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Full-dimensional Potential Energy Surface for Acetylacetone and
Tunneling Splittings†

Chen Qu,a Riccardo Conte,b Paul L. Houstonc and Joel M. Bowmand

We present a full-dimensional potential energy surface for acetylacetone (AcAc) using full and frag-
mented permutationally invariant polynomial approaches. Previously reported MP2/aVTZ energies
and gradients1 are augmented by additional calculations at this level of theory for the fits. Numer-
ous stationary points are reported as are the usual metrics to assess the precision of the fit. The
electronic barrier height for the H-atom transfer is roughly 2.2 kcal/mol. Diffusion Monte Carlo
(DMC) calculations are used to calculate the ground state wavefunction and zero-point energy of
acetylacetone. These together with fixed-node DMC calculations for the first excited-state provide
the predicted tunneling splitting due to the barrier to H-transfer separating two equivalent wells.
Simpler 1d calculations of this splitting are also reported for varying barrier heights including the
CCSD(T) barrier height of 3.2 kcal/mol. Based on those results the DMC splitting of 160 cm−1

with a statistical uncertainty of roughly 21 cm−1, calculated using the MP2-based PES, is estimated
to decrease to 100 cm−1 for a barrier of 3.2 kcal/mol. The fragmented surface is shown to be fast
to evaluate.

1 Introduction
It is a truism that potential energy surfaces (PESs) play a central
role in all of computational chemistry. There has been breathtak-
ing progress in the past 15 years in developing so-called non-
parametric, machine learning approaches to fit large data sets
of electronic energies. These include permutationally invariant
polynomials (PIPs), Gaussian process regression (GPR), neural
networks (NN), combinations of all three as well as variants of
the GPR and NN approaches. Numerous reviews have appeared
that cover much of this field and we refer the reader to a handful
that provide a good overview.2–9 These methods have steep scal-
ing with respect to the number of atoms in the molecule or cluster
and the size of the data set. (By far the steepest scaling is with
respect to the electronic energy calculation.) Several comparative
studies of these methods have recently appeared.10–13

These methods all have in common that they do not rely on
a model for representing potentials, e.g., Lennard-Jones, LEPS,
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exp/6, force-fields, etc. In this sense they are all non-parametric
in the language of machine-learning (ML). Also, they use a uni-
versal set of inputs, also known as descriptors, for the fitting. In
the PIP approach the input is all Morse variables, which are trans-
formed internuclear distances. In the PIP-NN6,14 and PIP-GPR11

the input is a limited number of PIPs. This is distinct from ear-
lier approaches using models, where the variables are molecule-
specific. So, based on these aspects, all the methods mentioned
above (not a comprehensive list) are machine-learning methods.
However, there is a fundamental difference in the way the data
are used in these methods. In PIP and NN the parameters con-
tained in those approaches are optimized, generally using a least
squares minimization criterion. In PIP, where parameters are
linear, the optimization is performed by means of linear least-
squares. In NN fitting the parameters are non-linear and so the
least squares optimization is non-linear. The number of param-
eters in both approaches can be thousands or even tens of thou-
sands, depending on the dimensionality of the space. As an aside,
it is worth noting that if Morse variables are used as the inputs for
PIP or PIP-NN, then the range parameter(s) of the variables could
be treated as additional non-linear parameters. The number of
such parameters is very small, however, compared to the thou-
sands of parameters just mentioned. In any case, in these meth-
ods the data are used in the optimizations but not for prediction.
By contrast, other machine-learning methods use the data explic-
itly for prediction. GPR is a prominent example of this method.
All these methods have the same goals, which are a precise repre-
sentation of the known data (GPR can reproduce the data exactly
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but, since this generally leads to a singular matrix for prediction,
“noise" is added to the data) and smooth and accurate predic-
tions. It is of course of interest to compare the performance of
these different ML approaches.

Based now on numerous applications using these methods,
some fairly general comments can be made about them. A
strength of the GPR approach is that it does produce a quality PES
from a relatively small amount of data.3,15 On the other hand this
approach becomes computationally very demanding for datasets
with more than 104 energies. By contrast, PIP/FI-NN PESs with
4–7 atoms typically use more than 104 energies.6,8 For example,
the recent PIP-NN and atom-based HD-NN PESs for H+CH3OH
were fit to 75,000 electronic energies.13 The PIP approach devel-
oped in our group spans both these limits, i.e., it can easily fit
ca. 105 energies (and/or gradients) and it also provides a faith-
ful fit with very few configurations. This was explicitly the focus
of a recent paper assessing the performance, i.e., speed and ac-
curacy, of the GPR and PIP approach to PES fitting for four case
studies, H3O+, OCHCO+, H2CO (including cis-and trans-HCOH
isomers) and 10-atom formic acid dimer.11 That paper, which also
extended the GPR method to use PIP inputs, examined the fidelity
of GPR and PIP fits for these four molecules with respect to size of
the training set of energies as well as the time for fitting and eval-
uation. One example is the PES for 5-atom OCHCO+. The origi-
nal PIP PES was constructed with just 8,613 CCSD(T)-F12/aVTZ
energies.16 GPR, PIP-GPR and PIP fits were done using between
520 and 2600 scattered energies. All methods fit the training data
with about equal precision; however, the GPR precision was sig-
nificantly better for the remaining test data. The PIP fits were
roughly 60 times faster to evaluate than the GPR ones. Both fits,
using 1560 training data, gave harmonic frequencies at the mini-
mum and proton transfer saddle point with maximum differences
from direct ab initio results of no more than 4 cm−1.

