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The properties of graphene supported on a metal surface are highly dependent on its size. However, for

graphene with dimensions of several nanometers or larger, high-precision studies remain limited. This

study investigates the interaction of large-scale graphene with the Cu(111) surface, focusing on the

average adsorption and average formation energies of graphene configurations with varying carbon

atom numbers. The force field parameters for the graphene–Cu(111) system were derived using the

high-dimensional neural network potential, and its applicability and accuracy were validated. The study

evaluates the average adsorption and average formation energies for graphene nanosheets, as well as

zigzag and armchair graphene nanoribbon configurations and establishes relationships between these

energies and the number of carbon atoms. The findings provide valuable insights into the structural

evolution, stability, and adsorption behavior of graphene on Cu(111) from nanoscale to mesoscale.

1. Introduction

Carbon nanostructures, such as graphene and carbon nano-
tubes, have been widely utilized as reinforcement phases in
metal matrix composites due to their excellent physical and
chemical properties. The incorporation of graphene or
carbon nanotubes into metal matrices can significantly
enhance the mechanical strength,1 thermal conductivity,2 elec-
trical conductivity,3 and tribological performance of the
materials.4 Among these composites, copper-based composites
exhibit excellent electrical and thermal conductivity, good
processability, and superior corrosion resistance, making them
highly suitable for applications in electronic packaging and
power transmission devices.5

Currently, the main methods for fabricating graphene-reinforced
copper matrix composites include electrostatic self-assembly,6

molecular-level mixing,7 chemical vapor deposition,8–11 electro-
chemical deposition,12 powder metallurgy,13 among others.
Among these, powder metallurgy has gained the most widespread

application due to its simplicity, high production efficiency, and
cost-effectiveness.13 As a key technique within powder metallurgy,
ball milling offers several advantages in the preparation of
graphene-reinforced copper matrix composites, including
uniform graphene dispersion in the copper matrix, ease of
processing, suitability for large-scale production, and strong
controllability.14 Therefore, ball milling holds great potential in
this field. However, in practical applications, critical aspects such
as the structural evolution of graphene, the stability of different
graphene configurations, and its adsorption behavior on copper
surfaces remain insufficiently studied. Additionally, during the
ball milling process, factors such as graphene size variation,
structural damage, and agglomeration can significantly impact
the quality and performance of the composite material. Hence, an
in-depth investigation into the underlying mechanisms of these
factors is essential for optimizing the fabrication process.

Molecular simulations have been demonstrated as an effec-
tive research tool for comprehensively understanding these
processes, providing insights into the stability of different
graphene configurations on copper surfaces and analyzing
their structural evolution, formation energy, and binding
energy.15 Computational simulations can not only provide
valuable insights into the adsorption behavior and energy
variations of graphene with different sizes and configurations
on copper surfaces but also serve as crucial theoretical gui-
dance for fabricating graphene-reinforced copper matrix com-
posites via ball milling. By exploring the size, morphology, and
interactions of graphene with the copper matrix, we can opti-
mize the fabrication process, laying a solid foundation for the
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controllable synthesis and efficient application of graphene-
reinforced copper matrix composites.

Density functional theory (DFT) is widely regarded for its
exceptional computational accuracy, particularly in comparison
to classical molecular dynamics.

The calculation of formation energy and adsorption energy
of materials on metal surfaces using DFT is a crucial approach
for investigating surface chemistry and material properties.16

However, the computational demands of DFT are significantly
higher, often surpassing those of molecular dynamics by sev-
eral orders of magnitude, which presents considerable chal-
lenges in terms of computational cost. In traditional molecular
dynamics simulations, force field parameters are typically
derived from empirical formulas or quantum chemistry calcu-
lations. However, achieving an optimal balance between com-
putational efficiency and accuracy in complex systems remains
a significant challenge. To address this issue, recent advances
in artificial intelligence have spurred the development of
machine learning-based interatomic potential methods, parti-
cularly for complex material systems.

