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Abstract

Biopolymer sequences dictate their functions, and protein-based polymers are a promising
platform to establish sequence—function relationships for novel biopolymers. To efficiently
explore vast sequence spaces of natural proteins, sequence repetition is a common
strategy to tune and amplify specific functions. This strategy is applied to repeats-in-toxin
(RTX) proteins with calcium-responsive folding behavior, which stems from tandem
repeats of the nonapeptide GGXGXDXUX in which X can be any amino acid and U is a
hydrophobic amino acid. To determine the functional range of this nonapeptide, we
modified a naturally occurring RTX protein that forms 3-roll structures in the presence of
calcium. Sequence modifications focused on calcium-binding turns within the repetitive
region, including either global substitution of nonconserved residues or complete
replacement with tandem repeats of a consensus nonapeptide GGAGXDTLY. Some
sequence modifications disrupted the typical transition from intrinsically disordered
random coils to folded B rolls, despite conservation of the underlying nonapeptide
sequence. Proteins enriched in smaller, hydrophobic amino acids adopted secondary
structures in the absence of calcium and underwent structural rearrangement in calcium-
rich environments. In contrast, proteins with bulkier, hydrophilic amino acids maintained
intrinsic disorder in the absence of calcium. These results indicate a significant role of
nonconserved amino acids in calcium-responsive folding, thereby revealing a strategy to

leverage sequence in the design of tunable, calcium-responsive biopolymers.
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Introduction

Defining the sequence of a polymer is a powerful approach to tune intramolecular
conformations, intermolecular interactions, and material properties (1-3). Sequence-
defined polymers have enhanced control over self-assembled structures (4-6), molecular
recognition (7-9), and stimuli-responsive functions (10-12). As synthetic strategies for
sequence-defined polymers continue to improve, tradeoffs emerge between exhaustive or
efficient exploration of expansive design spaces (13-16). Such tradeoffs are mitigated by
evolutionary processes in biological systems, in which genetic drift and selective
pressures can produce diverse traits. Natural macromolecules that have evolved to carry
out specific functions are promising platforms to evaluate the level of sequence definition

required to design functional polymers.

A function of recent interest is the calcium-responsive folding of bacterial proteins, which
critically enable cells to secrete pathogens (17-19), assemble pore-forming toxins (20, 21),
and crystallize cell-protective surface layers (22, 23). Calcium responsiveness emerges
from conserved, repetitive protein sequences. Specifically, the proteins contain tandem
repeats of the “consensus” nonapeptide (GGXGXDXUX),, where X can be any amino
acid, U is an aliphatic amino acid, and n is the number of tandem repeats. The consensus
nonapeptide is identified by aligning related protein amino acid sequences. When the
same amino acid occurs at a given position with high frequency, the residue is considered
conserved (G, glycine and D, aspartic acid in the nonapeptide). When many different
amino acids occur at a given position, the residue is considered nonconserved (X in the

nonapeptide). The consensus nonapeptide is historically named the Repeats-in-Toxin
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(RTX) motif, but not all RTX-containing proteins are cytotoxic. In the absence of calcium
ions, RTX regions adopt intrinsically disordered conformations (24). In the presence of
calcium ions, RTX regions form B-roll structures that consist of parallel § sheets connected

by calcium-binding turns (Figure 1A-B) (25, 26).

The calcium-responsive folding of the RTX motif inspired recent technological advances
beyond the context of bacteria (27, 28). These advances leveraged reversible changes in
protein size and surface chemistry upon the introduction of calcium. RTX domains enabled
switchable mesh sizes in protein networks (29, 30), calcium-induced crosslinking of
protein-based hydrogels (31-34), regulation of biomolecular recognition (35, 36), column-
free purification of recombinant proteins (37, 38), and selective binding of lanthanide ions
(39, 40). While RTX-based technologies are promising, a potential limitation is the need
for relatively high calcium concentrations (1—100 mM) to initiate folding (41). This need
reflects the origin of the RTX motif, which folds in response to calcium concentrations that
are relevant for bacteria. RTX proteins must remain disordered in intracellular
environments, where calcium concentrations are less than 100 nM. Folding is only initiated
upon translocation and secretion into extracellular environments, where calcium

concentrations range from 10 uM to >10 mM (42, 43).