Finally, on the matter of data size and PES fitting, we note that
our PIP software was recently extended to fit gradients as well as
energies.17 With this approach a PIP PES for CH4 was obtained at
the DFT level of theory with just 100 configurations. In a more re-
cent application, a PIP PES for 12-atom N-methyl acetamide was
reported using a dataset of 244,459 energies and gradients.18 An
even larger application was to 15-atom tropolone19 with a data
size of 311,328.

To summarize this short review of these ML methods, all can
achieve high precision, depending on the application. In our
opinion it is not particularly meaningful to focus on an root-
mean-square (RMS) error difference of even tens of cm−1 be-
tween methods, except in cases where the electronic energies be-
ing fit are themselves within or less than level of accuracy. Per-
haps speed of evaluation of the PES and for many applications
the gradient of the energy are more relevant.

As for applications, PESs for reaction dynamics are perhaps the
most demanding. By definition, reactions involve large ampli-
tude motions and so local methods, e.g., harmonic or perturba-
tive extensions of harmonic theory, are totally inadequate. Sec-
ond, bond breaking is demanding on electronic structure meth-
ods. Third, many reactions of interest involve H-atom motion
and this can require a quantum or semi-classical treatment of

the dynamics. Thus, PESs for reactive systems are a major chal-
lenge as they must describe large, indeed very large amplitude
motion. The above ML methods have been employed over the
past 10 or so years to develop high-dimensional PESs for reac-
tive systems.8,9,12,13,20–23 Some time ago Fu et al. reported a
PIP PES for the 7-atom O(3P)+C2H4 reaction (which included
spin-orbit coupling to the singlet PES). This PES was used in qua-
siclassical trajectory calculations which yielded excellent agree-
ment with experiment for the branching ratio of numerous prod-
ucts.23 Recently, Li et al reported PIP-NN and HD-NN PESs for
several chemical reactions.12,13 The most recent example is the
7-atom H+CH3OH reaction. Although these are both neural net-
work methods, they are different in the way the potential is rep-
resented. In the HD-NN one the energy is represented as a sum
of atomic energies and there is a neural network for each atom
(identical atoms share the same set of NN parameters). So in this
example there are 7 NNs. For the PIP-NN6 approaches there is
one NN and the input consists of a limited number of PIPs.6 (Also,
see the related fundamental invariant-NN (FI-NN) approach.8,14)
The authors noted that the PIP-NN PES is faster to evaluate than
the HD-NN one. This is as expected since the number of param-
eters in the NN in each approach is about the same. However,
the strength of the atom-based HD-NN approach is that it scales
linearly with the number of atoms and so it is feasible to apply
to large systems, ideally of the same atom type. The strength of
the PIP and the PIP-NN approaches lies in the speed and high pre-
cision for molecular systems of around 10 atoms. The speed of
the PIP-NN approach decreases significantly with the number of
atoms because the number of PIP inputs grows non-linearly with
the number of atoms.24,25 Recently, Zhang and co-workers have
extended the techniques in the FI-NN approach to ten atoms,26

however, without yet reporting a 10-atom PES.
Among reactive systems, perhaps the simplest ones are isomer-

ization reactions and, among these, symmetric double well iso-
merizations are the most studied. Of these malonaldehyde is per-
haps the most studied both experimentally and theoretically. In
2008 we reported a PIP PES for the 9-atom malonaldehyde27 This
was a precise fit to highly-accurate “focal point" electronic ener-
gies. This PES was subsequently used in various full-dimensional
calculations of the tunneling splittings for H and D-transfer and
finally agreement (to within less than 10%) with experiment was
obtained for both. A much more recent isomerization example is
15-atom tropolone, for which we reported a PIP PES.19 For this
PES, owing to the very high computational cost of CCSD(T) cal-
culations, DFT ones were done for energies and gradients. Thus,
this PES, without further modification, will not yield quantitative
tunneling splittings.

Clearly, there is major motivation to extend all ML methods
to large molecules of interest in chemistry and specifically reac-
tion dynamics. We recently described a strategy to do this for the
PIP approach.18,28 The key points derive from the fact the fitting
basis is made of permutationally invariant polynomials of Morse
variables. For an n-atom molecule there are n(n− 1)/2 variables
and so this quadratic dependence on n is not favorable for large
molecules. A second issue is the non-linear growth in the number
of terms in the basis, for a fixed total polynomial order. For exam-
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ple, for 12-atom N-methyl acetamide there are 66 Morse variables
and with a highly reduced permutational symmetry 33111111,
which accounts for the symmetry of the three H atom of the two
distant methyl groups, the basis contains 8040 terms (and un-
known linear coefficients) at maximum polynomial order of 3,
but grows to 95,965 at polynomial order of 4. (Increasing the
permutational symmetry reduces the number of terms dramati-
cally;2 however, with a much increased cost to obtain them and
often also to evaluate each basis function.) The strategy men-
tioned above is briefly reviewed next.

