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Raman spectroscopy in tandem with machine
learning – based decision logic methods for
characterization and detection of primary
precancerous and cancerous cells†
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Mahmoud Huleihel‡a and Ahmad Salman *‡g

Early cancer detection improves patient outcomes, but most Raman spectroscopy research has focused

on discriminating between normal and malignant cells, ignoring the essential precancerous stage. This

study fills that gap by combining Raman spectroscopy with machine learning methods to characterize

and categorize normal (primary fibroblast cells from mouse embryos), precancerous (murine fibroblast

cell lines (NIH/3T3)), and malignant mouse fibroblast cells transformed by a murine sarcoma virus

(MBM-T) as cancerous cells. Key spectral bands associated with malignancy progression were identified

using ANOVA-based feature selection, while Log-likelihood estimation decision logic enhanced classifi-

cation robustness across multiple measurements per cell. The method was 95.8% accurate in classifying

normal from cancerous cells, 91% for normal vs. precancerous cells, and 86% for precancerous vs cancer-

ous cells. These results show that Raman spectroscopy has the potential to be a valuable diagnostic tool

for early cancer detection, offering insight into carcinogenesis spectrum indications. This study advances

Raman-based diagnostics in oncology by strengthening spectrum analysis and classification algorithms.

Introduction

Cancer remains one of the most significant worldwide health
challenges, accounting for an anticipated 10 million deaths by
2020.1 According to the United States Cancer Statistics, in
2019, 1 752 735 new invasive cancer cases were reported in the
United States. For all cancers combined, the incidence rate
was 439 per 100 000 standard population overall.2

Furthermore, the GLOBOCAN statistics show that an antici-
pated 19.3 million new cancer cases and about 10.0 million

cancer deaths occurred in 2020.3 Early detection is crucial
since the cancer stage at diagnosis has a significant impact on
patient survival and quality of life.4,5

The prognosis of cancerous patients is strongly dependent
on early detection, yet many malignancies lack reliable screen-
ing methods for precancerous stages.6,7 Conventional imaging
techniques such as X-ray, MRI, and PET scans often fail to
detect subtle biochemical changes preceding malignancy, lim-
iting their effectiveness in early diagnosis.8–10 This highlights
the need for sensitive, label-free techniques to identify early
molecular transformations associated with cancer develop-
ment. Thus, developing novel cancer detection, diagnosis, and
treatment methods is urgently required.1

Raman spectroscopy has emerged as an effective tool for
biochemical characterization of cells and tissues, providing a
noninvasive, water-insensitive method for detecting molecular
changes.9,11–18

Raman spectroscopy enables label-free, hypothesis-free
molecular profiling, circumventing antibody optimization and
spectral overlap limitations inherent to fluorescence-based
techniques.13,19 Preserving samples in their native state facili-
tates re-analysis and is particularly suited for dried or archival
specimens where labeling is impractical.20 These attributes
make Raman a complementary tool to targeted flow cytometry
for broad biomolecular studies.21
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Several studies have effectively combined Raman spec-
troscopy with machine learning methods to classify normal
and cancerous cells.22–31 However, most of these studies focus
on well-established malignancies, overlooking the transitional
precancerous stage—a critical window for early
intervention.9,11–18 Precancerous cells exhibit progressive mole-
cular changes, including metabolic shifts, nucleic acid modifi-
cations, and altered protein structures, yet the spectral bio-
markers associated with this transformation remain poorly
characterized.

To address this gap, we present a Raman spectroscopy-based
approach that explicitly incorporates the precancerous stage,
enabling the detection of molecular changes preceding malig-
nancy. Our study examines three cell types: murine primary
fibroblasts (normal), NIH/3T3 fibroblasts (precancerous), and
MBM-T sarcoma-transformed cells (cancerous). We identify key
Raman biomarkers associated with cancer progression by ana-
lyzing spectral differences across these states. For academic
integrity, it is important to clarify that these cell lines are not
meant to represent a direct oncogenic trajectory but instead
serve as distinct phenotypic states used to evaluate our Raman-
based approach’s sensitivity and discriminatory power.

In addition, to improve classification robustness and
account for multiple spectral measurements per cell, we
combine powerful machine learning-based feature selection
with decision logic techniques. This study advances Raman
spectroscopy as a cutting-edge diagnostic tool for early cancer
diagnosis. It reveals important spectral wavenumbers that dis-
close the transition from healthy to precancerous and, even-
tually, malignant states. Our findings demonstrate the enor-
mous potential of Raman spectroscopy in tandem with
machine learning as a sensitive, label-free diagnostic
approach, paving the path for more effective screening
methods and preventive healthcare interventions.

