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Implementation of quasiclassical mapping
approaches for nonadiabatic molecular dynamics
in the PySurf package†

David Picconi, *a Maximilian F. S. J. Menger, b Elisa Palacino-González, a

Edison X. Salazar cd and Shirin Faraji *a

Quasiclassical methods for nonadiabatic molecular dynamics, based on Mayer–Miller–Stock–Thoss mapping,

are implemented in the open source computer package PySurf. This complements the implementation of sur-

face hopping approaches performed in previous studies, and leads to a unified code that allows nonadiabatic

dynamics simulations using various mapping approaches (Ehrenfest dynamics, the linearised semiclassical initial

value representation, the Poisson-bracket mapping equation, the ‘‘unity’’ approach for the identity operator,

the spin mapping, and the symmetrical quasiclassical windowing method) as well as different flavours of

surface hopping (fewest-switches, Landau–Zener, and a mapping-inspired scheme). Furthermore, a plugin is

developed to provide diabatic vibronic models as input in a sum-of-products form. This opens the way to the

benchmark of different types of trajectory-based propagators on different models, against exact quantum

dynamical simulations performed, e.g., by the multiconfigurational time-dependent Hartree method. Illustrative

calculations, performed using the whole set of available propagators, are presented for different harmonic and

anharmonic two-state models, exhibiting various degrees of correlation between vibrational modes.

1 Introduction

Nonadiabatic phenomena in photochemistry involve the
dynamics of nuclear wave packets evolving in coupled potential
energy surfaces (PES) associated to different electronic states.
The computationally most efficient – and therefore most com-
monly used – approaches to simulate nonadiabatic molecular
dynamics are methods where the nuclei follow independent,
classical-like trajectories.1–4

The main advantage of trajectory-based methods, in contrast
to full quantum dynamical methods for nuclear motion,5–7 is the
fact that the electronic Hamiltonian does not need to be pre-
calculated and fitted, but can be evaluated ‘‘on-the-fly’’ for
varying nuclear geometries. A notable exception in quantum
dynamics is the direct-dynamics variational multiconfigura-
tional Gaussian (dd-vMCG) wave packet method,8,9 that is based
on a superposition of Gaussian wave packets that follow non-
classical coupled trajectories. This approach allows on-the-fly

nuclear quantum dynamics usually within a local harmonic
approximation; however, due to strong nonlinearities in the
equations of motion, the applications of vMCG have so far been
limited to relatively small molecular systems.

On the other hand, the use of precalculated surfaces, such as
linear or quadratic vibronic coupling models,7,10,11 is not
necessarily a prerogative of quantum dynamical methods.
Analytical Hamiltonian models are widely used in trajectory-
based simulations to extend the dynamical propagation to long
time scales,12,13 or to benchmark approximate methods against
exact quantum mechanical results.14–18

The methods explored in this work follow a general formal-
ism in which only the electronic dynamics are formally treated
with a rigorous quantum mechanical description, represented
by a time-dependent electronic wavefunction

Cel; tj i ¼
XN
n¼1

CnðtÞ nðQÞj i; (1)

where the kets |n(Q)i indicate a finite basis of N electronic
(adiabatic or diabatic) states, that in general depend on the
nuclear coordinates Q. The complex coefficients Cn(t) are
propagated via the time-dependent Schrödinger equation,

dCn

dt
¼ � i

�h

XN
m¼1

HðQMÞ
nm ðQ;PÞCmðtÞ; (2)
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where H(QM)
nm (Q, P) are the elements of a quantum mechanical

Hamiltonian matrix, that generally depend on nuclear coordi-
nates Q = (Q1, . . ., QF) and momenta P = (P1, . . ., PF).

The nuclear coordinates and momenta are initialised by
sampling from an initial distribution and evolve according to
independent Hamiltonian trajectories,

dQk

dt
¼ Pk

Mk
; (3a)

dPk

dt
¼ �@VeffðQÞ

@Qk
; (3b)

where Mk is the mass associated to the k-th degree of freedom
and Veff is an effective PES defining the forces responsible for
the nuclear motion.

The use of an effective potential is an unavoidable conse-
quence of the use of classical (i.e., independent) trajectories for
the nuclear coordinates. The choice of Veff is not unambiguous
and has led to the formulation of a wide variety of methods
based on independent trajectories.4 In general terms, the
various approaches can be classified in two categories:

1. Mixed quantum-classical surface hopping methods,
where Veff(Q) coincides, at each time, with the PES of an active
adiabatic state. Different approaches – such as the fewest
switches,19 the Landau–Zener,20 or the mapping-inspired21,22

schemes – differ in the algorithm that determines the time step
at which the active state should change and how the energy
conservation should be imposed, i.e. when and how a trajectory
should ‘‘hop’’ from one to another surface.

2. Quasiclassical mapping methods or ‘‘Ehrenfest-like
approaches’’, where the effective potential for the nuclear
dynamics is obtained as a mean-field average of the electronic
Hamiltonian. In contrast to surface hopping, the mapping meth-
ods can be rigorously derived as a classical limit of quantum
mechanics,23,24 where the real and imaginary part of the coeffi-
cients Cn(t) are proportional to ‘‘electronic’’ coordinates and
momenta. Therefore, we denote these approaches as ‘‘quasiclas-
sical’’ rather than ‘‘mixed quantum-classical’’. The classical limit
introduces an ambiguity in the sampling of the electronic phase
space coordinates and in the evaluation of the electronic obser-
vables, leading to a variety of different mapping methods.25–29

Notable recent developments on mapping methods include
unified formulations for various approaches,30,31 rigorous defi-
nitions of the zero-point energy parameter for the electronic
variables,31–33 as well as accurate windowing schemes to eval-
uate the electronic population.34,35 Furthermore, ab initio
implementations36,37 and initial benchmark studies15,17,38 have
recently appeared.

Nevertheless, although the theoretical photochemistry com-
munity has gained significant expertise in surface hopping
methods, mapping approaches have not been tested or applied
as extensively. One reason is that using an average potential can
seem nonphysical, particularly when nuclear trajectories move
into regions where the potential energy surfaces of different
states are well separated after passing through a near-degeneracy
zone. Furthermore, these methods are known to break detailed

balance in most cases,39,40 a property necessary for internal
consistency. The symmetric quasiclassical mapping approach
by Cotton and Miller is partially an exception, since it has been
shown to obey detailed balance in the limit of vanishing elec-
tron–nuclear coupling.41

Since mapping approaches constitute a proper classical limit
of quantum mechanics, they are naturally more suitable for the
development of non-classical corrections to impose microscopic
reversibility,39,40,42 including those based on interacting
trajectories,43,44 or to formulate quantum-classical analogues of
stationary and time-resolved spectroscopic observables. In parti-
cular, trajectory-based approached for time-resolved nonlinear
spectroscopy have been presented and reviewed by several
authors.45–48 Recent applications include simulations of the tran-
sient absorption and two-dimensional spectrum of pyrazine,49,50

as well as pump–probe signals for azomethane51 and a dendrimer
structure.52

Another reason that limits the application of mapping
approaches to nonadiabatic dynamics is the lack of a general-
purpose code to systematically compare the various variants of
different families of methods. Connected to this, a computa-
tional platform is missing to systematically benchmark surface
hopping or quasiclassical mapping methods against numerically
exact quantum dynamical results obtained, for example, by the
Heidelberg MCTDH package53,54 or Quantics.55

Recently, the Pysurf package, developed by us, was
presented.56 This software is designed to facilitate proto-
typing and development tasks in general computational
chemistry and, in particular, in the exploration of ground and
excited state PES within nonadiabatic molecular dynamics. Due
to its modular structure, it is an ideal platform to implement
and test different propagation schemes for nonadiabatic
dynamics.