2 Short Review of Fragmented PIP Theory
To begin, recall that in the PIP approach the potential is given by
the compact expression:

V =
np

∑
i=1

ci pi, (1)

where ci are coefficients, pi (the basis set functions) are PIPs, and
np is the total number of polynomials for a given maximum poly-
nomial order. The pi are generally functions of Morse variables,
which themselves are functions of the inter-atomic distances, rα,β

(by the usual exponential relationship exp(−rα,β /λ), where λ is
commonly chosen to be equal to 2 bohr). The Morse variables are
denoted by xl . The linear coefficients are obtained using standard
least squares fits to large data sets of electronic energies (and
possibly also gradients) at “scattered" geometries.

In the usual approach, a serious computational issue arises
when the basis set is too large to be practically useful, either be-
cause the number of coefficients is so large that the least squares
optimization becomes problematic or because calculating the PIPs
becomes expensive. The size of the basis depends in a compli-
cated and non-linear way with respect to the maximum polyno-
mial order, the number of Morse variables, and the order of the
symmetric group.25 This growth in the size of the PIP basis was
the origin of for the estimate of a 10-atom limit for the method.25

However, as noted above, the fragmented basis approach is an
effective way to deal with this apparent 10-atom limit. By frag-
menting a molecule into groups of smaller moieties the basis for
each moiety can be calculated rapidly and then combined with
those of other fragments to provide a compact and hopefully still
precise representation of the PES.28 Consider a simple example
of a 5-atom molecule with atoms labeled as 1–5 and a scheme
in which the molecule is fragmented into three fragments, say
{1,2,3}, {2,3,4}, {3,4,5}. In this 3-fragment scheme the potential
is given compactly by

V = ∑
i

ci pi(xxx1,mmm1)+∑
j

c′j p′j(xxx2,mmm2)+∑
k

c′′k p′′k (xxx3,mmm3), (2)

where {p}, {p′}, and {p′′} are PIP bases for the nth fragment, n
= 1,2,3, {c}, {c′}, {c′′} are the corresponding linear coefficients,
xxxn represent the set of corresponding Morse variables, and mmmn

indicate a set of monomials built from the Morse variables. Morse
variables between atoms 1 and 4, atoms 1 and 5, and atoms 2 and
5 are assumed to be zero and hence not in the fragmented bases.

In this example, and in general, there are some Morse vari-

ables in common among the fragments, and thus there are some
redundant basis functions in this expression in terms of common
Morse variables. These issues were pointed out previously;18,28

however, they were not serious numerically, because the linear
least squares method used is able to deal with a modest number
of identical basis functions. Nevertheless, there is motivation to
eliminate these redundant basis functions and thereby reduce the
size of the basis. We do note the redundant-term issue is similar
to one that two of us identified earlier for developing PIP repre-
sentations of interaction potentials that should rigorously vanish
in asymptotic regions where there is no inter-fragment interac-
tion. In that case the issue was basis functions involving Morse
variables of fragments that do not go to zero at large internu-
clear distances where there is no inter-fragment interaction. An
effective pruning procedure was then employed to eliminate such
basis functions and applied to several systems.29–31

It is worth recalling the key point that motivated the fragment
approach. The PIP basis can be generated by starting with “seed”
monomials24 given by eq. (3)

xn1
1 xn2

2 · · ·x
nl
l , l = n(n−1)/2, (3)

where the Morse variables are indexed by an integer. Clearly for
large molecules, many internuclear distances are large and thus
the corresponding Morse variables are approximately zero, and
so basis functions containing these variables are also zero. One
way to take advantage of this is to simply prune the full basis and
then remove those basis polynomials with very small Morse vari-
ables. However, this requires obtaining the full fitting basis first
before pruning, and this could already be prohibitive. So a frag-
mented approach was proposed in which the basis is a union of
PIPs for fragments of the molecule. In order to maintain permuta-
tional invariance for the final basis set, atoms that are assigned to
permute with one another must appear together whenever they
appear in any of the fragments.

As noted already this approach was applied successfully to
cis and tran-NMA (including the saddle point(s)) between them.
Very recently it was applied to 15-atom tropolone,19 where a full
PIP basis was also used.