Notably, the high-dimensional neural network potential
(HDNNP) leverages their ability to process nonlinear and
high-dimensional data to train machine learning models using
DFT results.17 These models accurately describe interatomic
interactions in molecular dynamics simulations and precisely
fit potential energy surfaces associated with intricate molecular
interactions. By training machine learning models on high-
precision quantum chemistry or DFT data, HDNNP-based force
fields achieve accuracy comparable to that of quantum chem-
istry methods, while alleviating the computational burden and
enabling large-scale molecular dynamics simulations. These
advanced force fields have demonstrated exceptional performance
in capturing chemical reaction dynamics,18 heterogeneous
interactions,19 and the behavior of complex material systems,20

making them indispensable tools for addressing the computa-
tional challenges inherent in traditional methods. Consequently,
these approaches have become powerful and efficient means of
advancing research in complex materials. Xu et al.21 trained a Cu–
C–H neural network potential using a custom deep potential
learning platform and applied it to identify the lowest-energy
structures of carbon clusters on the Cu(111) surface, spanning
cluster sizes from C2 to C24, while also calculating the corres-
ponding formation energies for each structure. Previous studies
by Xu et al.21 primarily focused on the configurations and
formation energies of small carbon clusters on the Cu(111) sur-
face. However, in large-scale experimental processes, such as the
mixing of graphene and copper in a planetary ball mill, it becomes
crucial to examine the stable configurations and adsorption
energies of graphene structures, particularly those with a large
number of carbon atoms (hundreds or even thousands) on the
Cu(111) surface. Such analyses are essential for optimizing mixing
processes and enhancing the quality of the complex material.
Accordingly, this study aims to investigate the stable configura-
tions, structural evolution, formation energies, and adsorption
energies of graphene nanosheets and nanoribbons with higher
carbon atom numbers on the Cu(111) surface.

The main research objectives of this study are as follows:
first, the force field parameters for the graphene–Cu(111)
system were fitted using the HDNNP, and its applicability
and accuracy were validated. Second, the study of distance
variations between different graphene configurations and the
Cu(111) surface is conducted to provide quantitative and qua-
litative insights into the intermolecular interactions. Addition-
ally, the average formation and the average adsorption energies
of graphene nanosheets, zigzag and armchair graphene nanor-
ibbon configurations with different carbon atom numbers on
the Cu(111) surface were calculated, and relationships between
these energies and the number of carbon atoms were derived.
This study provides insights into the interaction of graphene
with the Cu(111) surface, facilitating the design of graphene-
based materials.

2. Computational details
2.1 Density functional calculations

All DFT calculations were performed using the CP2K software,22

using Gaussian and plane wave (GPW) formalism.23 The Per-
dew–Burke–Ernzerhof (PBE) functional with the generalized
gradient approximation (GGA) method was used for evaluating
the exchange correlation functional,24 combined with the
molecular optimized DZVP local basis sets and Goedecker–
Teter–Hutter (GTH) pseudopotentials.25,26 Moreover, the DFT-
D3 (BJ) dispersion correction was included to account for long-
range van der Waals interactions. The plane wave density cutoff
and energy convergence criterion were set at 400 Ry and 1 �
10�6 Ha, respectively.

The average formation energies Ef of the graphene/Cu(111)
system were calculated by

Ef = (E(Cn/Cu(111)) � E(Cu(111)) � n � E(C))/n
(1)

where E(Cn/Cu(111)), E(Cu(111)), and E(C) is the energy of
graphene/Cu(111), Cu(111) surface, and single C atom derived
from graphite, respectively. n is the atom number of C.

The average adsorption energies Eads of graphene/Cu(111)
were calculated by

Eads = (E(Cn/Cu(111)) � E(Cu(111)) � E(Cn))/n (2)

where E(Cn/Cu(111)), E(Cu(111)), and E(Cn) is the energy of
graphene/Cu(111), Cu(111) surface, and graphene, respectively.
n is the atom number of C. Cn denotes a graphene nanosheet or
nanoribbon consisting of n C atoms.

2.2 Training of the HDNNP

The machine learning potential was trained using the n2p2
v2.2.0 software.27 The HDNNP consists of 2 hidden layers. Each
hidden layer contains 10 nodes, allowing the model to capture
complex, non-linear relationships in the input data. The archi-
tecture is designed to efficiently approximate the potential
energy surface by learning the intricate interactions between
atoms in the system. A cutoff radius of 14 bohr was applied to
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limit the range of atomic interactions considered by the sym-
metry functions, ensuring computational efficiency while
retaining accuracy. A total of 280 symmetry functions were
employed to encode the local atomic environments. The details
about the type and parameters of symmetry functions are listed
in the ESI.† The DFT training data were generated using the
minimum hopping method.28 This method efficiently explores
different structures by initializing velocities along low-
curvature directions, allowing rapid transitions over small
energy barriers to neighboring basins.