The goal of this work is to extend the code to provide a
computational platform for the systematic comparison between
surface hopping and mapping methods, as well as to facilitate
comparison with quantum dynamical calculations.

The implementation and testing of fewest-switches and
Landau–Zener surface hopping schemes is described in a
previous study.57 Here we present the implementation of
different propagation schemes based on the so called Mayer–
Miller–Stock–Thoss mapping,23,24 including a recently devel-
oped mapping-inspired approach to surface hopping.22 The
code comes with a plugin to allow users to provide analytic PES
in the sum of product form, using a format similar to that used
for the MCTDH or Quantics codes. This enables the systematic
and seamless benchmark of various mixed quantum-classical
or quasiclassical methods against full quantum dynamical
results.

The rest of the paper is organised as follows. Section 2
provides the essential derivation and an overview of the map-
ping methods for nonadiabatic dynamics implemented in this
work, Section 3 describes the main details of the computational
implementation, Section 4 illustrates prototypical applications
where different methods are compared, and Section 5 sum-
marises and concludes.
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2 Mapping approaches for
nonadiabatic molecular dynamics

Many variants of the nonadiabatic mapping approaches have
been formulated over several decades, and derived using dif-
ferent formalisms.23–26,29,34,58,59 The purpose of this section is
to provide a concise overview of the family of techniques
implemented in the PySurf package, highlighting the fact they
can all be connected to the classical limit obtained within the
phase space formulation of quantum mechanics.

In the following we refer to nonadiabatic molecular
dynamics that, in a full quantum mechanical setup, is
described by the time-dependent Schrödinger equation

@jC; ti
@t

¼ � i

�h
ĤjC; ti; (4)

that accounts for an arbitrary number of electronic states (N)
and nuclear degrees of freedom (F). In the diabatic representa-
tion, we take the molecular Hamiltonian in the form

Ĥ ¼
XF
k¼1

Pk
2

2Mk
þ V0ðQÞ þ

XN
n;m¼1

jniVnmðQÞhmj; (5)

where |ni and |mi denote the discrete diabatic electronic levels,
and the vectors Q = (Q1,. . .,QF) and P = (P1,. . .,PF) collect the
nuclear coordinates and momenta, respectively. V0(Q) is an
average diabatic PES and the matrix V(Q) = {Vnm(Q)} is defined

to be real and traceless, i.e.
PN
n¼1

VnnðQÞ ¼ 0.28,30 For simplicity

we define the initial state to be a nuclear wavefunction w0(Q)
associated to one specific diabatic state, i.e.

|C, t = 0i = |niw0(Q). (6)

The key step to derive quasiclassical mapping approaches
for nonadiabatic molecular dynamics is the Schwinger map-
ping of an N-level system to the manifold of singly excited states
of a N-dimensional harmonic oscillator,24,60

jnihmj ��!map
âynâm; (7a)

jni ��!map
01; . . . ; 1n; . . . ; 0Nj i; (7b)

where âm and â†
n are bosonic annihilation and creation opera-

tors and |01,. . .,1n,. . .,0Ni is a state of a N-dimensional harmo-
nic oscillator with a single excitation on the ‘‘electronic mode’’
n. Expressing the bosonic operators in terms of dimensionless

coordinates and momenta, ân ¼ qn þ ipnð Þ
� ffiffiffi

2
p

; the Hamilto-
nian takes the so called Meyer–Miller–Stock–Thoss (MMST)
mapping form,23,24

ĤmapðQ;P; q; pÞ ¼
XF
k¼1

Pk
2

2Mk
þ V0ðQÞ þ

1

2
qTVðQÞqþ pTVðQÞp
� �

;

(8)

where q = (q1,. . .,qN) and p = (p1,. . .,pN) are the dimensionless
coordinates and momenta for the mapping variables (in the
Schrödinger representation pn = �iq/qqn). Combined with the

time-dependent Schrödinger equation

@CmapðQ; q; tÞ
@t

¼ � i
�h
ĤmapCmapðQ; q; tÞ; (9)

the MMST Hamiltonian gives rise to exactly the same dynamics
as eqn (4) and (6), provided that the initial state is defined
consistently as a singly excited harmonic oscillator wavefunction

CmapðQ; q; 0Þ ¼
ffiffiffi
2
p

pN=4
qn exp �

1

2
qTq

� �
: (10)

However, the quantum mechanical solution of eqn (9) with
the initial condition given by eqn (10) is as difficult as solving
the original problem. The potential advantage of the mapping
approach lies in its straightforward formulation in the phase
space formalism of quantum mechanics, upon which the
classical limit can be defined rigorously. To this end, one
introduces the Wigner function61

WðQ;P; q; p; tÞ ¼
ð

dS

ðp�hÞF
ð
ds

pN
C�mapðQ� S; q� s; tÞ

�Cmap Qþ S; qþ s; tð Þ

� exp �2i
�h

XF
k¼1

PkSk � 2i
XN
n¼1

pnsn

 ! (11)

regarded as a quasi-probability distribution in the phase space,
meaning that the expectation value of a generic observable O(Q,
P, q, p) is evaluated as

Oh iðtÞ ¼
ð
dQ

ð
dP

ð
dq

ð
dpOðQ;P; q; pÞWðQ;P; q; p; tÞ: (12)

In analogy with classical mechanics, the MMST Hamiltonian of
eqn (8) is also treated as a function of the phase space variables,
and not as an operator (therefore the caret is removed here-
after), and the time evolution of the Wigner function is given by
the Wigner–Moyal equation,62

@W

@t
¼ � i

�h
Hmape

L̂W þ i

�h
WeL̂Hmap; (13)

where the operator L̂, consistently interposed between two
phase space functions, is defined as

L̂ ¼ i�h

2

XF
k¼1

@

@Qk

 ��
@

@Pk

��!
� @

@Pk

 ��
@

@Qk

��! !
þ i

2

XN
n¼1

@

@qn

 �
@

@pn

�!
� @

@pn

 �
@

@qn

�! !
;

(14)

and the arrow indicates the side on which the differentiation is
done. Using the MMST Hamiltonian of eqn (8), the approxi-
mation eL̂ E 1 + L̂ gives the classical Liouville equation for the
phase-space distribution,

@W

@t
¼
XF
k¼1

@V0

@Qk
þ 1

2
qT

@V

@Qk
qþ 1

2
pT

@V

@Qk
p

	 

@W

@Pk

�
XF
k¼1

Pk

Mk

@W

@Qk
þ 1

�h

XN
n;m¼1

VnmðQÞ qn
@W

@pm
� pn

@W

@qm

� �
;

(15)
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which can be solved by propagating classical (i.e., independent)
trajectories according to Hamilton’s equations:

_Qk ¼
Pk

Mk
; (16a)

_Pk ¼ �
@V0ðQÞ
@Qk

� 1

2
qT
@VðQÞ
@Qk

q� 1

2
pT
@VðQÞ
@Qk

p; (16b)

_q ¼ �1
�h
VðQÞp; (16c)

_p ¼ 1

�h
VðQÞq: (16d)

2.1 Calculation of electronic observables

Eqn (16a)–(16d), whose propagation we implemented in PySurf,
are common for most of the different mapping methods
proposed over the last decades. The major differences between
various approaches are the way the mapping variables q and p
are sampled at the initial time and how the electronic popula-
tions are computed.