Here we apply the fragmented PIP approach to obtain a PES
15-atom acetylacetone (AcAc). (We use the PES to obtain the H
and D- tunneling splitting.) It is worth going over the history of
AcAc PEs for the usual reasons and also since the molecule is an
excellent example of the rapid pace of progress mentioned above.
In 1997 Hinsen and Roux reported an empirical valence bond
(EVB) potential (using input from a well-known force field and
limited HF calculations).32,33 The barrier for the H-atom transfer
of roughly 9 kcal/mol is about a factor of three larger than the
current best value from CCSD(T) calculations of 3.2 kcal/mol.34

(This large overshoot of an HF-based barrier is certainly in-line
with many other calculations of barriers using HF theory.) This
was followed in 2001 with a systematic study of the barrier height
using DFT/B3LYP and MP2 theory and a variety of basis sets by
Mavri and Grdadolnik.22 To quote from that paper “For descrip-
tion of the intramolecular degrees of freedom... one would need
39-dimensional hypersurface, which is impossible to construct....”
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Considering accuracy based on MP2 calculations and speed the
authors went on to develop a 4d EVB potential based on B3LYP/6-
311+G(2d,2p) calculations with a classical barrier of around 2
kcal/mol. In 2015 Meuwly and co-workers developed and em-
ployed a full-dimensional semi-empirical molecular-mechanics-
proton transfer PES (with input from MP2 calculations) to cal-
culate a classical IR spectrum and to compare with a new experi-
mental spectrum. In 2020, Meuwly and co-workers using a novel
Neural Network approach in the PhysNet software35 developed a
full-dimensional PES for AcAc based on MP2/aVTZ energies and
gradients.1 This PES was used in molecular dynamics calculations
of the infrared spectrum. Thus, in 19 years a full dimensional PES
for 15-atom AcAc has gone from “impossible” to a reality.

In this paper we apply the fragmented PIP approach to ob-
tain a new PES for AcAc. Although a NN-based PES for AcAc
has recently been reported,1 as noted above, we decided to aug-
ment the data set for that fit with additional MP2/aVTZ energies
and gradients to obtain and investigate a new PES. The two ap-
proaches are very different and so it is worthwhile to report on
this new PES, providing additional insight on accuracy and com-
putational timing. We use the new fit in diffusion Monte Carlo cal-
culations of the ground vibrational state wavefunction and zero-
point energy and fixed-node DMC calculations of the first excited
state in the H-and D-atom transfer motion to obtain the tunnel-
ing splitting. Also, a simple 1d approach to obtain the tunneling
splitting is also used, mainly to determine the effect of increasing
the barrier height on the tunneling splitting.

Of course, AcAc is just one example of the rapid progress in the
field. Already in 2005 permutationally invariant PESs for CH +

5
and H5O +

2 based on fitting tens of thousands “gold standard”
CCSD(T)/aVTZ energies were reported.36,37 The six and seven
atom molecules were already “large” by the standards in 2005
and in both cases the PESs dissociated smoothly to fragments,
CH +

3 + H2 and H3O+ + H2O, respectively.

3 Computational Details

3.1 PIP bases

PIP software that incorporates gradients into fitting was intro-
duced recently and first applied in a demonstration to CH4

17 and
in the first application of the fragmentation approach to N-methyl
acetamide.28,38 This software was refined for the fragmented ap-
proach to eliminate redundant basis functions39 and very recently
applied to obtain a full-dimensional PES for tropolone.19

We investigated two bases for the fits to the present data set.
The first, which we assumed would be the benchmark, was a full
PIP basis of maximum polynomial order three. The atom number-
ing scheme employed is shown in the top panel of Fig. 1, which
also gives the minimum energy structure of AcAc. The symmetry
designation for this fit is {1,2,2,2,6,1,1}, meaning that the two
oxygens (atoms 2 and 3) are treated as equivalent, as are the two
carbons (atoms 4 and 5), the two end carbons (atoms 6 and 7),
and the six hydrogens (atoms 8–13) on the terminal carbons. The
remaining H atoms and the central carbon are treated as unique.

The second fit we examined was based on fragmentation of
AcAc into four fragments and again using a maximum polynomial

Fig. 1 (top) Numbering scheme used for the full-symmetry basis set.
(bottom) Numbering scheme used for the 4-(9,11,11,8) basis set.

order of three. The details of this approach have been described
previously.18,28,39 The permutational symmetries and atom num-
bers (using the scheme in the bottom panel of Fig. 1) are as
follows: symmetry {1, 1, 1, 1, 1, 1, 1, 1, 1} with atoms {1, 2, 3,
4, 5, 6, 10, 11, 12}; symmetry {3, 1, 1, 1, 1, 1, 1, 1, 1} with atoms
{13, 14, 15, 1, 2, 3, 4, 5, 10, 11, 12}; symmetry {3, 1, 1, 1, 1, 1,
1, 1, 1} with atoms {7, 8, 9, 1, 2, 3, 4, 5, 6, 10, 11}; and symme-
try {3, 3, 1, 1} with atoms {7, 8, 9, 13, 14, 15, 6, 12}. We will
refer to this fragmentation as 4-(9,11,11,8), where the numbers
in parentheses represent the number of atoms in each fragment.