The calcium binding affinities of RTX domains are sensitive to sequence, despite the
conserved pattern underlying the nonapeptide repeats. This sensitivity is apparent in the
well-studied adenylate cyclase toxin (CyaA) of Bordetella pertussis, which contains 40
RTX nonapeptide repeats that form five distinct blocks (26). Each CyaA block is denoted

with roman numerals | to V corresponding to N- and C- terminal domains, respectively.



Polymer Chemistry

The fifth block of CyaA—hereafter denoted as “Block V’—binds the most strongly to
calcium ions. Calcium-responsive folding proceeds successively from the C-terminus to
the N-terminus due to weaker affinities of Blocks IV, I, I, and | (19, 44, 45). Block V
consists of nine tandem repeats of the RTX consensus nonapeptide and is flanked by a
C-terminal capping domain (Figure 1A). The capping domain initiates folding upon
secretion through the type | secretion system in Gram-negative bacterial cells. Truncation
or removal of the capping domain disrupts calcium-responsive folding, which can be
recovered by entropic stabilization of the C-terminus (46, 47). The importance of sequence
patterning in Block V was demonstrated by rearranging the order of nonapeptide repeats,
which reduced calcium binding affinities (48). This finding suggests that the consensus
nonapeptide does not fully describe the requirements for calcium-responsive folding of

RTX proteins.

In this work, we modified the sequence of Block V to compare the roles of amino acid size,
electrostatic interactions, hydrophobicity, and sequence repetition on the calcium-
responsive folding of RTX proteins. We leveraged recombinant protein engineering to
generate twelve sequence variants and systematically evaluate sequence-dependent
secondary structures in the absence and presence of calcium. Many sequence variants
formed secondary structures in the absence of calcium, in contrast to the intrinsically
disordered Block V. Generally, sequence variants exhibited weaker calcium-responsive
folding than Block V. Sequence variants that maintained disordered conformations in the
absence of calcium underwent weaker folding transitions, revealing the importance of

residue size and hydrophobicity in frustrating secondary structure formation. Sequence
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variants that adopted secondary structures in the absence of calcium underwent calcium-
responsive structural rearrangement, revealing unexpected transitions between helical
and sheet-like structures. The consistent calcium-bound structures of highly repetitive
sequence variants suggest the importance of nonconserved residues in the final folded

state of RTX proteins.

A C BlockV global consensus
f (wild type) substitution repeat
HHHHHH HHHHHH HHHHHH
Ca2* GSARDDVLI GSARXDVLI GGAGXDTLY
> GDAGANVLN GDAGXNVLN GGAGXDTLY
GLAGNDVLS GLAGXDVLS GGAGXDTLY
GGAGDDVLL GGAGXDVLL GGAGXDTLY
GDEGSDLLS GDEGXDLLS GGAGXDTLY
GDAGNDDLF GDAGXDDLF GGAGXDTLY
GGQGDDTYLFG GGQGXDTYLFG GGAGXDTLY
VGYGHDTIYE VGYGXDTIYE GGAGXDTLY
B general repeat structure SGGGHDTIR SGGGXDTIR GGAGXDTLY
(GGXGXDXUX) INAGADQLW INAGADQLW INAGADQLW
FARQGNDLE FARQGNDLE FARQGNDLE
IRILGTDDA IRILGTDDA IRILGTDDA
LTVHDWYRD LTVHDWYRD LTVHDWYRD
ADHRVEIIH ADHRVEIIH ADHRVEIIH
AANQAVDQA AANQAVDQA AANQAVDQA
GIEKLVEAM GIEKLVEAM GIEKLVEAM
AQYPD AQYPD AQYPD