In our implementation the population in the state m, given
that the dynamics is initiated in the state n, is evaluated using
the so-called linearised semiclassical initial value representa-
tion (LSC-IVR),25

Pm nðtÞ ¼ Tr e
i
�hĤtjmihmje�

i
�hĤtjnihnjrnucð0Þ

	 


�
ð
dQ0dP0dq0dp0F

0
mm qt; ptð ÞFnn q0; p0ð ÞWnuc Q0;P0ð Þ

� F 0mmðtÞFnnð0ÞWnucð0Þ
� �

(17)

where (q0, p0) and (qt, pt) are the mapping variables at the
initial and final times and Wnuc(Q0, P0) is the initial distribution
(Wigner function) for the nuclear coordinates. As usual, the
integral of eqn (17) is evaluated by Monte Carlo sampling.

The functions Fnn and F 0mm depend only on the mapping
variables and define the phase space observables corres-
ponding to the population operators |nihn| and |mihm|, respec-
tively referred to the initial sampling and the evaluation of the
electronic population at time t. As remarked by several
researchers,27,28 the use of the classical limit of eqn (15) makes
the definition of such population functions ambiguous. Differ-
ent choices for Fnn and F 0mm, that would be formally equivalent
in the full quantum treatment given by eqn (13), deliver
different results when combined with classical trajectory
dynamics. Indeed, one of the goals of the present implementa-
tion is to facilitate the comparison and the benchmark of
different mapping approaches based on different definitions
of Fnn and F 0mm.

One possible choice is to map the electronic projector into a
pure singly excited oscillator (SEO) state, and then evaluate the

Wigner function of that state. This yields28

jnihnj ��!map
01; :::; 1n; :::; 0Nj i 01; :::; 1n; :::; 0Nh j

��!phase
space

2qn
2 þ 2pn

2 � 1
� �

fðq; pÞ

� FSEO
nn ðq; pÞ;

(18)

where

fðq; pÞ ¼ e
�
P
m

qm
2þpm2ð Þ


pN

� e�R
2
.
pN :

(19)

Note that the quantity R2 ¼
PN
m¼1

qm
2 þ pm

2
� �

is conserved by the

equations of motion (16c) and (16d).
Alternatively one can express the traceless part of the quan-

tum mechanical projectors |nihn| in terms of creation/annihila-
tion operators, and then convert them into phase-space
observables through a Wigner transformation,30

jnihnj ¼ 1

N
þ jnihnj � 1

N

XN
m¼1
jmihmj

��!map 1

N
þ âynân �

1

N

XN
m¼1

âymâm

��!phase
space 1

N
þ qn

2 þ pn
2 � 1

2
� 1

N

XN
m¼1

qm
2 þ pm

2 � 1

2

¼ 1

N
� R2

2N
þ qn

2 þ pn
2

2

� FWig
nn ðq; pÞ:

(20)

In this case the sum over all the population functions is

formally equivalent to the identity:28,30 P
n

FWig
nn ðq; pÞ ¼ 1.

The functions FSEO
nn (q, p) and FWig

nn (q, p) can be combined in
all possible ways for the initial and final time in eqn (17), giving
rise to different mapping methods, which have been proposed
and derived independently in the literature. These approaches,
implemented in PySurf, are listed below. For the following, it is
useful to introduce the variables Rn

2 = qn
2 + pn

2, so that two
different population functions can be expressed as

FSEO
nn ðq; pÞ ¼

2Rn
2 � 1

pN
e�R

2
; (21a)

FWig
nn ðq; pÞ ¼

2� R2

2N
þ Rn

2

2
: (21b)

2.1.1 Linearised semiclassical initial value representation
(LSC-IVR). In the original LSC-IVR approach25 the Wigner
transform of the singly excited harmonic oscillator wavefunc-
tion, given by eqn (20), is used both as initial distribution for
the mapping variables and as a projector at time t. Formally,
this implies that electronic populations are computed by
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replacing Fnn(q0, p0) = FSEO
nn (q0, p0) and F 0mm qt; ptð Þ ¼

ð2pÞNFSEO
mm qt; ptð Þ into eqn (17), where the normalisation factor

(2p)N results from the overlap between pure state Wigner
functions.62 This gives

PLSC-IVR
m n ðtÞ ¼ ð2pÞN FSEO

mm ðtÞFSEO
nn ð0ÞWnucð0Þ

� �
¼ð2pÞN 2Rm

2ðtÞ�1
� �

fðtÞ 2Rn
2ð0Þ�1

� �
fð0ÞWnucð0Þ

� �
¼ð2pÞN 2Rm

2ðtÞ�1
� �

2Rn
2ð0Þ�1

� �
f2ð0ÞWnucð0Þ

� �
;

(22)

where the last step follows from the fact the factor f, being a
function of R2, is conserved during the dynamics (see eqn (19)).
The last line of eqn (22) implies that the initial sampling over
the mapping variables can be performed using the Gaussian
distribution f2(q(0), p(0)), and weighting the trajectories by the
factor (2Rn

2(0) � 1) in the evaluation of the observables.
Although this is the most commonly used strategy, it has
the disadvantage that the trajectories initially located near the
circle Rn

2 = 1/2 get sampled frequently, but contribute to the
ensemble average with a relatively low weight.

For this reason, in addition to the typical Gaussian sampling,
we implemented the direct sampling from the absolute value
Wigner distribution |(2Rn

2(0) � 1)f2(0)|. With this approach the
trajectories are simply weighted by C � sign(2Rn

2(0) � 1), where
C is a normalisation constant. In the tests discussed in Section 4,
this type of Wigner sampling leads to a faster convergence with
respect to the number of trajectories.

2.1.2 Poisson bracket mapping equation (PBME). In the
Poisson bracket mapping equation approach26 the initial dis-
tribution for the mapping variables is given by Fnn(r0, p0) =
FSEO

nn (q0,p0), whereas the electronic populations are evaluated

using the functions F 0mm qt; ptð Þ ¼ FWig
mm qt; ptð Þ. With this choice,

eqn (17) becomes

PPBME
m n ðtÞ ¼ FWig

mm ðtÞFSEO
nn ð0ÞWnucð0Þ

� �
¼ 1

2
Rn

2ðtÞ þ 2� R2

N

� �
2Rn

2ð0Þ � 1
� �

fð0ÞWnucð0Þ
� �

:

(23)

In this case the usual approach is to sample the initial
trajectories from the Gaussian f(q(0), p(0)) and evaluate the
ensemble average by weighting the trajectories by the factor
(2Rn

2(0)� 1). To speed up the convergence, similarly to the LSC-
IVR approach, we implemented the sampling from the absolute
value distribution |(2Rn

2(0) � 1)f(0)|.
2.1.3 Improved population operator scheme. The schemes

based on the so called ‘‘improved population operators’’, for-
mulated by Saller et al.,28,30 are designed so that the total
electronic population equals unity for each trajectory of the
ensemble. One of such methods, denoted ‘‘single unity’’ in ref.
28 (or simply ‘‘unity’’ hereafter), is formally obtained by setting

Fnn(q0, p0) = FWig
nn (q0, p0) and F 0mm qt; ptð Þ ¼ FSEO

mm rt; ptð Þ in

eqn (17),

Punity
m nðtÞ ¼ FSEO

mm ðtÞFWig
nn ð0ÞWnucð0Þ

� �
¼ 2Rm

2ðtÞ � 1
� �

fðtÞFWig
nn ð0ÞWnucð0Þ

� �
¼ 2Rm

2ðtÞ � 1
� �

FWig
nn ð0Þfð0ÞWnucð0Þ

� �
;

(24)

where the last step follows from the conservation of f. The
equivalence between the expression of eqn (24) and that used
by Saller et al.30 is proved in the ESI.†