Properties of these basis sets are shown in Table 1 along with
their performance. At this point we just note that while the frag-
mented basis has more terms it is faster to evaluate for both the
potential and gradient. This may seem counter intuitive; how-
ever, it must be recalled that the higher symmetry of the full basis
results in more complex polynomials, which in this case ends up
in significantly increased computational effort. We go back to this
table after we discuss the database of energies and gradients.

3.2 Potential Energy Surfaces

The database for the potential energy surface consists of ab ini-
tio energies and gradients at 5,454 different molecular configu-
rations, using MP2/VTZ level of theory. Of these configurations,
5000 were provided by the authors of ref. 1, while an additional
454 configurations were generated through grids of points near
the transition state to H transfer and near the global minimum,
as well as by running ab initio molecular dynamics trajectories at
an energy of 4000 cm−1. A histogram of the distribution of ener-
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gies is provided in Fig. 2. At these configurations, energies and
full gradients were obtained and used in the database. Subse-
quently, an additional 4 points were added as a result of locating
some holes using diffusion Monte Carlo studies (see below). For
the 4-(9,11,11,8) basis, in order to guarantee that the H-transfer
potential is symmetric, the database is expanded by including ge-
ometries after the permutation shown in Fig. 3.

0 10000 20000 30000 40000
0

50

100

150

200

Energy (cm-1)

N
u
m
b
e
r

Fig. 2 Histogram of energies for geometries used as the dataset for
acetyl-acetone. The bin size for the abscissa is 500 cm−1. The database
has 5,500 energies and (not shown) 45×5,500 gradient components.

Fig. 3 Permutation that must be allowed to describe H-transfer in Ac-Ac.

Fits using these PIP bases were inverse energy weighted and
also gradients were weighted by a factor of 1/3 relative to ener-
gies. The precision of these PESs are given in Table 1. As seen the
fragmented PES fit is more precise. In particular, the barrier to
H atom transfer, TS(H) in Table 2 is given more precisely in the
fragmented PES than in the full basis PES. This is important for
the predictions of splittings.

3.3 Diffusion Monte Carlo Calculations
Diffusion Monte Carlo (DMC) simulation is an approach to com-
pute quantum zero-point energy (ZPE) of a molecule, and if the
fixed-node approximation is applied, it can also be used to calcu-
late the energies of certain excited states.40,41 In this work, we
calculate the ground-state splitting of the H-transfer motion by

Table 1 Basis sets investigated for AcAc. Weighted RMS error values
(wRMSE) are in cm−1 and cm−1/bohr for potentials and gradient com-
ponents, respectively.Times are in s for an average over 10 tests using a
2.7 GHz Intel Core i7 processor. Each test is for evaluation of 5000 con-
figurations, and the time listed is for evaluating all 5000 configurations.

full symmetry 4-(9,11,11,8)

monomials 52616 3609
polynomials 6207 24030
N(fitted points) 5454 5454
wRMSE(pot) 49 22
wRMSE(grad) 29 16
Time (pot / grad) 0.95 / 80.91 0.43 / 26.61

calculating the energies of the ground state and the relevant ex-
cited state. This is done for H, a single D (the transferring atom)
and fully deuterated AcAc.

The simple unbiased algorithm,40–42 briefly described next,
was applied. An ensemble of random walkers is used to represent
the nuclear wavefunction of the molecule. At each step, a ran-
dom displacement in each degree of freedom is assigned to each
walker, and this walker may remain alive (and may give birth to
a new walker) or be killed by comparing its potential energy, Ei,
with a reference energy, Er. For the ground state, the probability
of birth or death is given as:

Pbirth = exp [−(Ei−Er)∆τ]−1 (Ei < Er) (4)

Pdeath = 1− exp [−(Ei−Er)∆τ] (Ei > Er), (5)

where ∆τ is the step size in imaginary time. For excited state, in
addition to the process described above, any walker that crosses
a node is instantly killed. In most cases the node is unknown in
Cartesian coordinates, but for certain modes such as H-transfer in
symmetric wells, a very reasonable approximation can be made
for the node as described in detail below.

After removing all dead walkers, the reference energy is up-
dated using the equation

Er(τ) = 〈V (τ)〉−α
N(τ)−N(0)

N(0)
, (6)

where τ is the imaginary time; 〈V (τ)〉 is the average potential over
all the walkers that are alive; N(τ) is the number of live walkers
at time τ; α is a parameter that can control the fluctuations in
the number of walkers and the reference energy. Finally, the av-
erage of the reference energy over the imaginary time gives an
estimate of ZPE (or the energy of the excited state in a fixed-node
calculation).