The committee method reported by Schran et al.29 was
applied to enhance the accuracy of HDNNP. The committee
disagreement helps track and control the model’s accuracy
compared to its ab initio method and training set. The compu-
tational cost of committee-HDNNP calculations is nearly the
same as that of a single HDNNP, except for the initial

requirement of training HDNNP multiple times. Eight HDNNPs
were trained using the same training data, with the random
number generator seed varied for each. Different graphene
models are considered in the HDNNP. The dataset comprised
12 415 structures, including graphene/copper models with and
without defects, and structure models of graphene/copper
systems of the graphene nanosheet and nanoribbon (Fig. 1).

During the HDNNP fitting process, 90% of the data was
allocated for training, while the remaining 10% was reserved
for testing. In this study, a systematic evaluation of the HDNNP
model was conducted by comparing its predicted energies and
forces with reference DFT calculations to assess its accuracy
and reliability. As shown in Fig. 2a, the energies of 12 415 data
points obtained from HDNNP and DFT exhibit strong agree-
ment. A similar trend is observed in the force calculations, as
illustrated in Fig. 2b, further confirming the consistency

Fig. 1 Structural models of graphene/copper systems utilized in the HDNNP framework. (a) Graphene nanosheet, (b) defective graphene, (c) periodic
graphene, and (d) graphene nanoribbon.

Fig. 2 (a) Comparison of per-atom energy obtained from HDNNP and DFT. (b) Comparison of forces obtained from HDNNP and DFT.
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between HDNNP and DFT results. The final HDNNP model
achieved a root mean square error (RMSE) of 4.02 meV per
atom for predicted energies and 155 meV Å�1 for forces. By
quantifying the consistency between HDNNP and DFT results
and evaluating the RMSE, the findings demonstrate that the
HDNNP model possesses the capability to accurately capture
the potential energy surface and atomic interactions within the
system.

There are many local minimum structures of graphene
ribbons/flakes adsorption on the Cu surface. To find the most
stable adsorption structures, we considered several different
adsorption models for geometric optimization at first. Then
molecular dynamics simulations were performed from 1000 K
to 0 K over 10 ps with 1 fs time step in the canonical (NVT)
ensemble for the lowest adsorption structures to further con-
firm the most stable adsorption structures using HDNNP. The
structures and adsorption properties at different temperatures
were analysed. For each structure, MD simulation was per-
formed for 30 ps with 1 fs time step in the NVT ensemble at
each temperature using HNNP. For the property analysis, we
utilized structural configurations sampled from the final 20 ps
of the simulations.

3. Results and discussion
3.1 Comparison of results between HDNNP and DFT

3.1.1 Periodic graphene. The adsorption of graphene on
the Cu(111) surface is highly dependent on the specific posi-
tions of the carbon atoms relative to the copper lattice. The
carbon atoms in graphene align directly above copper atoms in
the second and third layers, occupying HCP and FCC sites. The
carbon atoms in graphene are aligned directly above the copper
atoms in the first and third layers, corresponding to the TOP
and FCC sites. The carbon atoms in graphene are situated
directly above the copper atoms in the first and second layers,
corresponding to the TOP and HCP sites. Fig. 3 illustrates the
optimized periodic graphene structures on the Cu(111) surface
with different adsorption sites. Fig. 3c depicts the most stable
configuration, while the relative energies of the other two
configurations, compared to the most stable structure, are also
provided.

As shown in Fig. 3c, the most stable configuration occurs
when the carbon atoms occupy the TOP and HCP sites,

highlighting the significance of these positions in stabilizing
the graphene structure. The relative energy obtained by DFT is
0.004 eV for the configuration in Fig. 3b, where the carbon
atoms occupy the TOP and FCC sites. It indicates that the
configuration in Fig. 3b is still stable, and this is consistent
with the previous publication.30 The configuration in Fig. 3a,
where the carbon atoms occupy the HCP and FCC, have higher
energies, and the relative energy obtained by DFT is 0.452 eV,
suggesting less favorable adsorption configurations.

As shown in Fig. 3, the relative energy trends derived from
the two methods exhibited a high degree of consistency.
Additionally, the average formation energies and average
adsorption energies calculated using the two methods were
also evaluated for the periodic graphene/Cu(111) in this study.
The average formation energy of periodic graphene/Cu(111)
is 0.034 eV per atom (HDNNP) and 0.031 eV per atom
(DFT), respectively. The average adsorption energy of periodic
graphene/Cu(111) is �0.086 eV per atom (HDNNP) and
�0.085 eV per atom (DFT), respectively. The similarity between
the computational results obtained from the HDNNP method
and those from the DFT method demonstrates the high accu-
racy of the HDNNP approach, confirming the reliability of its
outcomes.