In our implementation, eqn (24) is evaluated by sampling
from the Gaussian distribution f(q(0), p(0)) and weighting the
trajectories by the factor FWig

nn (0).
2.1.4 Spin mapping (SM). Another option to evaluate the

population according to eqn (17) is to choose the FWig
nn functions

for both the initial and final times. However, in the absence of
the damping factor f(q, p) the integral of eqn (17) diverges.
This divergence can be eliminated by constraining the
dynamics on the multi-dimensional spherical surface defined

as R2 ¼
P
m

qm
2 þ pm

2
� �

¼ R2, with a given fixed radius %R for all

the trajectories. The justification for fixing the value of R2 is the
need to recover the Casimir invariant of the SU(N) group,58

which describes quantum N-level systems.
To include the constraint, the mapping variables are

sampled from the distribution Fnn(q, p) = AFWig
nn (q, p)d(R2 � %R2),

where the constant A = N!/(pN %R2N�2) is fixed to normalise the
distribution as

Ð
Fnnðq; pÞdqdp ¼ 1. Evaluating the populations as

Pspin
m’n(t) = AhFWig

mm (t)FWig
nn (0)d(R2(0) � %R2)Wnuc(0)i (25)

we can obtain the value of the sphere radius as

R2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1
p

,59 by simply requiring that at the initial time
Pn’n(t) = 1. The derivation of the values of the constants A and
%R2 is given in the ESI.†

The simulation of the electronic population dynamics using
eqn (25) is equivalent to the spin mapping method introduced by
Runeson and Richardson in the so called W-representation.29,58

In their implementation the initial sampling is taken as uniform
over the spherical surface. In PySurf the sampling is done
directly from the absolute value distribution |FWig

nn (q(0),
p(0))|d(R2(0) � %R2), and the trajectories are simply weighted by
sign(FWig

nn (q(0), p(0))).
2.1.5 Ehrenfest. The standard Ehrenfest approach for non-

adiabatic dynamics can be viewed as a special case of mapping
approach, where the function FWig

nn is used for both the sam-
pling at time t = 0 and the evaluation of the population at
later times.

In a similar way to spin mapping, the integral of eqn (17) is
made convergent by restricting the dynamics on a sphere. In
this case the squared radius %R2 is taken to be equal to 2, by
initialising the mapping variables taking Rn

2(0) = 2 for the
initial state n and Rm

2(0) = 0 for the unpopulated states m.
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Formally, this corresponds to the expression

PEhrenfest
m n ðtÞ

¼ 1

pN
FWig
mm ðtÞFWig

nn ð0Þd Rn
2ð0Þ � 2

� � Y
man

d Rm
2ð0Þ

� �
Wnucð0Þ

* +
:

(26)

2.1.6 Symmetrical quasiclassical (SQC) mapping. The sym-
metrical quasiclassical windowing method developed by Cotton
and Miller is also based on independent trajectories governed
by the MMST Hamiltonian, but is formulated in terms of
action-angle variables (see ref. 34 and 35 for details). In a
nutshell, the approach is based on histogram-shaped popula-
tion functions, that mimic the fact that the eigenvalues of the
quantum mechanical observables Rn

2 are quantised and can
take only odd integer values. To approximately recover this
behaviour, Cotton and Miller proposed evaluating the popula-
tions using the expression

pSQC
m’n(t) = A(t)hFSQC

mm (t)FSQC
nn (0)Wnuc(0)i, (27)

where histogram binning functions are used, i.e.

FSQC
nn ðq; pÞ ¼ w½1;1þ2g�

Rn
2

2

� � Y
man

w½0;2g�
Rm

2

2

� �
; (28)

and wA is the indicator function for the interval A. In our
implementation, the parameter g is set to

ffiffiffi
3
p
� 1

� ��
2 � 0:366,

which is the recommended value for most applications.35 In
eqn (27) A(t) is a time-dependent normalisation constant,
simply evaluated as34

AðtÞ ¼
X
m

PSQC
m nðtÞ

" #�1
: (29)

In their study, Cotton and Miller proposed evaluating the
electronic populations by using triangular binning functions,
instead of histograms.35 At present, these triangular functions
have been used only in a few applications. Therefore, they will
be implemented and tested in future work.

2.2 Adiabatic representation

Direct dynamics simulations, where the electronic Hamiltonian
is obtained by quantum chemical calculations performed on-
the-fly, are typically performed in the adiabatic representation,
defined by the eigenstates of the electronic Hamiltonian.

Starting from the quantum mechanical MMST Hamiltonian
of eqn (8), defined in the diabatic representation, the corres-
ponding adiabatic Hamiltonian H̃map is obtained by a unitary
transformation

~Hmap ¼ UyĤmapU; (30)

where U is a unitary operator, UyU ¼ UUy ¼ 1; appropriately
chosen so that the electronic Hamiltonian matrix V(Q)
is transformed to a diagonal form. To this end, we define the
orthogonal matrix C(Q) of the coordinate-dependent eigenvec-
tors of V(Q), and construct the adiabatic electronic
Hamiltonian as

Ṽ(Q) = CT(Q)V(Q)C(Q), (31)

where Ṽ(Q) is the diagonal matrix which contains the adiabatic
PESs Ṽm(Q), which in the direct dynamics implementation are
provided by electronic structure calculations. The adiabatic
electronic states are obtained accordingly as linear combina-
tions of diabatic states,

~nðQÞj i ¼
XN
m¼1

CmnðQÞjmi: (32)

At this stage, we can define the diabatic-to-adiabatic unitary
transformation in the quantum mechanical mapping formal-
ism, as the transformation that changes the coordinates and
momenta as

UyqnU ¼
XN
m¼1

CnmðQÞqm; (33a)

UypnU ¼
XN
m¼1

CnmðQÞpm; (33b)

UyQkU ¼ Qk; (33c)

UyPkU ¼ Pk þ �h
XN
n;m¼1

DðkÞnmðQÞqnpm; (33d)

where the D(k)(Q) matrices are related to C(Q) by

DðkÞðQÞ ¼ CT ðQÞ@CðQÞ
@Qk

: (34)

These are anti-symmetric and contain the derivative couplings,

DðkÞnmðQÞ ¼ ~nðQÞ @

@Qk

����
���� ~mðQÞ

� �

¼
0 for n ¼ m

� CT ðQÞ@VðQÞ
@Qk

CðQÞ
� �

nm



~VnðQÞ � ~VmðQÞ
� �

for nam

8><
>: :

(35)

Note that the coordinate transformations of eqn (33a)–(33d)
conserve the canonical commutators, which, according to
Stone’s theorem, guarantees the existence of the unitary opera-
tor U which implements the transformation. With the above
definition for U, the adiabatic MMST Hamiltonian is obtained
from eqn (8) and (30) as

~Hmap ¼
XF
k¼1

Pk þ �h
PN

n;m¼1
D
ðkÞ
nmðQÞqnpm

 !2

2Mk
þ V0ðQÞ

þ 1

2

XN
n¼1

~VnðQÞ qn2 þ pn
2

� �
: (36)

In the classical limit, the nonadiabatic dynamics can be simu-
lated by solving the related Hamilton’s equations. To this end,
it is convenient to propagate the kinematic momenta

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
Ju

la
i 2

02
5.

 D
ow

nl
oa

de
d 

on
 0

3/
11

/2
02

5 
20

:1
9:

34
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5cp01194a


This journal is © the Owner Societies 2025 Phys. Chem. Chem. Phys., 2025, 27, 19105–19122 |  19111

P0k ¼ Pk þ �h
PN

n;m¼1
D
ðkÞ
nmðQÞqnpm, instead of the canonical ones.