For AcAc, DMC calculations were performed in two coordi-
nate systems: the Cartesian and normal coordinates. Calculations
done in normal coordinates are not rigorous because the Hamil-
tonian is given as

Ĥ =−1
2

3N−6

∑
k=1

∂ 2

∂Q2
k
+V (Q1, · · · ,Q3N−6), (7)
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which neglects the vibrational angular momentum terms. The
hope is that this error cancels out for tunneling splitting, which
is the difference between two energies. The advantage of using
normal coordinates is that the node for the fixed-node calcula-
tion is much easier to define. The node is just Qim = 0, where
Qim is the coordinate of the imaginary-frequency mode of tran-
sition state of the H-transfer. That is, whenever the value of
Qim changes sign, the walker should be removed. On the other
hand, using Cartesian coordinates is “exact” for the ground state,
but more approximations are involved when defining the node
for the excited-state calculations. For H transfer, we assume that
the node is rOH2 = rOH4 (using the numbering scheme for the 4-
(9,11,11,8) basis). Initially, the H atom is closer to one O (say
O4), so if rOH4 becomes larger than rOH2 in a walker, that walker
crosses the node and should be instantly removed. Also a small
correction was made for the excited state by taking recrossing into
consideration.41

Ten DMC simulations were performed for each state and each
coordinate system, and for three deuterated isotopologues (all H,
all D, and one D). so the total number of simulations is 10×2×2×
3 = 120. In each simulation, 30000 walkers were equilibrated for
5000 steps, and then were propagated for 50000 steps to compute
the energy, with a step size of 5.0 au. In these simulations, ∼ 1011

potential energy evaluations are required; clearly these cannot be
done without an efficient PES.

4 Results and Discussion

4.1 Potential energy surface

Seven low-energy stationary points can be located on the PES:
the global minimum (GM), 3 transition states with respect to the
torsion of the two methyl rotors (denoted as TS(T)-I, TS(T)-II,
and TS(T)-III), the transition state of the H transfer (denoted as
TS(H)), and 2 higher-order saddle points with imaginary frequen-
cies in both H-transfer motion and the methyl torsion (denoted as
TS(HT)-I and TS(HT)-II). The geometries of GM and TS(H) are
shown in Fig. 4, and the coordinates and harmonic frequencies of
all the 7 stationary points can be found in the supplementary ma-
terial. The GM has Cs symmetry, while the H-transfer transition
state is a C2v structure.

The energies of the 7 stationary points from two PESs are
shown in Table 2, and compared with MP2/aVTZ values. It can be
seen that the 4-(9,11,11,8) PES has better agreement with MP2
than the PES using full symmetry basis, as expected, due to the
smaller fitting errors shown in Table 1. The 4-(9,11,11,8) PES
also shows better agreement with MP2 harmonic frequencies; the
mean absolute errors (MAE) in frequencies are listed in Table 3.

There are two methyl rotors in AcAc; by allowing the permu-
tations of the three H atoms in each rotor, the fragmented 4-
(9,11,11,8) can still ensure the 3-fold symmetry of the methyl
rotors, as is shown in Fig. 5.

From data reported in Table 1 it is possible to estimate the com-
putational cost of a single AcAc energy evaluation performed on
a 2.7 GHz Intel Core i7 processor. We found the 4-fragment sur-
face to be faster than the full symmetry one. The result for the
4-fragment surface is about 0.08 ms per energy, while one gradi-

Fig. 4 Geometries of GM (top) and H-transfer saddle point (bottom).

Table 2 Energies relative to the GM (in cm−1) of the 7 stationary points,
and comparison with MP2/aVTZ ones.

full symmetry 4-(9,11,11,8) MP2/aVTZ

GM 0 0 0
TS(T)-I 176 159 77
TS(T)-II 270 399 468
TS(T)-III 418 541 519

TS(H) 714 745 763
TS(HT)-I 703 820 970
TS(HT)-II 678 864 1171

Table 3 Mean Absolute Error (MAE) in harmonic frequencies compared
to those computed at MP2/aVTZ level of theory. All values are in cm−1.

full symmetry 4-(9,11,11,8)

GM 22.2 14.4
TS(T)-I 19.0 13.2
TS(T)-II 28.2 18.1
TS(T)-III 24.0 15.7

TS(H) 31.8 20.4
TS(HT)-I 31.0 21.5
TS(HT)-II 38.2 23.5

ent call is about 55 times more expensive at about 5 ms. This is
to be compared with values reported in Ref. 1 for an NN PES of
the smaller malonaldehyde molecule. In that paper one potential
and one gradient evaluation on a faster (3.4 GHz) processor were
timed at 4 and 9 ms respectively. This fact hints at substantially
increased efficiency of our fragmented PIP PES. However, we can-
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Fig. 5 Torsional potential of the two methyl rotors, using the 4-
(9,11,11,8) basis. Rotor 1 consists of atom {6,7,8,9}, and rotor 2 consists
of atom {12,13,14,15}, using the numbering scheme in the bottom panel
of Fig. 1.

not rule out that part of the PIP speedup might be due to the way
the surface was coded (Fortran 90 for the PIP PES; Python for the
NN malonaldehyde PES) rather than the way it was built. Overall,
then, our PES is full-dimensional and does describe satisfactorily
the region of the stationary points shown.