The cell lengths of the Cu unit cell are 3.599 Å (PBE + D3BJ)
and 3.601 Å (HDNNP), and they are 2.469 Å (PBE + D3BJ) and
2.466 Å (HDNNP) for the graphene unit cell. The upper two
layer by layer average distances in the z direction of the Cu(111)
surface from top to bottom are 2.077 Å and 2.078 Å at the PBE +
D3BJ computational level, and they are 2.085 Å and 2.074 Å
using HDNNP. The average distances in the z direction from
graphene to the Cu(111) surface for graphene occupying the
TOP and HCP sites, graphene occupying the TOP and FCC sites,
and graphene occupying the HCP and FCC sites are 3.110 Å,
3.150 Å and 3.270 Å at PBE + D3BJ computational level, and they
are 3.108 Å, 3.110 Å and 3.179 Å using HDNNP. These results
further demonstrate that the HDNNP reproduces the geometric
structures very well. For the periodic graphene/Cu(111) model,
we used the parameters of the Cu cell, which results in lattice
mismatch 3.16% for graphene. We calculated the distortion
degree of graphene ribbon on the Cu surface compared to the
isolated graphene ribbon, which is 0.89% (zigzag graphene
nanoribbon) and 3.14% (armchair graphene nanoribbon),
respectively, which does not increase with increasing size.

Fig. 3 Optimized periodic graphene structures on the Cu(111) surface with different adsorption sites: (a) the carbon atoms in graphene occupying the
HCP and FCC sites, (b) the carbon atoms in periodic graphene occupying the TOP and FCC sites, (c) the carbon atoms in graphene occupying the TOP
and HCP sites. (d) Side view of the Cu(111) structure. Relative energies of the lowest-energy structures calculated using HDNNP and DFT, with DFT results
shown after the slash. All energies are given in units of eV.
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3.1.2 Graphene nanosheet C24. C24 is a relatively small
fragment of a graphene nanosheet, containing sufficient atoms
to capture the essential characteristics of a hexagonal graphene
nanosheet, while avoiding the significant computational cost
associated with a full graphene sheet. The adsorption behavior
and structural stability of C24 on the Cu(111) surface at different
adsorption sites were investigated. The preferred adsorption
configurations and insights into the stability of C24 on the
metallic surface were obtained by examining the interactions
between the carbon atoms and specific copper lattice positions.
Furthermore, the energies of the optimized structures of the
C24 graphene nanosheet on the Cu(111) surface were calculated
using both HDNNP and DFT methods to evaluate the accuracy
of the HDNNP in this study.

Fig. 4 presents the optimized structures and corresponding
relative energies of various configurations of the hexagonal
graphene nanosheet composed of C24. Fig. 4d shows the most
stable configuration of C24 on the Cu(111) surface, where the

central six carbon atoms are located at the HCP and FCC sites.
The results suggest that the HCP and FCC sites play a critical
role in stabilizing the C24 structure, particularly in the most
stable configuration where the central six carbon atoms occupy
these sites. This indicates that the registry between carbon
atoms and the copper surface layers significantly affects the
overall energy and stability of the system.

In comparison to the structure shown in Fig. 4d, which
corresponds to the most stable configuration, the structure
seen in Fig. 4c exhibits slightly higher energy. The relative
energy obtained by DFT is 0.472 eV. As depicted, during the
evolution toward the most stable configuration, some carbon
atoms shift from bridge sites (Fig. 4c) to top sites (Fig. 4d). The
relative energy (shown in Fig. 4) trends obtained by the two
methods were consistent. The formation energy of C24/Cu(111)
is 0.671 eV per atom (HDNNP) and 0.670 eV per atom (DFT),
respectively. The average adsorption energy of C24/Cu(111) is
�0.584 eV per atom (HDNNP) and �0.558 eV per atom (DFT),

Fig. 4 Optimized graphene C24 structures on the Cu(111) surface with different adsorption sites: (a) the carbon atom occupying the TOP and FCC sites,
(b) the carbon atom occupying the TOP and HCP sites, (c) the carbon atom occupying the HCP and FCC sites, (d) the most stable configuration of C24 on
the Cu(111) surface. Relative energies of the lowest-energy structures calculated using HDNNP and DFT, with DFT results shown after the slash. All
energies are given in units of eV.