X=ASNHDE

Figure 1. RTX sequence variants were designed to screen the importance of sequence
conservation, residue size, hydrophobicity, and electrostatics on calcium-responsive
folding. (A) The RTX protein comprises an N-terminal domain (top, red) that is highly
repetitive and a C-terminal capping domain (bottom, black) that initiates folding in
response to calcium ions (yellow). (B) Top-down view of calcium-binding turns connected
by beta sheets. The N-terminal domain is characterized by the repeat sequence
GGXGXDXUX, where X indicates a variable amino acid and U is an aliphatic amino acid
(PDB: 5CVW (18)), structures generated in Pymol (49).) (C) Primary sequence of CyaA
Block V (wild type) and the C-terminal capping domain prior to mutation (left). Blue
residues indicate positions selected for substitution. In global substitution variants
(middle), all blue residues were replaced with the same amino acid. In consensus repeat
variants (right), the entire N-terminal domain was replaced with 9 tandem repeats of the
consensus sequence GGAGXDTLY (37). The C-terminal domain (black) was preserved
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in all sequence variants. Expressed proteins carried additional residues from the
directional cloning strategy (gray), as well as a 6xHis tag for purification (purple).

Experimental

Design of RTX sequence variants. To determine the role of sequence in calcium-
responsive folding, we produced twelve RTX sequence variants with modifications of the
repeat domain Block V (Figure 1C). All sequence variants preserved the native C-terminal
capping domain to stabilize calcium-bound structures (46, 47). One subset of sequence
variants included global substitutions of the nonconserved residue X in the fifth position of
the nonapeptide GGXGXDXUX, which was selected for its proximity to the highly
conserved aspartic acid residue in the calcium-binding turn. Global substitution variants
replaced nine residues throughout the Block V sequence with a single amino acid. The
fifth position of each nonapeptide was globally replaced with either alanine, histidine,
serine, asparagine, aspartic acid, or glutamic acid—these options include the five amino
acids that occur naturally in these positions throughout Block V, as well as glutamic acid
for its chemical similarity to aspartic acid and potential to interact with calcium ions.
Another subset of sequence variants replaced Block V with minimal consensus sequences
GGAGXDTLY, which were derived from the most common amino acids in a set of RTX-
containing proteins (37). The minimal consensus sequences differ from the consensus
nonapeptide GGXGXDXUX by fully specifying all nine residues in the sequence.
Consensus repeat variants included nine tandem repeats of each minimal consensus
sequence to match the size of Block V. For each of the six consensus repeat variants, the

fifth position X included one of the same six amino acids as the global substitution variants:
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alanine, histidine, serine, asparagine, aspartic acid, or glutamic acid. Complete amino acid

sequences and DNA sequences are included in the Supporting Information.

Cloning. Genes encoding Block V and its 12 sequence variants were produced using
directional cloning. Genes for each RTX sequence variant were flanked with restriction
sites for directional cloning, codon optimized for Escherichia coli with scrambling to
suppress recombination of repetitive regions (50), and purchased as gene fragments
(Twist Bioscience). Genes were subcloned into pQE-9 using BamHI and Hindlll restriction
sites. All cloning was performed in NEB 5-alpha E. coli (New England Biolabs), which were
prepared as chemically competent cells using Mix & Go transformation kits (Zymo
Research). Plasmid DNA was purified by miniprep (ZymoPURE) to screen successful
cloning through analytical digests at Xbal and Sacl restriction sites prior to Sanger
sequencing of the inserted region (GENEW!IZ). All plasmids are available for use from

Addgene.

Protein expression. RTX sequence variants were produced using recombinant protein
expression in E. coli (51). All expression strains were purchased from New England
Biolabs and prepared as chemically competent cells using Mix & Go transformation kits
(Zymo Research). Most sequence variants were expressed in T7 Express lysY/l" (NEB),
with the exceptions of Block V in T7 Express, alanine global substitution in BL21(DE3),
alanine, aspartic acid, and glutamic acid consensus repeats in BL21, and histidine and
serine consensus repeats in NEBExpress /9. Proteins were expressed by inoculating 10
mL of freshly grown overnight culture into 1 L LB media supplemented with 100 ug/mL

ampicillin. Cultures were incubated at 37 °C until reaching an optical density at 600 nm



Polymer Chemistry

between 0.8-1.0. Expression was induced with 1 mM isopropyl [-d-1-
thiogalactopyranoside (IPTG), and expression proceeded for 6 hours at 37 °C. Cells were
harvested by centrifugation at 4000 rpm for 10 minutes. Pelleted cells were resuspended
in 25 mL of denaturing lysis buffer (100 mM sodium phosphate, 10 mM Tris, 8 M urea, pH
8.0) and stored at —80 °C. To improve yield, lysis buffers for some expressions were

supplemented with 1.0 M NaCl (52).