4.2 Splitting dynamics
All DMC and 1d calculations are done with the fragmented PES,
which is both faster and more precise than the full basis PES. Be-
fore discussing the tunneling splitting dynamics, we present the
ZPEs of three isotopologues of AcAc and the ground-state wave-
function, which are also important properties and closely related
to tunneling. The ZPEs of un-deuterated, singly deuterated, and
fully deuterated AcAc from DMC calculations in Cartesian coordi-
nates are 26637±16 cm−1, 26048±7 cm−1, and 21223±12 cm−1,
respectively. The numbers from DMC in normal coordinates are
26587± 6 cm−1, 26005± 8 cm−1, and 21177± 16 cm−1; the dif-
ference between Cartesian and normal coordinates, roughly 45
cm−1, is due to the neglect of vibrational angular momentum
terms when using normal coordinates.

Fig. 6 shows the isosurface depiction of the ground vibrational
state wavefunction. As seen the “structure" is close to the H-
transfer saddle point with an effective symmetry of C2v.

The tunneling splittings of H-atom and two deuterated isotopo-
logues obtained from DMC calculations and a 1d approach (de-
scribed below) are summarized in Table 4. As seen, the DMC
results using Cartesian coordinates and normal coordinates are in
good agreement and this indicates a small systematic uncertainty
in using these different approaches. It should be noted that statis-
tical uncertainties for each set of DMC calculations are larger than
these differences. Also, we stress that these DMC splittings are
not expected to be absolutely accurate owing to the MP2/aVTZ
underestimation of the H-atom transfer barrier height by roughly
1 kcal/mol. At the suggestion of a Reviewer we investigated us-
ing a CBS extrapolation based on MP2/aVDZ and MP2/aVTZ en-

Fig. 6 Isosurface depiction of the ground vibrational state wavefunction

ergies.43 We found a 0.1 kcal/mol lowering of the H-transfer bar-
rier height doing this. This is a small change and actually in the
direction away from the higher CCSD(T) barrier, so we did not
pursue this further.

Table 4 Ground-state tunneling splittings of three deuterated isotopo-
logues of AcAc obtained by the specified approaches. The numbers in
parenthesis indicate the barrier height.

All H One D All D

DMC (Cartesian) 160 43 37
DMC (normal) 156 40 36
1d-DVR (586 cm−1) 141 57 57
1d-DVR (763 cm−1) 113 41 40
1d-DVR (1119 cm−1) 74 22 21

In view of this, we investigated the dependency of the splitting
as a function of the barrier height, using a simple 1d approach.
In brief, a 1d potential, denoted V (Qim), which is the minimum
energy path as a function of the imaginary-frequency mode (Qim)
of the H-transfer saddle point, was obtained by optimizing all the
other coordinates at fixed Qim values except the methyl rotors,
which cannot be described using rectilinear normal coordinates.
These are held fixed at the saddle point values all the way along
the path. Then 1d-DVR calculations were done using the 1d po-
tential to compute the energies of the ground and first excited
states, and thus the splitting.

Owing to fixing the methyl rotors the 1d Qim potential has a
barrier to H or D transfer of 586 cm−1 relative to the minima at
Qmin = ±27.9 a.u. for H transfer and Qmin = ±36.8 a.u. for D
transfer. Thus, The 1d Qim barrier is about 160 cm−1 less than
the barriers of 745 cm−1 for the fitted surface or 763 cm−1 for
the MP2 result. The 1d-DVR splittings for H and D transfer were
found to be 141 cm−1 and 57 cm−1, respectively for this barrier
height of 586 cm−1.

In order to investigate the dependence of the splitting on
the barrier height a simple potential morphing approach was
used.44–46 Specifically, the morphed 1d potential is Ṽ (Qim) =

f (Qim)V (Qim), where V (Qim) is the potential from the original
PES, and f (Qim) is the scaling factor, which is 1.0 at the min-
ima (Qim = Qmin) and equal to a value greater than 1.0 that can
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bring the barrier to the desired height at Qim = 0.0. The scaling
factor we employed is

f (Qim) = (Rbh−1) [1− s(Qim)]+1, (8)

where Rbh is the ratio between the desired barrier height plus 159
cm−1 and the actual barrier height from the PES (which is 745
cm−1), and s is a switching function that is 0 at Qim = 0 and is 1
at Qim = Qmin. Note that adding 159 cm−1 to the desired barrier
height is due to the fact that the minimum in the 1d Qim potential
has an energy of 159 cm−1 instead of 0. The switching function
has the form

s = 10
(

Qim

Qmin

)3
−15

(
Qim

Qmin

)4
+6

(
Qim

Qmin

)5
. (9)

The results from various morphed potentials are summarized in
Table 4. As seen and as expected, the splittings decrease signifi-
cantly in going from the barrier height of 763 cm−1 to 1119 cm−1.

The simple morphing of the 1d Qim potentials would not be
expected to work for the PES in full dimensionality. (Indeed
the attempt to do so was not satisfactory.) A multi-dimensional
approach is probably needed and we present some preliminary
thoughts on this in the next section.