Fig. 5 Graphene nanosheets with various carbon atom numbers on the Cu(111) surface, along with their optimized configurations, average formation
energies, and average adsorption energies (a)–(i). Values after the slash represent average adsorption energies. All energies are given in units of eV.
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respectively. The results indicated that the average formation
and average adsorption energies calculated using the HDNNP
were in close agreement with the DFT results. Meanwhile,

according to the radial pair distribution functions of C–C and
C–Cu shown in Fig. S1 in the ESI,† the HDNNP reproduces the
geometric structures obtained in DFT calculations very well. It
is worth mentioning that the C24 graphene nanosheet was not
included in the training dataset, which further demonstrates
the reliability and accuracy of the HDNNP calculations.

3.2 Different configurations of graphene on Cu (111)

The structural configurations and energetic properties of three
typical graphene structures—nanosheet, zigzag nanoribbon,
and armchair nanoribbon—on the Cu(111) surface were sys-
tematically investigated. Simulations were performed on gra-
phene samples with varying numbers of carbon atoms,
revealing their trends in the average formation energy and
the average adsorption energy as functions of the carbon atom
number.

3.2.1 Structure properties of graphene nanosheets on the
Cu(111) surface. As shown in Fig. 5, the graphene nanosheet
samples were composed of structures with carbon atom counts:
C24, C54, C96, C150, C216, C294, C384, C486, and C600. Both top-view
and side-view structural representations were obtained on the
Cu(111) surface. Subsequently, the average formation energy

Fig. 6 Distance distribution of graphene nanosheets from the Cu(111)
surface.

Fig. 7 Graphene nanosheets on the Cu(111) surface: relationship between average formation energy and the number of carbon atoms (a) and (b), as well
as the relationship between average adsorption energy and the number of carbon atoms (c) and (d). The fitting method excludes data points with a small
number of carbon atoms. The dashed lines represent the results of periodic graphene.
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(Ef) and average adsorption energy (Eads) were calculated for
each graphene structure.

To investigate the structural evolution of graphene
nanosheets on the copper surface with the increasing carbon
atom numbers, this study analyzes the variation in the distance
between C atoms in nanosheets and the copper surface. The
perpendicular distance d of each carbon atom of graphene to
the Cu surface is computed, and the resulting distribution of
these distances is denoted as f (d). The data are Gaussian
broadened using a kernel density estimator with a bandwidth
of 0.1. Each data point is convolved with a Gaussian kernel of
this width. The resulting density estimate is automatically
normalized, such that the total area under the curve equals 1.
Fig. 6 illustrates the distribution of distances between the
Cu(111) surface and graphene, and the distance between the
periodic graphene and the copper surface was also labeled.

As the number of carbon atoms increases, the proportion of
edge carbon atoms in the graphene nanosheet gradually
decreases. As shown in Fig. 6, when the distances (d) between
the carbon atoms in the graphene nanosheet and the Cu(111)
surface are 1.65, 2.17, and 2.70 Å, the distribution of carbon
atoms in the nanosheet shows a decreasing trend as the
number of carbon atoms increases (Table S1, ESI†). The peaks
at 1.65 Å and 2.1 Å reflect the strong chemical adsorption
between the graphene edge and the metal surface, which is
consistent with the phenomenon of chemical bonding between
graphene and metal surfaces revealed by previous studies.31,32

The peaks at distances greater than 2.70 Å indicate an equili-
brium distance dominated by van der Waals interactions.

For carbon atom counts of C486 and C600, prominent peaks
emerge at 3.70 Å, mainly attributed to the curvature effect at the
edges of the graphene nanosheet. As the number of carbon
atoms increases to C600, a noticeable peak appears at 3.11 Å,
which coincides with the distance between periodic graphene
and the Cu(111) surface. This further suggests that as the
number of carbon atoms in the graphene nanosheet increases,
its structure gradually approaches that of periodic graphene.

Linear regression analyses were performed to evaluate the
correlations between average formation and average adsorption
energies and the number of carbon atoms. Fig. 7 shows the
correlation between the average formation energy and the
number of carbon atoms, as well as the correlation between
the average adsorption energy and the number of carbon atoms
for the graphene nanosheet configuration on the Cu(111) sur-
face. The simulation results revealed clear trends in the ener-
gies. For graphene nanosheet, the average formation energy
decreased with an increasing number of carbon atoms. This
trend suggests that larger graphene structures are more ener-
getically favorable to form on the Cu(111) surface. However, the
absolute value of average adsorption energy decreased as the
number of carbon atoms increased, and the absolute value of
total adsorption energy increased.

