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us on phosphinophosphination of apolar
bonds by a structurally constrained P–P bonded
system

Tyler J. Hannah* and Saurabh S. Chitnis *

In this article, we highlight the recent report of Greb et al. on the use of a structurally constrained P–P

bonded system for phosphinophosphination of alkenes, alkynes, and carbonyls with high regio- and

stereoselectivity (https://doi.org/10.1039/D4SC06581F).
Functionalization of organic substrates
by main-group systems is a rapidly
advancing eld with the potential to
complement or exceed established tran-
sition metal chemistry for valuable
transformations.1 An emergent strategy
in this pursuit is the use of multi-dentate
ligands with p-block elements. Detailed
studies involving pnictogen complexes
have shown that such ligands can distort
molecules to expose vacant orbitals for
coordination and template the ensuing
activation steps by enforcing the prox-
imity of reactive centres.2–7

Cation 1, reported by Greb et al.,8 is in
some ways similar to known
intramolecularly-stablized phosphe-
niums, whose high electrophilicity and
geometrically-constrained nature allow
activation of various E–H (E = N, C, H, O)
bonds via a stepwise mechanism.9–14 But
due to their very polar P–X (X = O, N, C)
bonds, these stabilized phospheniums
are not well-suited to activate weakly-
polar or non-polar p-systems. In
contrast, 1 features a homoatomic P–P
bond that readily adds to non-activated
alkynes, alkenes, and carbonyls. This
diphosphination reaction was shown to
proceed through a concerted mecha-
nism, which enabled high regio- and
diastereoselectivity (Scheme 1). Further-
more, this system demonstrates the rst
rsity, 6243
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diphosphination of an unactivated C]C
double bond. Interestingly, 1 exhibits low
reactivity towards very polar alkenes,
setting the stage for selective trans-
formations when multiple reactive
groups are present. The products of
phosphinophosphination, 2 and 3, are 7-
membered phosphaheterocycles that are
in most cases obtained with a high pref-
erence for one set of racemic diastereo-
mers. These compounds are of interest
for their photophysical properties, which
were demonstrated by absorption in the
visible region for a derivative of 2. Addi-
tionally, a derivative of 3 was able to
coordinate to a rhodium complex,
demonstrating an approach to access
unusual chiral phosphine ligands.

The unprecedented reactivity and
selectivity of 1 can be understood via
a closer look at the P–P bond in this
cation relative to other phosphino–phos-
phoniums. Scheme 2 shows the calcu-
lated partial charges on phosphorus in 1
and other P–P bonded systems that have
been utilized for diphosphination.
Compound A features a very polarized
P–P bond despite being neutral. This is
due to strong resonance stabilization of
the phosphenium ion resulting from P–P
heterolysis and the attachment to two
electronegative nitrogen atoms at phos-
phorus. The very polar bond in this
species is able to react with polar
substrates including nitriles and alkenes
containing one electron withdrawing
group.15 Compound B, with a slightly less
ciety of Chemistry
polar P–P bond, is able to react with
activated terminal alkynes through
a frustrated Lewis pair mechanism, but
only under forcing conditions.16 The
intramolecular phosphino–phospho-
nium C features a less polar P–P bond
than B, but due to the strained three-
membered ring, it can nevertheless
diphosphinate some polar substrates
such as nitriles, while no addition across
less polar unsaturated groups was re-
ported.17,18 Although phosphino–phos-
phoniums, as in B and C, have been
shown to have similar barriers for both
homolytic and heterolytic bond cleavage,
their reactivity is dominated by polar,
stepwise addition due to the considerable
bond polarization.19,20

Compared to A–C, compound 1
features a minimally polarized P–P bond:
the high charge at its donor phosphorus
is comparable to the values for B and C,
and the high charge at its acceptor
phosphorus arises from attachment to s-
withdrawing, p-donating groups (as in
the case of A). The p-donor groups on the
acceptor phosphorus also result in a very
long P–P bond (even longer than that of
A). This unique combination of a long
and low-polarity P–P bond is well-suited
for weak or non-polar p-bond activation
via a concerted pathway that is not
available to polar (A) or strongly-bonded
(B, C) analogues. As a bonus, the lack of
epimerizable intermediates in
a concerted mechanism results in the
stereoselectivity observed in
Chem. Sci., 2025, 16, 1487–1489 | 1487
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Scheme 1 Diphosphination of alkenes and carbonyls by compound 1. Asterisks denote newly formed chiral centres. Counterions have been
omitted for simplicity.

Scheme 2 P–P bonded systems utilized for diphosphination and a comparison of their P–P bond polarities and lengths with those of 1.21,22

Calculated partial charges are denoted in italics. These values have been taken from the relevant literature.18,8,23 Counterions have been omitted
for simplicity. For C, only the bond length involving the phosphino–phosphonium unit is given.
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transformations starting from 1. The
thermodynamic driving force is provided
by replacement of a weak P–P bond and
a strong C]C or C]O bond with two
strong P–C (or P–O) bonds.

The multidenticity of the ligand is also
a key enabling feature of this system.
Indeed, the P–P bond in 1 is very unusual,
since phosphenium cations with strongly
p-donating N-substituents do not gener-
ally coordinate to triarylphosphines. They
are instead readily isolated as stable two-
coordinate species.24,25 In 1, the pincer
ligand reinforces the bonding interaction
Fig. 1 Calculated mechanism for the concerted
from ref. 8.

1488 | Chem. Sci., 2025, 16, 1487–1489
between the two phosphorus centres to
generate a functional group that may not
persist if the interaction were intermo-
lecular. In this manner, the chemistry of
1 is also reminiscent of intramolecular
frustrated Lewis pairs.26 Besides tem-
plating the P–P interaction, the ligand
constraint is also expected to lower the
energy of the disphenoidal transition
state (TSconc) of the concerted addition
pathway, as planarization of three out of
four substituents is facilitated by their
tethering (Fig. 1).27 Finally, the use of
a weakly-coordinating [Al(OC(CF3)3)4]
reaction of phenylacetylene to 1. Reproduced

© 2025 The Author(s
counterion ensures that poor donors
such as non-polar p-systems can out-
compete the anion for coordination to
the cation, enabling the subsequent
diphosphination.

Combining unusual electronics, ligand
constraints, and weakly-coordinating
anions within a single molecular system
is a powerful and creative strategy for
challenging bond activation at main-group
centres. A slew of recent
contributions,11,14,28–30 including the subject
of this Focus article, illustrate how bridging
the established elds of pincer coordina-
tion chemistry and Lewis acid chemistry
represents a rich vein for both funda-
mental and applied discoveries. Although
the reactivity of 1 reported so far is stoi-
chiometric, the fundamental principles it
illustrated may lead to new catalytic strat-
egies for transforming weakly-polar bonds.
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