Materials and methods
Biological system preparation

Primary fibroblast cells from separate mice embryos, murine
fibroblast cell lines (NIH/3T3), and malignant mouse fibro-
blast cells transformed by a murine sarcoma virus (MBM-T)
were obtained from different cultures and biological replicates.
Sample preparation and Raman measurements were con-
ducted over one year, with each measurement session per-
formed on the same day as sample preparation to maintain
consistent physiological conditions.

While measurements for all three classes (normal, precan-
cerous, and malignant) were not always performed on the
same day, we minimized potential batch effects by:

• Adhering to strict, consistent preparation protocols,
• Using identical instrument settings for all sessions,
• All cells were used at early passages—passage 2 for

primary cells and passages 3–4 for cell lines and transformed
cells—with viability and normal morphology confirmed under
a light microscope before drying.

The three cell type were maintained in T25 cell culture
flasks using an RPMI medium supplemented with 10% FBS,
two mM L-glutamine and 2% penicillin–streptomycin solution
(50–100 µg ml−1), in a 5% CO2 environment at 37 °C s We har-
vested the cells from the culture flask by trypsin treatment,
then centrifuged to form a pellet, washed three times with
500 µl of 0.9% NaCl, and re-suspended in 50 µL of 0.9% NaCl.
Cell concentration was determined using a hemocytometer.
The cells were then pelleted and resuspended to achieve a
final 30–50 cells per µL concentration. A 2 µL drop of each
sample was applied onto an aluminum-coated slide and left to
dry for 10 minutes.

Dried cells were used to ensure sample stability and repro-
ducibility during Raman spectral acquisition. While drying
can alter cell morphology and may damage membranes, our
analysis targets biochemical composition rather than struc-
tural features.

Raman measurements

The dried cell samples were measured using the single-spec-
trum mode of a Horiba LabRAM HR Evolution Raman micro-
scope equipped with a sincerity CCD detector (deep-cooled to
−60 °C, 1024 × 256 pixels). A 532 nm Nd: YAG green laser
(10 mW, two μm spot size) was used for illumination. A 10%
transmittance filter was placed at the laser probe station to
prevent laser-induced sample heating.

Raman measurements were conducted after carefully adjust-
ing the focal plane to ensure accurate focus. Spectra were
recorded with a 60 s integration time for all measurements. The
laser was focused onto the sample using a 50× NA objective lens
(Olympus MPLAN), generating a diffraction-limited spot size of
1.54 μm. A 600 lines per mm grating optimized signal strength
while minimizing background autofluorescence.

The wavenumber calibration was done using a silicon refer-
ence sample every two hours. For each cell, three measure-
ments were taken from the center, cytoplasm, and membrane
regions, as illustrated in Fig. 1. The Randomizing measure-
ment regions were randomized within sessions to reduce sys-
tematic bias.

Although 785 nm excitation is standard for live-cell Raman
spectroscopy (minimizing fluorescence and
photodamage),32–34 we selected 532 nm for its higher scatter-
ing efficiency (∼1/λ4) and improved spatial resolution, critical
for resolving fine biochemical details in fixed/dried cells. This
wavelength has been successfully applied to study lipid–
protein dynamics and subcellular structures in fixed
systems,35,36 with minimal fluorescence interference in pro-
cessed samples. A low-power illumination further reduced
potential artifacts, aligning with established ex vivo cellular
analysis protocols.37–39

Over one year, 222 individual and different cells were ana-
lyzed using the Raman facility: 92 normal, 76 precancerous,
and 54 cancerous cells. These different 222 cells were con-
ducted across multiple biological replicates from different
mice, cultures, and batches, ensuring experimental variability
and enhancing the generalizability of the findings.
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Data preprocessing

Fig. S1a† presents typical raw Raman spectra of primary fibro-
blasts obtained from the Raman spectrometer. All acquired
spectra were pre-processed before classification to enhance
spectral quality, refine Raman shift bands, and facilitate com-
parison across different spectra. The pre-processing steps were
implemented using our in-house Python code.

First, the spectra were cut to the 1800–600 cm−1 range and
smoothed using the Savitzky–Golay algorithm (5-point
window) to reduce instrumental noise and enhance spectral
clarity. Next, baseline correction was applied to eliminate fluo-
rescence-induced variations and spectral baseline shifts.

For baseline correction, each spectrum was divided into 64
equal-sized segments. The minimum y-value within each
segment was identified, and these minima were used to fit a
polynomial function representing the baseline. This poly-
nomial was then subtracted from the original spectrum to
obtain the baseline-corrected spectrum. The entire procedure
was repeated five times to ensure optimal correction.

The final pre-processing step involved vector normalization.
Each spectrum was treated as a vector, with the average inten-
sity across all wavenumbers calculated and subtracted from
the spectrum. The resulting spectrum was then normalized to
a unit vector by computing the sum of the squared intensity
values (Y-axis) and dividing by the square root of this sum.
Since vector normalization can yield negative intensity values,
all spectra were adjusted by shifting the minimum intensity to
zero.