When fitting the relationship between energy and the num-
ber of carbon atoms, two methods are employed: one including
data points with a small number of carbon atoms and the other
excluding them. Fig. 7b and d exclude data points with a small
number of carbon atoms, while Fig. S1a and b (ESI†) include
these data points. For graphene nanosheets, the average

Fig. 8 Zigzag graphene nanoribbons with various carbon atom numbers on the Cu(111) surface, along with their optimized configurations, average
formation energies, and average adsorption energies (a)–(h). Values after the slash represent average adsorption energies. All energies are given in units
of eV. (i) Side view of the configurations.
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formation energy exhibits a linear relationship with the square
root of the inverse carbon atom number n�1/2, and the linear
correlation is strong for both fitting methods. However, the
average adsorption energy fitted using data points excluding
small carbon atom numbers shows a linear relationship

with n�1/2 with a linear correlation R2 value closer to 1.
This indicates that, compared to including small carbon
atom numbers in the fitting, this method provides a more
accurate prediction of the average adsorption energy of
larger nanosheets on the Cu(111) surface. Furthermore, the
average adsorption energy of the graphene nanosheet at the
limit of n�1/2 is �0.080 eV per atom, which is very close to that
(�0.086 eV per atom) of infinite graphene. To determinate the
interaction strength between graphene edge atoms and the
Cu(111) surface, we calculated the adsorption energy of C6H5

on the Cu(111) surface, where the interaction is dominated by
the single C–Cu bond, and it is �2.49 eV. Due to the smaller
graphene nanosheet having a higher edge atom ratio, its
average adsorption energy is higher. The linear functions with
respect to the inverse square root of n may be related to the
dimension of the graphene nanosheet. The graphene
nanosheets can be regarded as 1-dimensional materials. For
the metal nanoparticles, which can be regarded as 0-
dimensional materials, several theoretical studies demon-
strated that the average cohesive energy is linear with respect
to n�1/3.33,34 The increased dimension of the graphene
nanosheet changes the n�1/3 relationship into n�1/2.

3.2.2 Structure properties of zigzag graphene nanoribbons
on the Cu(111) surface. As shown in Fig. 8, the zigzag graphene

Fig. 9 Distance distribution of zigzag graphene nanoribbons from the
Cu(111) surface.

Fig. 10 Zigzag graphene nanoribbons on the Cu(111) surface: relationship between average formation energy and the number of carbon atoms (a) and
(b), as well as the relationship between average adsorption energy and the number of carbon atoms (c) and (d). The fitting method includes data points
with a small number of carbon atoms. The dashed lines represent the results of periodic graphene.
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nanoribbon samples included structures with the following
carbon atom counts: C300, C400, C500, C600, C700, C800, C900,
and C1000. Both top-view and side-view structural representa-
tions were obtained on the Cu(111) surface, and the average
formation energy (Ef) and the average adsorption energy (Eads)
were determined for each graphene structure. Additionally,
from Fig. 8(i), it can be seen that the graphene edge is of the
zigzag type.

Fig. 9 shows the distribution of distances between zigzag
graphene nanoribbons and the Cu(111) surface, with the dis-
tance between periodic graphene and the copper surface also
indicated. In Fig. 9, when the distance (d) between the carbon
atoms in the zigzag graphene nanoribbons and the Cu(111)
surface is 1.64, 2.07, 2.70 and 2.92 Å, the distribution of carbon
atoms exhibits a decreasing trend as the number of carbon
atoms in the zigzag graphene nanoribbons increases. When
d 4 3.11 Å, as the number of carbon atoms in the zigzag
graphene nanoribbons increases, the peak area gradually
enlarges (indicating an increased distribution of carbon
atoms), and the peak gradually shifts toward 3.11 Å. This
further suggests that as the number of carbon atoms in the
zigzag graphene nanoribbons increases, its structure progres-
sively transitions towards that of periodic graphene.

Fig. 10 illustrates the relationship between average for-
mation energy and the number of carbon atoms, as well as
the relationship between average adsorption energy and the
number of carbon atoms for the zigzag graphene nanoribbon
configuration on the Cu(111) surface. For the zigzag graphene
nanoribbons, the average formation energy decreased as the
number of carbon atoms increased, and the absolute value of
the total adsorption energy increased with the number of

carbon atoms. Fig. 10b and d include data points with a small
number of carbon atoms, while Fig. S2a and b (ESI†) exclude
these data points.