Protein recovery, purification, and validation. Expressed proteins were recovered from
cell pellets prior to isolation using immobilized metal affinity chromatography to capture
6xHis-tagged proteins of interest, dialysis to remove excess ions, and lyophilization to
remove water. To aid defrosting of cell pellets, an additional 25 mL lysis buffer
supplemented with 20 mM imidazole was added prior to lysis by sonication. Crude lysates
were clarified by centrifugation (8,000 rpm for 1 hour) and filtration (0.45 um). 6xHis-
tagged proteins were isolated using immobilized affinity chromatography, in which clarified
lysates were incubated with HisPur™ Ni-NTA resin (ThermoScientific) for 2 hours at
ambient temperature. Protein-bound resins were washed with lysis buffer supplemented
with 10 mM to 25 mM imidazole prior to elution in lysis buffer supplemented with 250 mM
imidazole. Eluted fractions were dialyzed against a chelating buffer (10 mM Tris, 1 mM
EGTA, 50 mM NaCl, pH 8.0, 3 exchanges) and ultrapure water (18.2 MQ-cm, MilliQ, 7
exchanges). Water was removed by lyophilization (36), and purified proteins were stored
at —20 °C. Typical protein expression yields ranged from 14—130 mg per 1 L culture.
Protein purity was assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis

(Figure 2A, Figure S1). Protein identity was confirmed with matrix-assisted laser
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desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS, Bruker Microflex
LRF) by comparing the measured molar mass to the expected molar mass based on

amino acid sequence (Table $1, Figures S$2-S14).

Circular dichroism (CD) spectroscopy. Sequence-dependent and calcium-responsive
structural changes were measured using CD spectroscopy. Lyophilized proteins were
resuspended in 50 mM Tris (pH 7.5) supplemented with up to 100 mM CaCl, at final
protein concentrations between 5 uM and 10 yM. Concentrations were measured after
filtration (0.2 um polyethersulfone membrane) using UV-vis spectroscopy (see Sl for
details). Triplicate CD experiments were conducted using a Jasco J-815
Spectropolarimeter (Figures S$15-S27). Samples were measured 5 to 15 minutes after
mixing with CaCl, (Figures $28-S29). Samples were loaded into a 1 mm pathlength
cuvette (Hellma) and held at 20 °C. Scans were performed from 250 nm to 190 nm with
0.2 nm steps and 2 s integration times. Spectra were averaged between 10 scans, and
triplicate solutions were measured for each sequence variant. All spectra were corrected
by background subtraction of 50 mM Tris (pH 7.5) with the corresponding concentration

of CaCl..
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Results and Discussion

Emergence of structure in RTX sequence variants without calcium. In the absence
of calcium ions, RTX proteins are typically disordered; however, several RTX sequence
variants formed secondary structures that were characterized using CD spectroscopy
(Figure 2B). In Block V, disorder was indicated by a prominent negative peak at 200 nm,
consistent with random coil conformations (24). This peak persisted in global substitution
variants with histidine, asparagine, and glutamic acid, which have bulky side chains that
promote disorder. In the Block V sequence, these three amino acids each appear multiple
times in the nonconserved position of interest. Interestingly, the asparagine variant was
nearly indistinguishable from Block V. The reduced intensity of the peak in the histidine

variant was attributed to UV absorption by aromatic side chains (53).