Machine learning analysis

This study examines classification among normal, precancer-
ous, and cancerous cells, focusing on feature selection
methods to identify the most relevant wavenumbers linked to
malignancy progression.

The classification system

The analysis utilized the Raman spectra to enhance classifi-
cation performance, as previous studies have demonstrated
that feature selection improves data informativeness and, con-
sequently, classifier accuracy.40 The Raman spectra, consisting
of 970 data points representing the wavenumbers in the
1800–600 cm−1 region, served as the initial feature vectors.

However, a substantial portion of these wavenumbers con-
tributed little to no valuable information for classification. To
refine the dataset and optimize classification performance, the
ANOVA F-score was applied to these Raman spectra for feature
selection.41–43 This step is crucial for reducing data dimension-
ality while simultaneously enhancing classification accuracy.

Fig. 2 presents a comprehensive workflow of the machine
learning pipeline, illustrating each stage—from feature extrac-
tion to model construction.

Validation

The classification system evaluates three binary tasks: normal
vs. cancerous, normal vs. precancerous, and precancerous vs.
cancerous, distinguishing cell types with high precision. As
described in Fig. 1, three spectra were reordered from each
cell; thus, the leave-one-group-out (LOGO) approach was
adopted for validation. In this manner, each cell was treated as
a set whose elements are the three spectra recorded by the
Raman spectrometer. All spectra from a held-out cell were
classified during validation, while the remaining cells trained
the model, iterating until every cell was tested. A Log-
Likelihood Ratio (LLR) decision framework aggregated predic-
tions across a cell’s three spectra, assigning a final label
according to the used classifier: normal or precancerous;
normal or cancerous; precancerous or cancerous, based on col-
lective evidence.

Fig. 1 Representative images of (a) NIH/3T3, (b) Primary fibroblast, and
(c) MBM-T cells observed under the Raman microscope. The three
measured areas are marked with circles: center (red), cytoplasm (blue),
and edge (yellow).
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To further ensure robustness, 5-fold cross-validation was
implemented in some of the classification experiments,
enabling the estimation of the error as standard deviation. Here,
cells—not individual spectra—were partitioned into five folds,
ensuring no spectra from the same cell appear in both sets. We
kept the same ratio of cells in each fold. In each iteration, four
folds trained the model, while the fifth fold’s cells were classi-
fied via the LLR decision system, which combines predictions
from all three spectra of each validation cell to classify it.

By rotating the test fold across all partitions, the method
generated an averaged performance metric with standard devi-
ation, quantifying model stability.

This dual-validation strategy—LOGO for exhaustive per-cell
assessment and 5-fold CV for error estimation—strengthened
generalization while rigorously respecting the data’s hierarchi-
cal structure.

Features selection

Using the ANOVA F-score approach, we identified the most
diagnostically important spectral characteristics embedded in
Raman spectra, revealing critical biomarkers for illness
characterization.44,45

This approach assumes statistical independence between
the features. It evaluates each feature’s significance in differen-
tiating between the different pairs,46,47 ranking them from the
most significant to lowest based on their F-scores. Higher-
ranked features exhibit greater discriminatory power. The most
significant 60 spectral features distinguishing between
Controls and Precancerous, Controls and Cancerous, as well as
Precancerous and Cancerous, are detailed in Table S1a.†

Since feature selection is critical for interpretability (explain-
able AI),48 we prioritized features that reflect malignancy-driven
biological alterations rather than unrelated variability. We also
applied relative entropy as an alternative feature selection
method to further validate our findings and compared the
results with the ANOVA F-score approach (Table S1b†).

We repeat each classification procedure 20 times using a
5-fold cross-validation framework to evaluate classification per-
formance, thus guaranteeing strong model generalization
methodically and improving classification accuracy. The data-

base was randomly divided into five folds each time, ensuring
diverse training and testing sets. Different feature vector
subsets were used each time, starting with the five most stat-
istically significant wavenumbers and incrementally expanding
the selection in five increments, up to 150 features.

The optimal feature subset for each classification task
(Control vs. Cancerous, Control vs. Precancerous, and
Precancerous vs. Cancerous) was selected through manual
evaluation of feature importance rankings (Fig. 3a).

We plotted the accuracy versus the number of features in
steps of 5 features. Fig. 3a shows the curve plateaus at 10 fea-
tures for Control vs. Cancerous, 70 for Control vs.
Precancerous, and 115 for Cancerous vs. Precancerous classifi-
cation. Thus, we chose these values as the optimal feature
numbers for their respective classifications. The standard devi-
ation of accuracy was calculated and plotted in Fig. 3a.
Moreover, in Fig. 3b, we compare the accuracy of the Logistic
Regression (LR) classifier for the classification between
Precancerous vs. Cancerous obtained using two approaches:
(1) Log-Likelihood Ration (LLR)-based decision logic applied
across three measurement sites (Fig. 1) and (2) classification
performed separately for each site without decision logic.

