Robust degradation of tetracycline antibiotic through recyclable Fe3S4/Ti3C2MXene composites†
Abstract
The efficient and sustainable removal of tetracycline (TC) from wastewater is a matter of great significance. In this study, we present a novel technique that effectively degrades TC by harnessing the synergistic effects of Fe3S4/Ti3C2MXene. The Fe3S4/Ti3C2MXene composite, specifically designed for this purpose, exhibits exceptional magnetic properties derived from Fe3S4. Our research demonstrates that this composite significantly enhances TC degradation through Fenton activity, achieving an impressive degradation rate of over 90%. Notably, when TC is subjected to the Fe3S4/Ti3C2MXene + H2O2 system, it generates a substantial amount of reactive oxygen species, including ˙OH and ˙O2−. Among these species, ˙OH, primarily produced on the surface of Fe3S4/Ti3C2MXene, plays a dominant role in TC degradation. In contrast, pristine Fe3S4 or Ti3C2MXene alone does not exhibit comparable degradation capabilities under similar conditions. Moreover, the Fe3S4/Ti3C2MXene composite demonstrates excellent reusability and high stability over four consecutive cycles. Gas/liquid chromatography–mass spectrometry (GC/LC–MS) analysis was utilized to identify the intermediates of TC degradation, and a possible degradation pathway was proposed. These findings highlight the potential of Fe3S4/Ti3C2MXene composites in enhancing the Fenton degradation process and unveil an encouraging tactic for the successful elimination of TC from wastewater.
- This article is part of the themed collection: Nanomaterial applications in water