To summarize this section, we finally use the 1d-DVR splitting
results in Table 4 to estimate the DMC splittings corresponding to
the barrier of 1119 cm−1. This is done just using the ratio of the
1d splitting for 763 and 1119 cm−1. From these we estimate 104
cm−1 for H-atom transfer and 23 and 19 cm−1 for the single-D
and all-D isotopologues, respectively.

5 Morphing with Gaussian Process Regression
Morphing is a term that refers to a procedure to change an ex-
isting PES with various goals in mind. In the simplest version, a
coordinate is scaled by a dimensionless factor to bring “exact" nu-
merical vibrational transition energies into agreement with exper-
iment.44 A more elaborate procedure was applied to an approx-
imate semi-empirical PES describing HCN/HNC isomerization to
change the isomerization saddle point location as well as to in-
crease the energy substantially.45 Meuwly and Hutson used the
general approach of scaling a coordinate and the PES energy to
obtain a highly accurate intermolecular PES for Ne−HF.46

In these approaches the scaling was done using analytical ex-
pressions. This could be done without difficulty for these tri-
atomics since there are only three internal degrees of freedom.
For larger molecules with tens of degrees of freedom a more gen-
eral, non-parametric approach is probably called for. This is es-
sentially the suggestion made in this short section, motivated by
the present PES for AcAc.

As noted both here and previously1 the CCSD(T) barrier height
for H-atom transfer is roughly 50% higher than the MP2 one.
Thus, even a perfect fit to MP2 energies would produce an inaccu-
rate barrier. Morphing such a PES to produce the correct CCSD(T)
barrier obviously would be the goal. However, in principle a scal-
ing factor to do this would be function of all the variables of the
PES. In addition, moving the configuration of the saddle point
to the “correct" one would require scaling of all the variables,

which in the present case are all the Morse variables. We note
that an approach based on energy switching to build single and
multi-sheeted PESs to account for improved barrier descriptions
has been developed by Varandas and co-workers.47

To improve the MP2-based AcAc PES Meuwly and co-workers
proposed a transfer learning approach based on approximate lo-
cal CCSD(T) energies (no gradients) at 49 000 geometries for
the series malonadehyde, acetoacetaldehyde, and acetylacetone.
This appeared to be successful, however 49 000 full CCSD(T) en-
ergies just for AcAc would be prohibitive. Our proposal is to make
use of on the order of a thousand CCSD(T) energies strategically
done, at least at and in the vicinity of stationary points. Then an
efficient ML approach could be applied to develop high dimen-
sional morphing functions. Gaussian process regression appears
to be an excellent choice as it is known to perform well on relative
small data sets.11,48 We plan to do this in the near future.

6 Summary and Conclusions
We reported permutationally invariant polynomial (PIP) fits to
energies and gradient components for 15-atom acetylacetone.
These include standard and fragmented PIP bases. Approximately
500 energies and associated gradient components are obtained
from direct-dynamics calculations using MP2/avTZ supplemented
by grid calculations spanning an energy range up to roughly
35000 cm−1, and are combined with an existing database1 to
form the database for this study. A fragmentation scheme was in-
vestigated with respect to efficiency and fit precision. Properties
such as stationary points, harmonic frequencies and the barrier
to H-atom transfer are reported and compared to direct calcu-
lations. Diffusion Monte Carlo (DMC) calculations are used to
calculate the ground state wavefunction and zero-point energy of
acetylacetone. These together with fixed-node DMC calculations
for the first excited-state of H-transfer provide the predicted tun-
neling splitting due to the barrier separating two equivalent wells.
Simpler 1d calculations of this splitting are also reported for vary-
ing barrier heights including the CCSD(T) barrier height of 3.2
kcal/mol. Based on those results the DMC splitting of roughly
160 cm−1 with a statistical uncertainty of about 30 cm−1, calcu-
lated using the MP2-based PES, is estimated to diminish to about
100 cm−1 for a barrier of 3.2 kcal/mol.

In the abstract and along the text we have adopted the expres-
sions “full basis" or “full symmetry" to refer to the non-fragmented
fit. This is to mean that a unique fitting basis extended to the full
molecule has been employed with the theoretical possibility for
all atoms to permute with same-kind ones. In practice we gener-
ated a basis set characterized by partial permutational symmetry
to be able to deal with the large dimensionality of the molecule
(15 atoms), as detailed in Section 3.1. This is expected since fully
permutationally invariant bases have generally been limited to
10-atom systems.

We conclude spending a few words about the possibility to em-
ploy fragmentation to reactive or dissociative systems, as already
done in one of our previous papers.19 It should be possible to
reduce the basis set of a dissociating molecule by choosing frag-
ments that either a) remain in one of the products or b) are the
simplest fragments that represent the dissociation. In the end, of
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course, the choice of basis polynomials and the ab initio data set
are closely linked. If the data set is chosen, it is easy to exam-
ine it to see which Morse variables are most and least important.
But if the data set is subsequently extended, say to examine a
particular conformer or product, the choice of the most or least
important Morse variables must be re-evaluated. Preliminary and
encouraging work in this direction is being undertaken.

Finally, the fragmented PES is available upon request to the
authors.
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