For comparison, extra analysis was conducted using average
spectra, where each cell was represented by the average Raman
spectrum from the three sites shown in Fig. 1. The LR model
was used to classify the two categories in each couple, with
five-fold cross-validation.

As shown in Fig. 3b, the LR classifier achieved better per-
formance using the first approach when the number of fea-
tures was relatively small (10 features were chosen).

Fig. S2a and S2b† are similar to Fig. 3b but correspond to
the classification of Normal vs. Cancerous and Normal vs.
Precancerous, respectively.

Logistic regression (LR) classifier

The LR classifier was implemented as a linear classifier to clas-
sify samples into Normal, Precancerous, and Cancerous
categories.43,49–51 The loss function minimized the cross-
entropy between the actual labels and the LR predictions to
enhance classification accuracy.

Fig. 2 Illustration of the system’s training and testing process.
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Decision logic system

Cell-level classification in this system is performed by a
decision logic framework that interprets the classifier’s output
scores. For single-measurement samples, classification is
straightforward, with labels assigned based on a predefined
threshold.52 However, in this study, each sample (cell) is rep-
resented by multiple measurements (three spectra), necessitat-
ing a decision considering all measurements.

To consolidate multiple measurements into a final classi-
fication, we explored the LLR,53 which takes into account all

the scores from all the measurements. LLR offers a refined
approach by weighting predictions based on certainty,
making it particularly valuable for high-precision classifi-
cation tasks.

Evaluation

To assess the performance of the LR classifier, we applied the
5-fold cross-validation as described in the “Feature Selection”
section, repeating the process twenty times. The feature vector
sizes used were 10 features for Control vs. Cancerous, 70 for

Fig. 3 (a) LR binary classification results for: Control vs. Cancerous, Control vs. Precancerous, and Precancerous vs. Cancerous. The analyses were
conducted using individual spectra from the three measurement sites, incorporating the LLR DL method to classify samples as Precancerous vs.
Cancerous. (b) LR binary classification for the Precancerous vs. Cancerous, comparing two approaches: (i) classification using LLR-based decision
logic across three measurement sites and (ii) classification performed separately for each site without decision logic.
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Control vs. Precancerous, and 115 for Cancerous vs.
Precancerous classification.

At the cell level, classification is determined using the LLR
as a decision-logic approach, which relies on the classifier’s
scores for each spectrum within a given cell. This process is
repeated for all cells in the dataset, with the final classification
of each cell being based on the collective output of the classi-
fier from its spectra. The performances of the binary classifier
are summarized in a confusion matrix in Table 1.

When the classification was performed between couples of
the three categories, the cancerous (MBM-T) category was
determined to be the positive state in Normal–Cancerous and
Precancerous–Cancerous. At the same time, when the classifi-
cation was between Precancerous–Normal, the precancerous
(NIH/3T3) category was determined as the positive state.

Statistical analysis

Statistical analysis in this study was conducted to evaluate the
significance of spectral features and the performance of classi-
fication models applied to Raman spectral data from Normal,
Precancerous, and Cancerous cells.

Evaluating the performance of the classifier

The performance of the classifiers was evaluated using several
metrics: Accuracy (Acc), Sensitivity (Sen), Specificity (Spe),
Negative Predictive Value (NPV), and Positive Predictive Value
(PPV).

Accuracy is the percentage of truly predicted both positive
and negative states; Sensitivity is the percentage of actual posi-
tive states; Specificity is the percentage of truly predicted nega-
tive state samples out of actual negative state samples; PPV is
the percentage of truly predicted positive state out all the
samples predicted as positive by the classifier; and NPV is the
percentage of truly predicted negative state out all the samples
predicted as negative by the classifier.

t-Test and P-value

A t-test is a common hypothesis test used to compare the
means of two groups and determine if they are significantly
different from each other. It determines whether the compared
categories are substantially different, whether observed var-
iances are due to chance, or represent a meaningful differ-
ence.54 The p-value represents the likelihood of obtaining out-
comes as extreme as those observed under the null hypoth-
esis.55 A p-value of less than 0.05 denotes a statistically signifi-
cant difference.