In contrast, global substitution variants with alanine, serine, and aspartic acid formed more
ordered secondary structures without calcium, suggesting influences of amino acid size
and electrostatic interactions. For these variants, the negative peak at 200 nm was
replaced by a lower intensity negative peak between 205 nm and 208 nm, and a broad
feature from 215 nm to 230 nm appeared. These spectral features suggested the
formation of helical structures, which are commonly associated with negative peaks at 208
nm and 222 nm (54). The relative helical content between these variants contradicted the
typical helix propensities of alanine (highest), serine (moderate), and aspartic acid (low),
indicating the possible role of electrostatic stabilization in secondary structure formation

(55-57).
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Figure 2. Synthesized RTX sequence variants adopted diverse secondary structures in
the absence of calcium. (A) Recombinant protein expression in E. coli was tolerant to all
designed mutations, as demonstrated by sodium dodecyl sulfate polyacrylamide gel
electrophoresis of Ni-NTA purified RTX sequence variants (12% polyacrylamide, 200 V,
45 minutes). (B) Secondary structures emerged in CD spectra of global substitution
variants with alanine, serine, and aspartic acid. Histidine, asparagine, and glutamic acid
variants were disordered and resembled Block V, as indicated by a negative peak in molar
residue ellipticity (MRE) at 200 nm. (C) Secondary structures emerged in CD spectra of
consensus repeat variants with alanine, histidine, aspartic acid, and glutamic acid. Serine
and asparagine variants were disordered and resembled Block V. Replicate spectra for all
sequence variants are included in Figures S15-S27.

Among the consensus repeat variants, polar variants mimicked the random coil
conformations of Block V without calcium, whereas hydrophobic and charged variants
formed more ordered secondary structures (Figure 2C). Consensus repeat variants with
serine and asparagine formed disordered structures that most resembled Block V, similar
to the global substitution asparagine variant. These disordered structures indicate that
polar uncharged residues promote random coil conformations in the absence of calcium.
Meanwhile, hydrophobic consensus repeat variants with alanine and histidine adopted
similar structures to the global substitution variant with alanine, namely a low intensity
negative peak between 205 and 208 nm and a broad feature from 215 to 230 nm.
Consensus repeat variants with aspartic acid and glutamic acid produced a broad negative
feature from 210 to 230 nm, suggesting both helical and B-sheet characteristics. The
diverse secondary structures formed by RTX sequence variants suggest an interplay
between steric, hydrophilic, and electrostatic contributions to promote random coil

conformations in the absence of calcium.

Global substitution variants alter and weaken calcium-responsive folding. CD

spectra of Block V revealed a calcium-dependent structural transition, consistent with prior
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reports of RTX proteins (Figure 3A) (24, 26, 41, 46). Below 0.5 mM CaCl,, Block V
adopted a random coil conformation indicated by the negative peak at 200 nm. Above 0.5
mM CacCl,, Block V formed B-sheet structures indicated by the appearance of a negative
peak at 218 nm and the disappearance of the negative peak at 200 nm. Deconvolution of
CD spectra taken at 0 and 100 mM CaCl, revealed an increase in sheet content from
19.1% to 27.9% upon the addition of calcium ions (Figure 3B), which is denoted as a 46%
relative increase in sheet content. Block V also produced a 59% relative increase in turn
content, consistent with the formation of the B-roll structure characteristic of RTX proteins.
A modest 17% relative increase in helical content was attributed to folding of the capping
domain. Spectral deconvolution was performed from 200 nm to 250 nm with CDPro
Software using the reference set SPD48, which is the largest available reference set that
includes denatured proteins (58). The results from CDSSTR, CONTIN/LL, and SELCON3

methods were normalized and averaged to facilitate quantitative comparisons (Table S2).

Many of the global substitution variants underwent calcium-responsive structural changes
that were not characteristic of B-roll formation (Figure 4A, top row). These unexpected
structural rearrangements required higher calcium concentrations than those of Block V.
For alanine, serine, and aspartic acid variants, the addition of 10 mM CaCl, corresponded
with disappearance of the negative peak between 205 nm and 208 nm. The three variants
produced distinct changes in the broad feature from 215 nm to 230 nm, such that the
feature was enhanced for the alanine variant, relatively constant for the serine variant, and

reduced for the aspartic acid variant. For all three variants, spectral deconvolution
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indicated <10% relative increases in sheet content from 0 mM to 100 mM CaCl, (Figure

4B).
A 2000
_ 0
3
£ -2000
" ‘ 0mM
~_ 4000 [} :
£ 0.1 mM
@ -6000 —03mM |
o — 0.5 mM
g -8000 | —1.0mM 1
= —3.0mM
g -10000 — 5 0mM
-12000 || V¥ o 1gomMM
— m
-14000 :

