Table 4 to estimate the DMC splittings
corresponding to the barrier of 1119 cm�1. This is done just
using the ratio of the 1d splitting for 763 and 1119 cm�1. From
these we estimate 104 cm�1 for H-atom transfer and 23 and
19 cm�1 for the single-D and all-D isotopologues, respectively.

5 Morphing with Gaussian process
regression

Morphing is a term that refers to a procedure to change an
existing PES with various goals in mind. In the simplest version,
a coordinate is scaled by a dimensionless factor to bring ‘‘exact’’
numerical vibrational transition energies into agreement with
experiment.44 A more elaborate procedure was applied to an
approximate semi-empirical PES describing HCN/HNC isomeriza-
tion to change the isomerization saddle point location as well as
to increase the energy substantially.45 Meuwly and Hutson used

the general approach of scaling a coordinate and the PES energy
to obtain a highly accurate intermolecular PES for Ne–HF.46

In these approaches the scaling was done using analytical
expressions. This could be done without difficulty for these
triatomics since there are only three internal degrees of free-
dom. For larger molecules with tens of degrees of freedom a
more general, non-parametric approach is probably called for.
This is essentially the suggestion made in this short section,
motivated by the present PES for AcAc.

As noted both here and previously1 the CCSD(T) barrier
height for H-atom transfer is roughly 50% higher than the
MP2 one. Thus, even a perfect fit to MP2 energies would
produce an inaccurate barrier. Morphing such a PES to produce
the correct CCSD(T) barrier obviously would be the goal.
However, in principle a scaling factor to do this would be
function of all the variables of the PES. In addition, moving
the configuration of the saddle point to the ‘‘correct’’ one
would require scaling of all the variables, which in the present
case are all the Morse variables. We note that an approach
based on energy switching to build single and multi-sheeted
PESs to account for improved barrier descriptions has been
developed by Varandas and co-workers.47

To improve the MP2-based AcAc PES Meuwly and co-workers
proposed a transfer learning approach based on approximate
local CCSD(T) energies (no gradients) at 49 000 geometries for
the series malonaldehyde, acetoacetaldehyde, and acetylacetone.
This appeared to be successful, however 49 000 full CCSD(T)
energies just for AcAc would be prohibitive. Our proposal is to
make use of on the order of a thousand CCSD(T) energies
strategically done, at least at and in the vicinity of stationary
points. Then an efficient ML approach could be applied
to develop high dimensional morphing functions. Gaussian
process regression appears to be an excellent choice as it is
known to perform well on relative small data sets.11,48 We plan
to do this in the near future.

6 Summary and conclusions

We reported permutationally invariant polynomial (PIP) fits to
energies and gradient components for 15-atom acetylacetone.
These include standard and fragmented PIP bases. Approxi-
mately 500 energies and associated gradient components are
obtained from direct-dynamics calculations using MP2/avTZ
supplemented by grid calculations spanning an energy range
up to roughly 35 000 cm�1, and are combined with an existing
database1 to form the database for this study. A fragmentation
scheme was investigated with respect to efficiency and fit
precision. Properties such as stationary points, harmonic fre-
quencies and the barrier to H-atom transfer are reported and
compared to direct calculations. Diffusion Monte Carlo (DMC)
calculations are used to calculate the ground state wave-
function and zero-point energy of acetylacetone. These together
with fixed-node DMC calculations for the first excited-state of
H-transfer provide the predicted tunneling splitting due to the
barrier separating two equivalent wells. Simpler 1d calculations
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of this splitting are also reported for varying barrier heights
including the CCSD(T) barrier height of 3.2 kcal mol�1. Based
on those results the DMC splitting of roughly 160 cm�1 with a
statistical uncertainty of about 30 cm�1, calculated using the
MP2-based PES, is estimated to diminish to about 100 cm�1 for
a barrier of 3.2 kcal mol�1.

In the abstract and along the text we have adopted the
expressions ‘‘full basis’’ or ‘‘full symmetry’’ to refer to the
non-fragmented fit. This is to mean that a unique fitting basis
extended to the full molecule has been employed with the
theoretical possibility for all atoms to permute with same-kind
ones. In practice we generated a basis set characterized by partial
permutational symmetry to be able to deal with the large dimen-
sionality of the molecule (15 atoms), as detailed in Section 3.1.
This is expected since fully permutationally invariant bases have
generally been limited to 10-atom systems.

We conclude spending a few words about the possibility
to employ fragmentation to reactive or dissociative systems,
as already done in one of our previous papers.19 It should be
possible to reduce the basis set of a dissociating molecule by
choosing fragments that either (a) remain in one of the
products or (b) are the simplest fragments that represent the
dissociation. In the end, of course, the choice of basis poly-
nomials and the ab initio data set are closely linked. If the data
set is chosen, it is easy to examine it to see which Morse
variables are most and least important. But if the data set is
subsequently extended, say to examine a particular conformer
or product, the choice of the most or least important Morse
variables must be re-evaluated. Preliminary and encouraging
work in this direction is being undertaken.

Finally, the fragmented PES is available upon request to the
authors.
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