Results and discussion

The Raman average spectra acquired from the cytoplasm,
edge, and center sites of mouse embryo fibroblast cells as
primary (normal) cells, NIH/3T3 (precancerous), and MBMT
(cancerous) are presented in Fig. 4a, covering the
1800–600 cm−1 fingerprint region. This spectral range provides
key biochemical information related to DNA, lipids, proteins,
and nucleic acids, as detailed in Table S2,† which lists all pro-
minent Raman bands based on published literature.56–59 The
major peaks are labeled in Fig. 4. Each peak in the Raman
spectrum corresponds to specific vibrational modes of func-
tional groups in key biomolecules, offering a detailed mole-
cular fingerprint.60 As shown in Fig. 4a, the Raman spectra of
the three biological systems exhibit high similarity, with some
differences in Raman intensities and subtle variations in spec-
tral shape across certain regions. To emphasize these spectral
changes, difference spectra (Δ) were calculated and plotted in
Fig. 4b, representing Normal–Cancerous (blue line), Normal–
Precancerous (orange line), and Precancerous–Cancerous
(green line) comparisons.

However, not all spectral differences between the tested cell
types directly reflect compositional and biochemical changes
associated with cancer progression. Spectral variations can
arise from two main sources: inter-variance, which represents
true biological differences between Normal, Precancerous, and
Cancerous states due to pathological abnormalities, and intra-
variance, which includes both biological variability and techni-
cal factors within each group (not relevant to malignant trans-
formation), such as batch-to-batch variations.61 Additionally,
due to the spatial resolution of Raman, different organelles
and components could be measured depending on the
measured site; these variations in the same cell types are also
considered as intra-variance.

Therefore, careful feature selection is essential to isolate
biomarkers linked to malignant transformation.

By correlating these wavenumbers with their corresponding
biomolecules, we aim to identify the underlying biological
changes associated with malignancy, relating spectral features
to molecular alterations that may drive cancer development
and offering insights into key biochemical processes under-
lying tumorigenesis.48 A key advantage of feature selection
over dimensionality reduction methods such as PCA, UMAP,
and Diffusion Map is its interpretability, allowing for a more
direct biological understanding of the spectral variations.62,63

Our approach enhances diagnostic accuracy and interpret-
ability by selecting the most informative spectral features,
ensuring they reflect malignancy-driven alterations rather than
unrelated variability. This framework strengthens the
reliability of spectral classification, providing deeper insights
into key biochemical processes involved in cancer
progression.49,64–66 In contrast, other methods do not give
specific information regarding the contribution of specific
wavenumbers to the classification. The information derived
using these methods is spread across the entire spectroscopic
range.

Table 1 Typical confusion matrix of a binary classifier obtained after
validation

Predicted

Positive Negative

True Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)
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Table 2 Metrics derived from the top 20 selected wavenumbers, along with major contributors to the absorption at these wavenumbers. Each
metric was calculated as the sum of the absorption intensities at the corresponding wavenumbers

Pair Metric Wavenumbers (cm−1) Major contributed molecules p-Value

Normal–Cancer I 1337, 1336, 1334, 1333, 1332, 1331, 1329, 1328, 1327, 1326, 1324,
1323, 1322, 1321, 1320, 1318, 1317, 1316, 1315, 1313

Lipid/protein/nucleic acids 1.2 × 10−36

Normal–Precancer II 1625, 1624 Amide I 1.6 × 10−22

III 1425 Deoxyribose 2.9 × 10−22

IV 1318, 1317, 1316, 1315, 1313,1312 Lipid/protein/nucleic acids 2.5 × 10−26

V 1250, 1249, 1248, 1246, 1245 Amide III, guanine, cytosine 2.0 × 10−23

VI 1102, 1099, 1098, 1097, 1094, 1093 PO2
−/DNA/lipids 4.4 × 10−22

Precancer–Cancer VII 1748, 1747, 1746 Lipids/phospholipids 1.6 × 10−8

VIII 1705, 1703, 1702, 1701, 1700, 1698, 1697, 1690 amino acids aspartic &
glutamic acid/Amide I

1.2 × 10−8

IX 1327, 1326, 1324, 1323, 1322, 1321 Proteins/nucleic acids 4.1 × 10−9

X 1264, 1263, 1261, 1260 Amide III 2.2 × 10−8

Fig. 4 (a) Average Raman spectra in the 1800–600 cm−1 region from Normal (primary), Precancerous (NIH/3T3), and Cancerous (MBM-T) cells
measured from the three sites: cytoplasm, edge, and center. (b) Difference spectra (Δ) for Normal–Cancerous, Normal–Precancerous, and
Precancerous–Cancerous comparisons. The top twenty discriminative features (Table S1†) are marked in blue, orange, and green shading.

Analyst Paper

This journal is © The Royal Society of Chemistry 2025 Analyst, 2025, 150, 3349–3363 | 3355

Pu
bl

is
he

d 
on

 2
7 

Ju
ni

 2
02

5.
 D

ow
nl

oa
de

d 
on

 2
7/

11
/2

02
5 

02
:3

9:
29

. 
View Article Online

https://doi.org/10.1039/d5an00360a


To demonstrate the efficiency of the selected feature tech-
niques, we employed the t-test to compare the averages of pre-
defined metrics between two groups of the compared cat-
egories and evaluate whether they differed substantially.