200 210 220 230 240 250
wavelength (nm)

B [ sheet M helix turn unstructured

0 mM
0.1 mM
0.3 mM
0.5 mM
1.0 mM
3.0 mM
5.0 mM

10 mM
100 mM

0% 20% 40% 60% 80% 100%

Figure 3. Block V formed B-roll structures in the presence of calcium ions. (A) CD
spectroscopy of Block V revealed a transition from disordered random coils to B-roll
structures between 0.5 mM and 1.0 mM CacCl,. Replicate spectra are included in Figure
S15. (B) Spectral deconvolution quantified a structural transition at 1.0 mM CaCl,. This
transition produced increases in sheet, helix, and turn content and a corresponding
decrease in unstructured content.
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Disordered global substitution variants with histidine, asparagine, and glutamic acid
formed B-roll structures upon addition of sufficient calcium chloride (Figure 4A, bottom
row). For the histidine variant, addition of 5 mM CaCl, corresponded with disappearance
of the negative peak at 200 nm and the appearance of a low-intensity negative peak at
225 nm. Spectral deconvolution indicated 35% and 48% relative increases in sheet and
turn content between 0 and 100 mM CacCl, (Figure 4B), suggesting that UV absorbance
by histidine obscured the typical signatures of B-roll formation. For the asparagine variant,
a sharp transition near 1.0 mM CaCl, resembled the Block V transition at 0.5 mM CaCl,.

For the glutamic acid variant, folding occurred gradually from 5 mM to 100 mM CacCl..

A : B M sheet M helix
ot alz‘mine : 5;,,-5"9 turn unstructured
block V -
oc
-5000 s CaCIz i |
= 0mM 0omM o | |
£-10000 —10mM 4| —10mm U +agngle .
3 - 3.0mM - 3.0mM all,
e - 5.0mM —50mM ) L}
o =-10mM | =10mM serine ; ;
£19000 ~ 100 mM — 100 mM +CaCl,
g I 1 1 1 1 | |
o T T L T asparagine ) :
(9] 0 histidine asparagine +CaCl,
o
g . -
= histidine o
w -5000 1 +CaCl,
i [ |
= 0 mm 0 mM aspartic acid
-10000 =1.0mM A =1.0mM 4 + CaCl ! L
- 3.0mM - 3.0 mM 2 | |
= 5.0mM = 50mM . .
-15000 =10mM || —-10mM | gIUtaT'é:élld i |
= 100 mM = 100 mM 2
1 1 1 1 1 | |
220 240 200 220 240 200 0 25 50 75 100%

wavelength (nm)

Figure 4. Calcium-responsive folding of global substitution variants was weaker than
Block V. (A) Asparagine and glutamic acid variants formed the most similar calcium-
responsive structures to Block V, whereas alanine, serine, histidine, and aspartic acid
variants underwent qualitatively different structural changes. Replicate spectra for all
global substitution variants are included in Figures S16-S21. (B) CD spectral
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deconvolution at 0 mM and 100 mM CaCl, revealed that the greatest secondary structure
changes in response to calcium occurred in variants that were most disordered without
calcium.

Table 1. Global substitutions of Block V reduce binding to calcium

Variant Kp (mM) n

Block V 0.67 £ 0.08 41+1.3
Asparagine 1.0+£0.8 1.8+0.7
Glutamic acid 113 1.0£0.3

The global substitution variants with asparagine and glutamic acid demonstrated weaker
calcium affinity and reduced cooperativity compared to Block V (Table 1). To compare the
calcium responsiveness of RTX sequence variants to Block V, the Hill-Langmuir equation
was used to fit the fraction of protein bound by calcium ions 8 with respect to total calcium
concentration [Ca?*] (59, 60):

[CaZ+]n

o= —— —
K5 + [Caz+]n

where the Hill coefficient n describes the cooperativity of ligand binding, and the half-
saturation dissociation constant K, indicates the calcium concentration at which half of
protein binding sites are occupied. 6 was calculated by normalizing the molar residue
ellipticity at 218 nm, with the maximum absolute intensity corresponding to complete
binding and B-roll formation. The asparagine variant resembled Block V, with similar Kp
and positively cooperative binding (n > 1). However, cooperative binding was weaker for
the asparagine variant than for Block V. The glutamic acid variant exhibited an order-of-

magnitude weaker response to calcium, which may result from its noncooperative binding.