With this choice the equations of motion take the form

_Qk ¼
P0k
Mk

; (37a)

_P0k ¼ �
@V0

@Qk
�
XN
n¼1

qn
2 þ pn

2

2

@ ~Vn

@Qk

þ
XN
n;m¼1

qnqm þ pnpm

2
DðkÞnmðQÞ ~VnðQÞ � ~VmðQÞ

� �
; (37b)

_qn ¼
~VnðQÞ

�h
pn �

XF
k¼1

P0k
Mk

XN
m¼1

DðkÞnmðQÞqm; (37c)

_pn ¼ �
~VnðQÞ

�h
qn �

XF
k¼1

P0k
Mk

XN
m¼1

DðkÞnmðQÞpm: (37d)

Therefore, dynamical simulations in the adiabatic representation
do not require a diabatic-to-adiabatic transformation, but can
instead be performed through direct computation of the adiabatic
potentials Ṽn(Q) and the derivative couplings D(k)

nm(Q), i.e. the same
quantities required for surface hopping simulations.

2.2.1 Mapping-inspired surface hopping. The mapping
approaches described in the previous sections are mean-field
approaches, where the nuclear dynamics is governed by an effective
potential, obtained by averaging the diabatic or adiabatic PESs. This
description has the well known disadvantage of becoming nonphy-
sical when the nuclei move from a near-degeneracy zone towards
regions where the potentials are largely separated in energy.

In contrast, surface hopping methods are based on propa-
gating the nuclei on one ‘‘active’’ – typically adiabatic – PES. A
possible strategy to define the active surface can be formulated
from the adiabatic description given in Section 2.2, and leads to
a so called mapping approach surface hopping (MASH). MASH
is a non-stochastic technique based on jumps between active
surfaces governed by the dynamics of the mapping variables
qn and pn. The first formulation of this method was given by
Mannouch and Richardson21 for two-state problems, and a
multi-state ‘‘mapping-inspired’’ surface hopping (MISH) was
later developed by Runeson and Manolopoulos for Hamilto-
nians with an arbitrary number of electronic states.22 Although
a size-consistent multi-state generalisation of MASH has also
been recently presented,63 at present the implementation in
PySurf follows the MISH formulation of ref. 22.

According to eqn (37b), the weight of each adiabatic
potential to define the force on the nuclei is given by Rn

2/2 =
(qn

2 + pn
2)/2. Starting from this observation, the key steps

leading to MISH can be formulated as follows: (i) at each time
during the dynamics, the active surface is defined as the one
with the largest weight, so that the nuclear (kinematic)
momenta evolve as22

_P0k ¼ �
@V0

@Qk
�
XN
n¼1

Ynðq; pÞ
@ ~Vn

@Qk
; (38)

where

Ynðq; pÞ ¼ 1 if Rn
2 4Rm

2 8man;
0 otherwise;

�
(39)

(ii) the mapping variables are initialised in the sphere R2 ¼

PN
n¼1

Rn
2 ¼ 2 (so that the weights sum to one) and uniformly in

the region where the prescribed initial state has the largest
weight,

Fnnðq; pÞ ¼ NYnðq; pÞd R2 � 2
� �

; (40)

with N ¼ 2N!= 2pð ÞN ;22 (iii) the populations are evaluated using
a modified version of the FWig

mm function, where the traceless part
is rescaled to obtain Pn’n(t = 0) = 1,

F 0mmðq; pÞ ¼
1

N
þ aN

Rn
2

2
� 1

N

� �
: (41)

To this end, aN must be set equal to (N � 1)/(HN � 1), where HN

is the N-th harmonic number.22 Note that with this definition it
is guaranteed that the population functions sum to one.

As usual in surface hopping, whenever a change of active
surface n-m occurs, the nuclear momenta need to be rescaled
to ensure the conservation of energy. Following the derivation
of Runeson and Manolopoulos,22 this is achieved by rescaling
the momentum as

P0k ! P0k þ e
XN
l¼1

D
ðkÞ
nl qnql þ pnplð Þ �D

ðkÞ
ml qmql þ pmplð Þ

h i
: (42)

If, even with the rescaling, the conservation of energy cannot be
ensured, the surface hop is aborted, and the momentum is
reversed along the rescaling direction.

3 Implementation details

The architecture of the PySurf code, sketched in Fig. 1 was
illustrated in detail in ref. 56. Briefly, the code is written in
Python and consists of three parts. The core modules contain
the Python classes that provide the basic functionalities for
sampling, propagating classical trajectories, and getting PESs,
forces and nonadiabatic couplings via the so called ‘‘surface-
point-provider’’ (SPP).56 The database modules include func-
tionalities for storing and reading data (coordinates, energies,
forces, etc.) using a specifically tailored engine based on the
Network Common Data Form (NetCDF). Finally, the code
comes with a Plugin engine that allows users to extend the
code with specific sub-programs for sampling, propagating
trajectories, interfacing electronic structure codes, interpolat-
ing precomputed data, or evaluating energies using predefined
models.

In particular, the possibility of adding plugins is one of the
key aspects that make the code modular and efficient.56 The
development of the present work involved the creation of three
new sets of plugins, highlighted in red in Fig. 1: (i) samplers for
the mapping variables, described in Section 2 for the various
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mapping methods; (ii) propagators to solve eqn (16a)–(16d),
based on the integrator described in Section 3.1 below; (iii) a
plugin to provide analytic potential energy surfaces in a general
sum-of-product form, described in Section 3.2.

3.1 Integration of the quasiclassical mapping trajectories

Within the propagator plugins a new class implementing the
coupled propagation of the nuclear and mapping variables was
implemented. Given that the various approaches described in
Section 2.1 rely on the same equations of motions, eqn (16a)–
(16d), a unique integrator suffices for all of them.

The implemented integrator is inspired by the ones proposed
in ref. 65. In the diabatic representation, for each time step, from
t to t + dt, the following intermediate steps are performed:

1. The mapping variables are updated for a half-step (dt/2) by
integrating eqn (16c) and (16d) while keeping the nuclear
coordinates fixed. The integration is performed analytically as

q
tþdt

2

¼ cos
VðQtÞdt

2�h

� �
qt þ sin

VðQtÞdt
2�h

� �
pt; (43a)

p
tþdt

2

¼ � sin
VðQtÞdt

2�h

� �
qt þ cos

VðQtÞdt
2�h

� �
pt: (43b)

2. The coordinates are integrated for the full step using the
mapping variables at the half-step, i.e.,

Qk;tþdt¼Qk;tþ
Pk;t

Mk
dt

� dt2

2Mk

@V0 Qtð Þ
@Qk

þ1
2
qT
tþdt

2

@V Qtð Þ
@Qk

q
tþdt

2

þ1
2
pT
tþdt

2

@V Qtð Þ
@Qk

p
tþdt

2

� �
:

(44)

3. The momenta are propagated for the full step using an
average between the forces at the initial and final step, i.e.,

Pk;tþdt ¼Pk;t

� dt
2Mk

@V0 Qtð Þ
@Qk

þ1
2
qT
tþdt

2

@V Qtð Þ
@Qk

q
tþdt

2

þ1
2
pT
tþdt

2

@V Qtð Þ
@Qk

p
tþdt

2

� �

� dt
2Mk

@V0 Qtþdtð Þ
@Qk

þ1
2
qT
tþdt2

@V Qtþdtð Þ
@Qk

q
tþdt

2

þ1
2
pT
tþdt2

@V Qtþdtð Þ
@Qk

p
tþdt

2

� �
(45)

Fig. 1 Architecture of the PySurf code: the core modules (blue) provide basic functionalities; the database modules (green) include classes to store and
read coordinates, energies and dynamical data; the plugins (gray) allow adding new sub-programs with specialised tasks. The new plugins developed in
this work are indicated in red. The version of PySurf used for the calculation of this work is freely available on GitHub.64
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4. The mapping variables are integrated for the second half-
step using the electronic Hamiltonian evaluated at time t + dt,

qtþdt ¼ cos
V Qtþdtð Þdt

2�h

� �
q
tþdt

2

þ sin
V Qtþdtð Þdt

2�h

� �
p
tþdt

2

; (46a)

ptþdt ¼ � sin
V Qtþdtð Þdt

2�h

� �
q
tþdt

2

þ cos
V Qtþdtð Þdt

2�h

� �
p
tþdt

2

: (46b)

Similar equations are derived and implemented for the
propagation in the adiabatic representation. Note that this
scheme involves one evaluation of the electronic Hamiltonian
and its gradients for each time step.