A t-test determines whether the compared categories are
substantially different, whether observed variances are due to
chance, or represent a meaningful difference.54 The p-value
represents the likelihood of obtaining outcomes as extreme as
those observed under the null hypothesis. A p-value of less
than 0.05 denotes a statistically significant difference.

Before performing t-test analysis, Raman spectra acquired
from different subcellular regions (center, cytoplasm, mem-
brane) were rigorously averaged within each individual cell to
avoid pseudo-replication. This process generated one represen-
tative spectrum per cell, resulting in 222 independent cell-level
data points and ensuring that each biological replicate contrib-
uted a single, independent measurement to the analysis.

We applied a t-test to compare the two category pairs based
on different metrics, as presented in Table 2: Normal–
Cancerous, Normal–Precancerous, and Precancerous–Cancerous.

The number of metrics defined for each pair depends on
the dispersion of these top 20 wavenumbers across the
1800–600 cm−1 region (Fig. 4b). These predefined metrics are
calculated as the sum of absorption intensities at the corres-
ponding wavenumbers within each metric and are associated
with their specific vibrational modes and contributing mole-
cules (Table 2).

A significant difference between the two averages suggests a
substantial alteration in the contents of the corresponding
molecules. For example, for the “Normal–Cancer” pair, we
summed the absorption intensities at the wavenumbers corres-
ponding to metric I (Table 2). The resulting p-value indicated a
statistically significant differentiation between the normal and
cancer groups. Furthermore, the observed alteration in lipid,
protein, and nucleic acid contents are significant in the trans-
formation from normal to cancerous state.

We presented the t-test results as a violin plot based on
each metric in Fig. 5. As seen in Table 2, significant differences
were observed between the averages of the compared groups in
all the metrics, in the specific wavenumber and corresponding
biomolecules. The significant differences observed in all the
evaluated metrics confirm the effectiveness of the selected
feature selection techniques in distinguishing between the
compared categories. The identified spectral features and their
corresponding biomolecules provide biologically relevant
insights into the underlying differences between the groups.
These findings reinforce the importance of feature selection in
enhancing classification accuracy and improving the interpret-
ability of spectral-based diagnostics.

The ANOVA F-score analysis identified the most informative
spectra features, effectively distinguishing among the com-
pared categories in three pairs of the groups: Cancerous vs.
Normal, Precancerous vs. Normal, and Cancerous vs.
Precancerous (Table S1†). These key features, visually marked
in Fig. 4b with blue, orange, and green shading, enhance early
cancer detection and understanding of tumorigenesis.

The transition from normal to cancerous states involves
progressive molecular changes that can be detected using
Raman spectroscopy.67 We systematically analyze molecular

Fig. 5 t-Test statistical calculations presented as Violin plots for:
Normal–Cancer (a), Normal–Precancer (b), and Precancer–cancer (c)
based on each metric. The calculation was performed for the I–X
metrics defined in Table 2. For each spot appears, three horizontal lines,
the middle line is the average, and the upper and lower lines represent
the minimum and maximum of the calculated metrics. The shadowed
plot is the kernel density distribution estimate of the metrics values.

Paper Analyst

3356 | Analyst, 2025, 150, 3349–3363 This journal is © The Royal Society of Chemistry 2025

Pu
bl

is
he

d 
on

 2
7 

Ju
ni

 2
02

5.
 D

ow
nl

oa
de

d 
on

 2
7/

11
/2

02
5 

02
:3

9:
29

. 
View Article Online

https://doi.org/10.1039/d5an00360a


changes based on the best 20 selected features associated with
precancerous transformation and the transition between these
states (Table 3).

We correlated the top 20 selected spectral features (wave-
numbers) with the functional groups of the biomolecules that
compose the cells, identifying specific biochemical alterations
associated with malignant transformation based on literature
(Table 3).

These spectral markers reflect key molecular changes,
including lipid membrane remodeling, shifts in protein sec-
ondary structures, and alterations in nucleic acid composition.
The observed spectral variations suggest disruptions in lipid
saturation, indicative of altered membrane fluidity and cellular
signaling in tumorigenesis. Additionally, protein-related fea-
tures point to changes in β-sheet and α-helix structures linked
to cytoskeletal remodeling and protein folding dynamics.

Moreover, the neoplastic cells generate more lactate than
healthy cells,80,81 while spectral bands corresponding to
nucleic acids highlight transcriptional and epigenetic altera-
tions characteristic of precancerous and cancerous states
(reference). The upregulation of specific Raman bands associ-
ated with oxidative stress suggests an imbalance in cellular
redox homeostasis, a hallmark of cancer progression.
Systematically mapping these spectral features to biochemical
processes provides deeper insight into the molecular events
driving tumorigenesis. This approach enhances our ability to
differentiate between normal, precancerous, and cancerous
states, reinforcing the potential of Raman spectroscopy for
early cancer detection and classification.