Page 18 of 29



Page 19 of 29

Polymer Chemistry

This analysis was limited to the asparagine and glutamic acid variants, which maintained
disordered structures in the absence of calcium and produced the characteristic -roll
signature at 218 nm. The remaining global substitution variants exhibited higher fractions
of B sheets in the calcium-free structures, which resulted in weaker spectral changes at

218 nm. Weaker signals prevented reliable quantification of the bound fraction 8.

The weaker calcium-responsive folding of global substitution variants than Block V
emphasizes the importance of sequence evolution in natural RTX proteins. The
consensus RTX sequence GGXGXDXUX highlights some necessary features for RTX
proteins to function, such as glycine for flexibility in the calcium-binding turn, aspartic acid
to stabilize electrostatic interactions of divalent cations, and aliphatic residues to form the
characteristic B-roll structure (25). However, these features alone were not sufficient to
facilitate calcium-responsive folding of RTX sequence variants. Sequence variants that
formed secondary structures in the absence of calcium suggest that the fifth residue of
GGXGXDXUX plays a role in frustrating protein folding. Frustrated proteins that adopt
random coil conformations may sample a broader folding energy landscape that promotes
ion-driven folding, whereas proteins with less frustration may fold prematurely into
conformations with less favorable ionic interactions (61, 62). This contrast is best
highlighted by comparing the variants with serine and asparagine, which are both polar
residues. The smaller serine residue stabilized secondary structures in the absence of
calcium, while the larger asparagine promoted random coil conformations. This subtle
difference in residue structure led to drastically different calcium-responsive structural

changes between these variants. A similar contrast emerges when comparing the variants
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with aspartic acid and glutamic acid, which have identical net charges but different side
chain lengths. The smaller aspartic acid residue promoted electrostatic stabilization of
secondary structures, whereas the bulkier glutamic acid residue promoted frustration and
random coil conformations. These differences are consistent with reports that intrinsically
disordered proteins are enriched in glutamic acid but not aspartic acid (63-65). In other
disordered proteins, aspartates support extended structures and form helical caps. In the
variant with aspartic acid, helical conformations are attributed to the shorter side chain of
aspartic acid, which can form hydrogen bonds with the peptide backbone. In Block V,
strong cooperative binding likely results from a mix of both stabilizing and frustrating

residues throughout the repeat domain.

Consensus repeat variants undergo structural rearrangement to form consistent
calcium-bound structures. Despite a range of secondary structures in the absence of
calcium, all consensus repeat variants adopted similar secondary structures in the
presence of 100 mM CacCl, (Figure 5A). CD spectra showed monotonic decreases in
ellipticity from 200 nm to 220 nm to produce strong negative peaks near 225 nm (red
curves). Spectral deconvolution revealed similar structural components, with calcium-
bound structures demonstrating less variation than calcium-free structures (Figure 5B).
Calcium-bound consensus repeat variants also formed 10-23% relatively higher sheet

content compared to calcium-bound Block V.
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Figure 5. Consensus repeat variants formed consistent calcium-bound structures. (A) All
consensus repeat variants produced similar circular dichroism spectra at 100 mM CacCl,
(red curves), which were characterized by monotonic decreases from 200 nm to 220 nm
and a broad negative peak near 225 nm. Replicate spectra for all consensus repeat
variants are included in Figures S22-S27. (B) CD spectral deconvolution at 0 mM and 100
mM CaCl, revealed structural variation among consensus repeat variants in the absence
of calcium, in contrast to quantitatively similar structures in the presence of 100 mM CaCl,.