For computations based on surface hopping methods, the
integration of the equations of motion is based on a velocity
Verlet integrator, as described in previous studies.57,66 In terms
of computational cost, the propagation of a trajectory according
to quasiclassical mapping methods is roughly as expensive as
for surface hopping trajectories.

We noticed that for some mapping methods (in particular
the PBME and the ‘‘unity’’ approaches) a relatively large num-
ber of trajectories are needed to converge the results. However,
being classical, the trajectories can be propagated indepen-
dently in parallel, which can be done in multi-node computing
infrastructures, using the scripts provided with the code.
On the other hand, running trajectories in parallel implies that
the propagated observables (geometries, populations, etc.) are
stored on disk for subsequent analysis. As described in ref. 56
this is done using the standard NetCDF3 database format, for
which libraries are available in a number of programming
languages. Unavoidably, a large number of trajectories and
degrees of freedom correlates with a larger disk usage.

3.2 Input-given model electronic Hamiltonians

In order to facilitate the benchmark of the various mixed
quantum-classical and quasiclassical methods against exact
quantum mechanical results, the new class of SPP was imple-
mented. This class provides the user with the possibility of
defining analytical models, involving an arbitrary number of
(diabatic) electronic states and potential energy surfaces and
couplings, given as a sum-of-products (SOP) form.

The SOP form is crucial for the efficiency of full quantum
dynamical methods based on tensor decomposition, such as
those related to the multiconfigurational time-dependent Har-
tree (MCTDH) approach. With the new class the information
about the electronic Hamiltonian governing the dynamics can
be provided within a ‘‘potential energy surface file’’ that has a
similar structure to the operator files used in the Heidelberg
MCTDH package or in the Quantics code.54,55 In this way the
approximations derived from the classical treatment of the
nuclear motion can be seamlessly verified, paving the way to
systematic benchmarks for various classes of diabatic model,
such as the linear or quadratic vibronic coupling models.10,11

4 Example applications

This section illustrates the application of different trajectory-
based approaches to various types of nonadiabatic processes,
using predefined diabatic model Hamiltonians. In particular,
simulations were performed using the six mapping approaches
described in Section 2, as well as three different types of surface
hopping methods, i.e., the Landau–Zener scheme (LZSH),20

Tully’s fewest-switches approach (FSSH),19 and the non-
stochastic mapping-inspired surface hopping (MISH).22

The goal of the present work is to illustrate the benefits of
having various surface hopping and quasiclassical mapping
methods implemented in the same code, which is instrumental
to systematic benchmark studies. Such investigations should
be preferably performed on larger sets of models for various
classes of photochemical and photophysical processes,18 there-
fore they constitute the natural follow-up studies based on the
present implementation.

Diabatic observables obtained by the trajectory-based calcu-
lations are compared with numerically exact full quantum
results obtained by the MCTDH as implemented in the Heidel-
berg MCTDH package.54 All simulations based on mapping
approaches were performed in the diabatic representation.
The surface hopping calculations were performed, as usual,
in the adiabatic basis, and the computed observables were
transformed to the diabatic basis afterwards, to appropriately
compare them with the exact quantum wave packet results.14

The details of the computational setup of the calculations
are provided in the ESI.† All input files and PySurf scripts used
in this work are freely available in a GitHub repository.64

4.1 B2u - B3u internal conversion in photoexcited pyrazine

The simulation of the internal conversion in pyrazine is one of
the most common benchmark tests for validating new methods
for nonadiabatic dynamics or new implementations. In this
work we refer to the popular 4-modes linear vibronic coupling
model that includes the excited diabatic states B2u and B3u. The
quantum mechanical Hamiltonian is given as

Ĥ ¼
X4
k¼1

�hok

2
Pk

2 þQk
2

� �
þ

X
n;m¼B2u;B3u

jnihmj Vndnm þ
X4
k¼1

lnm;kQk

 !
; (47)

with parameters taken from ref. 67. The trajectories are initi-
alised in the diabatic state B2u using the Wigner function

Wnucðt ¼ 0Þ / exp �
P
k

Pk
2 þQk

2
� �	 


, that corresponds to the

ground vibrational state of the undisplaced harmonic
oscillator.

The population of the B3u state as a function of time,
computed using different trajectory-based methods, is shown
in Fig. 2. Panels (a) and (b) show the results obtained by various
mapping approaches as well as the quantum mechanical
reference (thick black line). In the numerically exact simula-
tion, the B3u states become populated up to E90% in 45 fs.
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At longer times the population exhibits recurrences where the
population of the B3u state reaches minima around 80 fs and
150 fs. These recurrence times are correctly predicted by all
mapping approaches. However, all methods underestimate the
extent of the short time (o50 fs) transfer. Nevertheless, the
error is small (o10%) for the PBME, the SM and the SQC
approaches, which anyhow recover the extent of population
transfer quantitatively at longer times. The unity and Ehrenfest
approaches are accurate at the recurrence times, but under-
estimate the maximum value of the B3u population by more
than 20%. The worst agreement with the reference result is
obtained by the LSC-IVR that, although capturing the recur-
rence times, undervalues the extent of population transfer by
40% in the short time scale and by 20% at longer times.

Fig. 2(c) compares the exact quantum mechanical results
with the surface hopping predictions. All quantum-classical

simulations predict the recurrence times correctly. In the first
transfer event (o50 fs) all the surface hopping methods under-
estimate the B3u population by E5% (for the FSSH and MISH
methods) or by E10% (for the LZSH approach). At times longer
than 70 fs the FSSH prediction agrees almost perfectly with the
reference results, while both MISH and LZSH slightly under-
estimate the maximum population by 5–10%, with a MISH
being decisively in better agreement with the reference. Errors
are small at the recurrence times and larger when the B3u

population reaches its maximum.
A detailed investigation into the reasons why one method

performs better than another requires extensive benchmarking
across a large database of molecular models. Therefore, it is
beyond the scope of the present work, whose main goal is to
illustrate a novel implementation. Nevertheless, it is well
known that mapping approaches – based on effective average
potentials – often fail to describe wave packet branching, and
this limitation is likely the source of the larger errors
described above.

To illustrate this aspect, we plotted in Fig. 3 the vibrational
distributions along the coupling mode Q1 for the wave packet in
the B3u state, initially unpopulated. Panel (a) shows the numeri-
cally exact quantum mechanical result. The vibrational distribu-
tion is perfectly symmetric and exhibits a nodal line for Q1 = 0, as
a signature of the geometric phase effect. The density broadens
and shrinks repeatedly in the range �5 o Q1 o 5 with periods
between 40 and 50 fs, branching in opposite directions with
respect to the nodal line. This oscillatory dynamics is clearly
discernible in the vibrational distributions computed using sur-
face hopping methods [panels (h)–(j)], although the nodal line
(a purely quantum feature) is not present and the neat oscilla-
tions slowly fade out at times 4100 fs.