Fig. 10b, d and Fig. S2a and b (ESI†) show that average
formation energy and average adsorption energy both exhibit a
strong linear relationship with the inverse carbon atom num-
ber n�1 (R2

Z 0.9997) in both fitting methods. This indicates
that both approaches reliably predict the average formation
and the average adsorption energies of large zigzag graphene
nanoribbons on the Cu(111) surface. The different relationship
of the graphene nanosheet and graphene nanoribbon can be

Fig. 11 Armchair graphene nanoribbons with various carbon atom numbers on the Cu(111) surface, along with their optimized configurations, average
formation energies, and average adsorption energies (a)–(h). Values after the slash represent average adsorption energies. All energies are given in units
of eV. (i) Side view of the configurations.

Fig. 12 Distance distribution of armchair graphene nanoribbons from the
Cu(111) surface.
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ascribed to their different dimension. The graphene nanorib-
bon can be regarded as two-dimensional materials, and the
increased dimension changes the n�1/2 relationship into n�1.

3.2.3 Structure properties of armchair graphene nanorib-
bons on the Cu(111) surface. Fig. 11 shows the optimized
configurations of graphene nanoribbons with various carbon
atom numbers (C264, C360, C456, C552, C648, C744, C840, and C936)
in the armchair arrangement on the Cu(111) surface, along
with their average formation energies and average adsorption
energies. The side views in Fig. 11(a)–(h) reveal significant
curvature in the edge carbon atoms of the armchair graphene

nanoribbon structure. Furthermore, Fig. 11i confirms that the
graphene edge adopts an armchair configuration.

Fig. 12 presents the distribution of distances between the
armchair graphene nanoribbons and the Cu(111) surface,
with the distance of periodic graphene from the copper surface
also indicated. When the distance (d) between carbon atoms
in the armchair graphene nanoribbons and the Cu(111)
surface is 1.72, 2.45 and 2.96 Å, the carbon atom distribution
exhibits a decreasing trend. For d 4 3.11 Å, as the number of
carbon atoms in the armchair graphene nanoribbons increases,
the peak area expands (indicating a higher carbon atom

Fig. 13 Armchair graphene nanoribbons on the Cu(111) surface: relationship between average formation energy and the number of carbon atoms (a)
and (b), as well as the relationship between the average adsorption energy and the number of carbon atoms (c) and (d). The fitting method includes data
points with a small number of carbon atoms. The dashed lines represent the results of periodic graphene.

Table 1 Fitted linear expressions and coefficients of determination (R2) for energy-carbon atom number relationships

Structure Fitting method 1a R2 Fitting method 2a R2

Nanosheet Ef = 3.1036n�1/2 � 0.0049 0.99857 Ef = 3.3741n�1/2 � 0.0199 0.99971
Eads = �3.3521n�1/2 � 0.0800 0.99832 Eads = �2.2790n�1/2 � 0.1434 0.97910

Zigzag nanoribbons Ef = 63.6444n�1 � 0.0073 0.99995 Ef = 63.6444n�1 � 0.0073 0.99995
Eads = �83.4020n�1 � 0.0631 0.99970 Eads = �82.8869n�1 � 0.0639 0.99994

Armchair nanoribbons Ef = 63.0084n�1 � 0.0067 0.99987 Ef = 63.008n�1 � 0.0067 0.99987
Eads = �54.5015n�1 � 0.0780 0.99976 Eads = �54.0864n�1 � 0.0783 0.99982

a Fitting method 1 excludes data points with a small number of carbon atoms, and fitting method 2 includes them. The units of Ef and Eads

are eV per atom.
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distribution), and the peak gradually shifts toward 3.11 Å,
which is the distance between periodic graphene and the
Cu(111) surface.

Fig. 13 presents the relationships between energy and the
number of carbon atoms for the armchair graphene nanorib-
bons. As shown in Fig. 13a and c, the average formation energy
decreases with increasing carbon atom number, and the abso-
lute value of the total adsorption energy increases. Fig. 13b and
d include data points with a small number of carbon atoms,
whereas Fig. S3a and b (ESI†) exclude them. Both sets of figures
demonstrate that the average formation energy and the average
adsorption energy exhibit a strong linear correlation with the
inverse carbon atom number n�1 (R2

Z 0.9998) across both
fitting methods. This indicates that the relationships between
energy and carbon atom number are well captured by the
regression models. The linear fitting results for the three
configurations are summarized in Table 1. These findings
demonstrate that the derived expressions can effectively predict
the formation energy and adsorption behavior of graphene with
varying carbon atom numbers on the Cu(111) surface.

