TEMPO-radical-bearing metal–organic frameworks and covalent organic frameworks for catalytic applications
Abstract
It is known that 2,2,6,6-tetramethylpiperidinyl-1-oxy (or TEMPO) is a stable, radical-containing molecule, which has been utilized in various areas of organic synthesis, catalysis, polymer chemistry, electrochemical reactions, and materials chemistry. Its unique stability, attributable to its structural features, and molecular tunability allows for the modification of various materials, including the heterogenization of solid materials. Metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) are porous and tunable because of their ligand or linker portion, and both have been extensively studied for use in catalytic applications. Therefore, synergistically combining the chemistry of TEMPO with the properties of MOFs and COFs is a natural choice and should allow for significant advancements, including improved recyclability and selectivity. This article focuses on TEMPO-bearing MOFs and COFs for use in catalytic applications. In addition, recent strategies related to the use of these functional porous materials in catalytic reactions are also discussed.
- This article is part of the themed collection: 2021 Frontier and Perspective articles