In contrast, the quasiclassical mapping methods [panels
(b)–(g)] predict rather broad distributions with little structure.
Clear oscillations are visible in the Ehrenfest results of panel (f).
However, the amplitude of the oscillations is relatively small as
compared to the exact quantum results. This is in line with the
fact the Ehrenfest dynamics underestimates significantly the
extent of B2u - B3u transfer. In comparison, a resemblance to
oscillatory wavepacket branching is also noticeable in the SM
and SQC results, which are the best performing mapping
approaches.

Fig. 4 depicts the vibrational distribution along the tuning
mode Q2 – the most displaced mode in the B3u surface –
computed via quantum as well as trajectory-based methods.
The quantum distribution, shown in panel (a), oscillates in the
range�4 o Q2 o 5 with a period of E60 fs, localising markedly
at the turning points and exhibiting some wave packet branch-
ing. Also, for the dynamics of this mode, the best predictions
are obtained by surface hopping methods [panels (h)–(j)].
An accurate description of the broadening and the localisation
at the turning points is also obtained by the SQC and – to a lesser
extent – the Ehrenfest methods [panels (g) and (f), respectively].
In contrast, the remaining mapping approaches significantly
overestimate the amount of density around Q2 E 0. This
qualitatively wrong result is in line with the worst performance

Fig. 2 Time-dependent population of the B3u state of pyrazine, calcu-
lated using exact quantum dynamics simulations (thick black line) and
compared with (a) and (b) mapping approaches and (c) surface hopping
approaches.
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in predicting the electronic population dynamics, especially as
compared to the surface hopping methods.

Finally, it is worth noticing that for the LSC-IVR, unity and
SM approaches, the vibrational distribution is locally negative
(red areas in the plots). This is a well know problem of some
mapping approaches, and it is due to the fact that the electro-
nic mapping variables are sampled from a quantum mechan-
ical (partially negative valued) Wigner function, which is then
propagated using classical equations.

4.2 2B1 - 2B2 internal conversion in the 2,6-bis(methylene)
adamantyl cation

As an example of a high-dimensional system, we simulate the
electronic relaxation from the 2B1 to the 2B2 states of the 2,6-
bis(methylene) adamantyl (BMA) radical cation, modelled by
the two-level full dimensional (78D) linear vibronic coupling
model constructed in ref. 68. The diabatic model has the same
form as that used for pyrazine, given in eqn (47), and was used
in previous studies17,38 to test various trajectory-based meth-
ods. The dynamics are initiated in the diabatic 2B1 state using a
Gaussian distribution for the vibrational coordinates, with the
same form as that used in Section 4.1.

The population of the 2B2 state as a function of time,
computed using different surface hopping and mapping meth-
ods, is shown in Fig. 5. The reference quantum mechanical result
was obtained by a multi-layer MCTDH calculation, whose details
are given in the ESI.† In contrast to the pyrazine dynamics, the 2B2

state is populated rather slowly (about 11% in 200 fs). Indeed,
although the wave packet crosses a 2B1/2B2 intersection in 20–
30 fs, it largely remains localised in a region where the energy gap
between electronic states is relatively large (E6400 cm�1, see
Fig. 10 of ref. 68 and the related discussion in the paper).

As shown in panels (a) and (b), the population dynamics is
correctly predicted by the PBME, unity and SM approaches until
E150 fs. The LSC-IVR, unity and Ehrenfest methods are also
relatively accurate, but overestimate the 2B2 by E5% between 50
and 150 fs. At times 4150 fs all mapping approaches deviate slightly
from the exact quantum result. The present results are essentially
identical to those of ref. 38, which were obtained using a different
code; this reinforces the correctness of the present implementation.

The surface hopping results, shown in panel (c), compare
differently with quantum dynamics, depending on the specific
flavour of surface hopping. The FSSH and MISH approaches,
that rely on the computation of nonadiabatic couplings,

Fig. 3 Vibrational density distribution in the B3u state as a function of the coupling mode Q1 of pyrazine, computed (a) quantum mechanically, (b)–(g) using
mapping approaches and (h)–(j) using surface hopping approaches. The atomic displacement vectors of the mode are sketched in the top right panel.
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overestimate the population of the 2B2 state by E5% through-
out the entire simulation time, therefore they perform slightly
worse than the best quasiclassical methods (PBME and unity).
These results match nicely those of ref. 17 and 38.

The LZSH scheme has the worst performance. Landau–Zener
trajectories, that are propagated only relying on adiabatic potential
data, tend to hop completely to the lowest adiabatic surface at the
first passage through the intersection (within 20–40 fs). Afterwards,
no more transitions occur between adiabatic surfaces, and the
diabatic populations start oscillating around the average value of
E0.5 (not shown in the figure), as expected by the fact that the
minima of the two diabatic surfaces differ only by 90 cm�1.

Summarising, although more general conclusions require
more extensive studies, the present results suggest that the
quasiclassical mapping approaches might be more suitable to
describe electronic relaxation dynamics in the case of weak
diabatic coupling and rapidly separating surfaces.

4.3 B3g-B2g internal conversion in the butatriene cation

As a third example, we consider a two-state quadratic vibronic
model for the coupled B3g and B2g state of the butratriene
cation, that are accessible by photoionisation. In particular, we

analyze the population dynamics resulting after initially popu-
lating the B3g state with the same type of Gaussian Wigner
function as for the case of pyrazine discussed in Section 4.1. For
the simulation, the most general form of the diabatic quadratic
vibronic coupling model is adopted,

Ĥ ¼
X18
k¼1

�hok

2
Pk

2þQk
2

� �

þ
X

n;m¼B3g;B2g

jnihmj Vnmþ
X18
k¼1

lðnmÞk Qkþ
1

2

X18
k;k0¼1

OðnmÞkk0 QkQk0

 !
;

(48)

including all 18 modes of the molecule, with parameters taken
from ref. 69.

The population dynamics predicted quantum mechanically
and using various mapping and surface hopping approaches is
depicted in Fig. 6. In the quantum calculation the B2g state is
populated up to 70% in the first 15 fs, and subsequently the
population starts oscillating around the value of 0.6 with a
period of E15 fs. The oscillations become more regular after

Fig. 4 Vibrational density distribution in the B3u state as a function of the tuning mode Q2 of pyrazine, computed (a) quantum mechanically, (b)–(g) using
mapping approaches and (h)–(j) using surface hopping approaches. The atomic displacement vectors of the mode are sketched in the top right panel.
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60 fs and their amplitude decays significantly after 120 fs. The
long time population in the B2g state is in the range 0.50–0.55.

Among the mapping approaches, the PBME, the unity and
the SM methods deliver very similar results. They all predict
oscillations with the same period and amplitudes as for the
quantum mechanical results, which persist also at a longer time
scale. Although the population dynamics is reasonably accurate
until 60 fs, these mapping approaches overestimate the B2g popula-
tion after 60 fs by E10%. Conversely, the LSC-IVR, Ehrenfest and
SQC approaches underestimate the amplitude of the population
oscillations, but predict the correct long time population. Interest-
ingly, the LSC-IVR and Ehrenfest methods are the ones exhibiting
the worst accuracy for the pyrazine model of Section 4.1.

In contrast to the mapping approaches, all surface hopping
methods give similar results, as shown in Fig. 6(b). In particu-
lar, both FSSH and MISH are especially good in the first 60 fs.
After that time, LZSH, FSSH and MISH deliver essentially

identical predictions, slightly overestimating the regularity of
the oscillations. Similar to the mapping approaches, LZSH and
FSSH, they overestimate the long time B2g population by a
small extent (E5%), whereas MISH is more accurate.