To emphasis the critical role in the interaction between
graphene and the Cu(111) surface, we fitted the relationship
between the edge atom ratio (nedge/n) and average adsorption
energy, and very good relationships are found for graphene
nanosheets and nanoribbons as shown in Fig. S5–S7 (ESI†). It is
noted that the graphene nanosheet has a good linear relation-
ship between the square root of edge atom ratio (nedge/n) and
average adsorption energy, but the average adsorption energy is
positive at the limit of (nedge/n)�1/2 to 0, which can be ascribed
to the more significant deformation of the graphene nanosheet.

3.3 Temperature effect of the adsorption of graphene
nanosheets and nanoribbons on the Cu surface

This section analyzes the structural evolution and adsorption
properties of graphene nanosheets and nanoribbons on Cu
surfaces at 300 K, 600 K, and 1000 K. All the graphene
nanosheets and nanoribbons are stably adsorbed on the Cu
surface, and no significant changes are observed even simu-
lated at 1000 K. As shown in Fig. S8 (ESI†), the average
adsorption energies of the graphene nanosheet and nanorib-
bon remain nearly constant from 0 K to 600 K, and very slight
decreases are observed from 600 K to 1000 K. For the largest
graphene nanosheet and nanoribbon models considered, the
adsorption energy decrease is within 0.01 eV per carbon atom.
In contrast, smaller graphene structures exhibit more pro-
nounced reductions of 0.01–0.02 eV per carbon atom. The
average formation energies of Cu-graphene slightly increase
with increasing temperature (Fig. S9, ESI†). Similar to the
average adsorption energies, the smaller graphene is more
sensitive to the temperature. The insignificant changes of
average adsorption and formation energies can be ascribed to
the very strong interaction between Cu and graphene edge
carbon atoms and low proportion of edge carbon atom in
graphene, which leads to the graphene maintaining intimate
contact with Cu. The majority of carbon atoms interact with the
Cu surface through van der Waals forces, which exhibit

minimal temperature dependence in the studied range (0–
1000 K). According to the radial pair distribution functions of
C–C and C–Cu (Fig. S10–S18, ESI†), no considerable shift of the
first C–C peak position is observed, though the intensity is
reduced. However, the first peak in the C–Cu radial distribution
function shifts slightly to higher distances, suggesting a weak-
ening of the C–Cu chemical interaction with increasing tem-
perature. As shown in Fig. 14, all the distances from C to Cu
surface in graphene nanosheet C24 increase with increasing
temperature. But for larger graphene nanosheets C216 and C600,
the distances below 2.5 Å shift to higher values, and those
beyond 2.5 Å shift to lower values. The decreased distances
indicate that the protrusions near graphene edge become
smoother as temperature increases. This graphene geometric
reconstruction is also observed for zigzag and armchair gra-
phene nanoribbons (Fig. S19 and S20, ESI†).

Fig. 14 Distance distribution of graphene nanosheets from the Cu(111)
surface at different temperatures: (a) C24, (b) C216, and (c) C600.
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4. Conclusions

In this study, the HDNNP is utilized to study the adsorption of
graphene with different configurations on the Cu(111) surface.
The consistency between the energies obtained from NNP and
DFT calculations, as well as the agreement of the force fields
computed by both methods, demonstrates the accuracy of the
NNP approach. The analysis of distance variations between
different graphene configurations and the Cu(111) surface
offers both quantitative and qualitative insights into intermo-
lecular interactions at the graphene–metal interface. The ana-
lysis of distance variations is beneficial to understanding the
structural properties between graphene and the Cu surface. It
can also be used to explain the different graphene heights on
the Cu surface at different graphene sizes observed from
experimental measurements.

Moreover, the average formation energy and the average
adsorption energy as functions of the number of carbon atoms
in graphene are also investigated. The average formation
energy decreases and the absolute value of the total adsorption
energy increases with an increasing number of carbon atoms
for all configurations. This implies that larger graphene struc-
tures are more stable thermodynamically and exhibit stronger
adsorption on the Cu(111) surface. Zigzag and armchair gra-
phene nanoribbon configurations demonstrate strong linear
correlations between energies and n�1, while the nanosheet
configuration shows a linear relationship with n�1/2. These
relationships are supported by high R2 values, indicating their
robustness. The zigzag and armchair nanoribbon configura-
tions showed higher adsorption capacities and better stability
compared to the nanosheet structure, which exhibited smaller
energy variations with increasing carbon atom numbers.

This study offers valuable insights into the interaction
strength between graphene and the Cu(111) surface, as well
as the stability of the graphene/Cu(111) system from nanoscale
to mesoscale. According to the linear relationships found in
this work, the graphene adsorption strength and stability can
be quickly evaluated.
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