Cancerous and precancerous cells express oncoproteins
that resemble normal cytoplasmic proteins, disrupting DNA–
protein interactions and modifying nuclear proteins involved

Table 3 Top 20 Raman spectral features via ANOVA-based selection: correlating functional group vibrations with biochemical alterations in
Normal, Precancerous, and Cancerous cells

Wavenumber
(cm−1) Vibrational mode

Associated
biomolecules

Cell type
comparison Biochemical significance

1690–1698 CvC stretch Lipid *** ● Indicates altered lipid metabolism, with increased
unsaturated fatty acids supporting cell division, membrane
fluidity, and metastasis.68

Amide I CvO
stretch

Protein ● Protein structure changes (misfolding, aggregation) are
linked to disrupted proteostasis, oxidative stress, and
oncogenic activation.69 (see 1687–1680 for more on protein
aggregation and structural shifts.)

1705–1700 CvC OH Amino acids aspartic
& glutamic acid

*** May reflect altered amino acid metabolism, protein
modifications, and microenvironmental shifts, supporting
tumor growth and progression70,71

1748–1746 CvC stretch Lipid *** lipid changes in cancer progression, including increased
unsaturation, membrane remodeling, enhanced lipid
synthesis, oxidative stress, and altered signaling, all
supporting tumor growth and metastasis.72

1624, 1625 Amide I CvO
stretch

Protein ** Protein misfolding and post-translational modifications
(glycosylation, oxidation) are associated with oxidative stress
and the transition from normal to precancerous stages.73

1337–1313,
1327–1321

CH2/CH3 defor-
mation and torsion

Lipids *, *** Increased intensity in cancer cells suggests altered lipid
metabolism and membrane composition, supporting rapid
cell division and higher membrane fluidity, critical for tumor
growth.68

1321 CH2 bending Lipid–protein
interactions

* May reflects altered lipid–protein interactions in cancer cell
membranes, contributing to membrane dynamics essential
for tumor growth and metastasis.74

1318–1312 CH2/CH3 bending
vibrations

Lipids and proteins ** Increased intensity in precancerous cells suggests lipid raft
formation, which is involved in signaling pathways that
promote proliferation, survival, and membrane remodeling.75

1264–1261 PO2
− stretch Nucleic acids *** ● Nucleic acids: Extensive modifications in DNA, including

mutations, chromosomal instability, and increased
replication, driving tumor growth.76

CH2/CH3
Deformation

Lipids/proteins ● Lipids: Metabolism alterations and membrane remodeling
enhance oncogenic signaling and metastasis.77

1250–1245 C–C stretching Proteins/lipids ** Alterations in lipid metabolism and raft formation are critical
in early cancer progression. In precancerous cells, membrane
changes facilitate oncogenic signaling.77

1100 C–N stretch Proteins/nucleic
acids

** Reflects protein backbone modifications and nucleic acid
integrity changes (e.g., DNA methylation, oxidative damage),
common in early-stage mutations.73,78

1102–1093 PO2
− stretch Nucleic acids ** Shifts and intensity changes correspond to genomic

instability (epigenetic changes, mutations), marking early
DNA disruptions linked to cancer initiation.79

Normal–Cancer (*); Normal–Precancerous (**); Precancerous–Cancerous (***).
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in cell division and DNA replication, resulting in uncontrolled
proliferation.81

Genes associated with cell cycle regulation (e.g., CCNB1,
MCM3, MCM4, MCM7) and oxidative phosphorylation (e.g.,
ATP5B, ATP5G3) are upregulated in precancerous and cancer-
ous cells, leading to increased protein levels.82 These mole-
cular changes correspond to specific Raman spectral shifts,
particularly in the Amide II and Amide III regions at 1250 and
1267 cm−1.83

The spectral differences between the abnormal and normal
categories are larger than the spectral differences between the
cancerous and precancerous categories, as seen in Table S1,†
Fig. 2 and 3. This trend is further supported by the p-values in
Table 2, where the Normal–Cancer comparison exhibits signifi-
cantly lower p-values than the Normal–Precancerous and
Precancerous–Cancerous comparisons. This is not surprising
and makes sense from a biological point of view. As men-
tioned above, the precancerous and cancerous biological
systems have many similar properties and characteristics. As is
known, the precancerous (NIH/3T3) cells have undergone
many changes due to various mutations throughout the mul-
tiple transfers. However, they are still not considered cancer-
ous cells because they do not have all the properties of a can-
cerous cell.84

The classification analyses in all the classification experi-
ments were based on selected features derived from Raman
spectra by ANOVA F-score in the 1800–900 cm−1. The classifi-
cation was performed separately as a binary classification
between all the different pairs: Normal–Cancerous, Normal–
Precancerous, and Precancerous–Cancerous.