Some consensus repeat variants underwent conformational changes from random coils
to B-roll structures, whereas others underwent calcium-responsive structural
rearrangements. In the absence of calcium, consensus repeat variants with serine and
asparagine maintained the most disorder. The serine and asparagine variants underwent
characteristic RTX folding transitions, respectively showing 26% and 30% relative
decreases in unstructured content between 0 mM and 100 mM CaCl,. Meanwhile, alanine,
histidine, aspartic acid, and glutamic acid variants revealed unexpected structural
transitions in response to calcium. For these variants, increases in sheet content were

associated with decreases in helical content, resulting in the unstructured content
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remaining similar in the absence and presence of calcium for the alanine, histidine, and
aspartic acid variants. The glutamic acid variant produced a 20% relative increase in
unstructured content between 0 mM and 100 mM CacCl,. Interestingly, these calcium-
responsive changes in secondary structure revealed transitions between helical and
sheet-like structures that are unlike the conformational changes from random coils to B-

rolls by Block V.

Like global substitution variants, consensus repeat variants demonstrated weaker
sensitivity to calcium compared to Block V. The consensus repeat variant with asparagine
retained the greatest sensitivity, with conformational changes occurring between 1.0 mM
and 3.0 mM CacCl,. For serine and histidine variants, structural transitions occurred
gradually between 3.0 mM and 100 mM CacCl,. The alanine, aspartic acid, and glutamic
acid variants exhibited the weakest calcium sensitivities, with structural transitions
occurring between 10 mM and 100 mM CaCl,. The reduced calcium sensitivity of all
sequence variants in this work suggests that nonconserved residues and sequence

patterns are necessary to maintain the calcium sensitivity of Block V.

General Conclusions. There remains much to learn from nature’s design rules for
calcium-responsive protein folding. To probe sequence effects, we modified the repetitive
region of Block V—a naturally occurring RTX protein domain that binds to calcium by
folding into a parallel B-roll. Global substitution variants altered the size, charge, and
hydrophobicity of nonconserved residues in the calcium-binding turns of Block V, and
consensus repeat variants replaced the repetitive region of Block V with tandem repeats

of the nonapeptide GGAGXDTLY. All sequence mutations were tolerated during
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recombinant protein expression, which accelerates the rapid and accurate production of

sequence-defined biopolymers.

Despite changes to nonconserved residues, RTX variants adopted diverse, sequence-
dependent secondary structures ranging from random coil conformations resembling
Block V to more helical structures. In the global substitution variants, random coil
conformations were achieved by the largest residues: histidine, asparagine, and glutamic
acid. Unanticipated helical structures were observed for the global substitution variants
with the smallest residues, alanine and serine. Residue size effects were further
emphasized by unexpected helical structures formed by variants with aspartic acid, which
contrasted the random coil conformations of variants with glutamic acid. For the
consensus repeat variants, the hydrophilic residues serine and asparagine most
resembled Block V in the absence of calcium. In the nonconserved position of interest,
bulkier and hydrophilic residues tended to frustrate protein folding, enabling the protein to

maintain a disordered structure in the absence of calcium.

RTX sequence variants that preserved intrinsic disorder in the absence of calcium
underwent calcium-responsive folding transitions associated with B-roll formation. B-roll
structures emerged for global substitution variants with histidine, asparagine, and glutamic
acid, although each with a weaker calcium affinity and cooperativity than Block V.
Consensus repeat variants with polar residues—serine and asparagine—also underwent
calcium-responsive folding. In contrast, sequence variants that adopted secondary
structures in the absence of calcium revealed calcium-responsive structural

rearrangements, in which increases in sheet content were offset by decreases in helical
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content. These transitions appear unlike the characteristic folding of random coils into 8
rolls by natural RTX proteins. Moreover, consensus repeat variants adopted different final
structures than Block V, specifically with higher sheet content in the presence of 100 mM

CaCl,.

Overall, our results highlight the versatility of recombinant protein engineering to map
sequence—function relationships of biopolymers. We establish the importance of size and
hydrophobicity of nonconserved residues in the RTX nonapeptide GGXGXDXUX.
Asparagine strikes a particular balance between size and hydrophilic character,
demonstrating the most calcium sensitivity within the sets of global substitution and
consensus repeat variants. We anticipate these insights will advance the use of RTX
proteins as tunable, ion-responsive components of protein-based biomaterials and

biotechnologies.
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