4.4 Photoisomerisation of a retinal chromophore model

The last example concerns the cis–trans photoisomerisation
dynamics of the 2-cis-penta-2,4-dieniminium cation (cis-PSB3),
a protonated Schiff base that can be regarded as a prototype
model for the 11-cis retinal chromophore. PSB3 is described by
the two-state three-coordinate anharmonic diabatic model con-
structed by Olivucci and coworkers.70 The three coordinates are
a bond length alternating vibration (r), a dihedral torsion (y)
that connects the cis and trans structures of PSB3, and a
hydrogen out-of-plane wagging mode (f).

Fig. 5 Time-dependent population of the 2B2 state of BMA, calculated
using exact quantum dynamics simulations (thick black line) and compared
with (a) and (b) mapping approaches and (c) surface hopping approaches.

Fig. 6 Time-dependent population of the B2g state of the butatriene
cation, calculated using exact quantum dynamics simulations (thick black
line) and compared with (a) and (b) mapping approaches and (c) surface
hopping approaches.
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Specifically, we use the diabatic model with the functional
form and parameters given in ref. 16, neglecting the kinematic
coupling between the various modes. This model is based on
anharmonic functions that couple the three nuclear modes in a
complex way, but nevertheless the total Hamiltonian has a SOP
form that is suitable for MCTDH calculations. The plugin for
arbitrary SOP diabatic potentials (see Section 3.2) allows run-
ning both quantum and quantum-classical simulations with
essentially the same potential file. The initial condition for the
nuclear coordinates is given by the same Gaussian distribution
described in the Appendix of ref. 16, and the trajectories are
initialised in the upper diabatic state (denoted state ‘‘2’’) in a cis
configuration.

In contrast to the previous examples, in this case the
relevant quantity to be compared across different quantum-
classical methods is the time-dependent quantum yield (TDQY)
for the cis - trans isomerisation, computed as

QYðtÞ ¼ P
ð1Þ
transðtÞ þ P

ð2Þ
transðtÞ

P
ð1Þ
cis ðtÞ þ P

ð1Þ
transðtÞ þ P

ð2Þ
transðtÞ

; (49)

where P(n)
cis/trans is the fraction of trajectories associated to a

cis (cos y 4 0) or trans (cos y o 0) configuration in the
diabatic state n. Considering that, at time t = 0, P(2)

cis C 1, the
denominator of eqn (49) normalises over all possible
photoproducts.16

Fig. 7 shows the TDQY computed quantum mechanically via
MCTDH propagation, as well as using various quantum-
classical approaches. The quantum dynamical simulation pre-
dicts a rise of the TDQY starting around 25 fs and peaking
at E0.7 at 70 fs. This maximum is followed by a decay back to
0.4 at 120 fs. After this time, the TDQY oscillates back and
stabilises around 0.5 with less pronounced oscillations. This
behaviour differs from that of ref. 16, where a smaller primitive
grid was used, but agrees nicely with the results of ref. 71.

The quasiclassical mapping methods yield a different type of
result. The LSC-IVR, PBME and unity approaches [panel (a)] fail
at describing either the initial rise of the TDQY, and the
subsequent decay and oscillatory stabilisation. Among them,
the unity method is the only one able to predict the long time
quantum yield quantitatively, whereas the LSC-IVR and PBME
descriptions underestimate it by 5–10%. The SM, Ehrenfest and
SQC methods [panel (b)] describe better the initial rise and
decay of the TDQY, but fail in reproducing the oscillatory
behaviour. This is likely due to the inadequacy of the mapping
approaches in describing wave packet branching, as described
for pyrazine in Section 4.1. Nevertheless, both the SM and SQC
approaches predict the long time quantum yield with reason-
able accuracy. Conversely, the Ehrenfest scheme overestimates
the TDQY for times 450 fs.

Fig. 7(c) illustrates the predictions obtained by surface
hopping. The three approaches, LZSH, FSSH and MISH, have
a similar performance. FSSH replicates the TDQY curve
obtained by quantum dynamics for the whole simulation time.
The LZSH and MISH approaches respectively over- and under-
estimate the extent of the initial rise in the quantum yield, but

are remarkably accurate at times 4100 fs, with MISH having a
slightly better performance. The accuracy of the predictions for
the diabatic population dynamics, shown in the ESI,† follows
the same trends as for the TDQY.

It is worth noting that the error in the quantum yield for
some approaches is relatively large compared to the E2%
accuracy with which the quantum yield can nowadays be
determined experimentally.72 This example shows that errors
of E10% in the quantum yield, often attributed to an inade-
quate level of electronic structure theory, could also be due to a
poor performance of certain trajectory-based methods for non-
adiabatic dynamics. We hope that the present implementation
will enable further benchmark studies to provide guidance on
the choice of the ‘‘best’’ mixed quantum-classical or quasiclas-
sical method to simulate molecular photoisomerisation
dynamics.

Fig. 7 Time-dependent quantum yield for the formation of the trans-
PSB3 isomer, calculated using exact quantum dynamics simulations (thick
black line) and compared with (a) and (b) mapping approaches and (c)
surface hopping approaches.
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5 Conclusions and perspectives

In this work various numerical methods based on the MMST
mapping for nonadiabatic molecular dynamics are implemen-
ted. The implementation further includes the mapping-inspired
surface hopping method by Runeson and Manolopoulos22 as
well as a plugin to provide analytic diabatic potential energy
surfaces in a sum-of-product form.

Building on previous implementations of the fewest-
switches and Landau–Zener surface hopping schemes, the
present development creates a comprehensive computational
suite for quantum-classical nonadiabatic dynamics based on
independent trajectories. All methods are seamlessly integrated
into the Python package PySurf.64 Its modular design enables
the independent implementation of additional quantum-
classical propagators, sampling algorithms, and evaluators for
forces and nonadiabatic couplings, ensuring flexibility and ease
of integration across different modules. In particular, users can
easily implement other existing or novel quasiclassical
approaches based on the MMST mapping. Following Fig. 1,
this simply requires implementing a new sampling for the
mapping variables, without the need for modifying either the
propagator, the surface point provider or the interfaces with
electronic structure codes.

In particular, the interface with different quantum chemis-
try packages, such as Q-Chem (used, e.g., in ref. 57), is auto-
matically available in the new implementation of mapping
propagators in the adiabatic representation (see Section 2.2).
Such interface will be used in forthcoming investigations to run
mapping and surface hopping calculations ‘‘on-the-fly’’.

On the other hand, the plugin for analytic potential energy
surfaces allows the use of essentially the same potential file to
both PySurf and the most popular quantum dynamical codes,
such as Heidelberg MCTDH or Quantics. This makes PySurf an
excellent platform to perform systematic benchmarks of
trajectory-based against full quantum dynamical results for
large sets of Hamiltonian models and various classes of photo-
chemical processes.18

The first tests for such benchmarks are presented here for
prototypical photophysical and photochemical processes: the
internal conversion in pyrazine, 2,6-bis(methylene) adamantyl
and butatriene cation, as well as cis–trans isomerisation in a
protonated Schiff base. Keeping in mind that the present
simulations are far from constituting a comprehensive bench-
mark test, the current results suggest that the most commonly
used FSSH method often provides the best agreement with
quantum dynamics, together with the recently developed MISH
scheme. Furthermore, in general, surface hopping schemes
seem to require fewer trajectories for their convergence.

The perspective for future studies is to extend significantly
the benchmark set, so to perform quantum and quantum-
classical simulations systematically and on a high number
of models. This will contribute to the creation of guidelines
to help users to choose the best quasiclassical or quantum-
classical approach to simulate specific photochemical
phenomena.
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