In this analysis, leave-one-group-out cross-validation
(LOGOCV) was used to generate the receiver operating charac-
teristic (ROC) curve to optimize the classification operating
point (threshold) and to estimate the classifier’s performance
as the area under the curve (AUC) of the ROC curve. Each
group consisted of three measurements taken from the center,
cytoplasm, and edge of the same cell (Fig. 1).

For example, when the classification is between the normal
and cancerous categories, the ROC curve evaluates the tests’
accuracy quantitatively in terms of correct determination for a
certain sample as normal or cancerous by calculating the AUC
of the ROC curve.

Fig. 6 presents the LR model’s ROC curves and the operat-
ing points for the binary classification: Normal vs. Cancerous,
Normal vs. Precancerous, and Precancerous vs. Cancerous. The
LOGOCV was used at the spectrum level, while the sample cat-
egory was determined using LLR.

The LR classification’s performance for the discrimination
between the different categories of each pair: Normal–
Cancerous, Normal–Precancerous, and Precancerous–
Cancerous is summarized in Table 4.

As shown in Fig. 3, S2a, S2b,† and Table 4, the performance
of the LR logic across three measurement sites, incorporating
the LLR DL method for classifying samples as Precancerous vs.
Cancerous, surpasses the performance obtained when each
site is analyzed separately without decision logic.

Therefore, for future studies, acquiring spectra from
additional sites and analyzing cells as a group using spectra
from all sites is recommended. This approach involves evaluat-
ing data at the spectrum level and applying a decision logic
method to determine the classification at the cell level.

The results presented in Table 4 demonstrate the powerful
capability of Raman spectroscopy machine learning for excel-
lent differentiation between the normal and precancerous or
cancerous cells, based on the changes in the cells’ bio-
molecules, with 91% and 95.1% accuracy, respectively. In
addition, this study shows the high potential of this method to
differentiate between precancerous and cancerous cells with
90% accuracy, where the spectral differences between precan-
cerous and cancerous categories are minute. This finding is
significant since detecting precancerous cells before develop-
ing cancerous cells is critical for the effective prevention/treat-
ment of cancer development.

The data is unbalanced and was threatened by training the
LR with a weighted loss to emphasize the smaller class. This is
a widely used strategy to overcome the unbalanced data
problem.85

When comparing classifier performance using ANOVA
F-score selected features with and without class-weighted
(Columns I and II), we observe no significant advantage from
imbalance adjustment (Column II). The performance metrics
(AUC, Accuracy, Sensitivity, Specificity, PPV, and NPV) remain
statistically equivalent within their respective error margins.

This finding aligns with expectations, as our dataset’s min-
ority class representation (24%) substantially exceeds the

Fig. 6 ROC curves for classifying the binary classification: Normal vs.
Cancerous, Normal vs. Precancerous, and Precancerous vs. Cancerous.
The LOGOCV was used at the spectrum level, while the category of the
sample was determined using LLR. The operating points are labeled as
red points.
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10–15% threshold where class imbalance typically impairs
performance.86,87 Existing literature demonstrates that class-
weighted LR with feature selection maintains robustness for
minority classes ≥20%,85 which supports our observed metric
stability (Table 4).

The consistent outperformance of average spectra analysis
and multi-site LLR fusion over single-site methods across all
classification pairs (Normal–Cancerous, Normal–Precancerous,
Precancerous–Cancerous) and performance metrics stems
from noise reduction, enhanced statistical power, and com-
pensation for site-specific variability. Integrating data across
sites improves signal-to-noise ratio, increases generalizability,
and mitigates biases, leading to more robust and biologically
meaningful classification. This aligns with established data
fusion principles and confirms their superiority for diagnostic
applications requiring high reliability.

Our comparative analysis reveals that multi-site LLR fusion
demonstrates superior performance for Normal–Cancerous
and Normal–Precancerous classification by leveraging discri-
minative weighting of pronounced spectral differences. In con-
trast, average spectra analysis shows marginally better, though
error-bound, results for Precancerous-Cancerous
discrimination.

Comparing the performance of the logistic regression (LR)
classifier using features selected by ANOVA F-score and relative
entropy (columns II and III), we find that the key metrics—
AUC, accuracy, sensitivity, specificity, PPV, and NPV—are stat-
istically equivalent within their respective error margins. This
alignment is expected, as Table S2b† shows that both methods
identify nearly the same 60 features, differing primarily in
their ranking order.

Table 4 and Fig. 6 demonstrate that the selected features
enable clear discrimination between the two compared cat-
egories in each pair.

For decades, scientists have been looking for distinct fea-
tures that can help them to discriminate between a cancerous
cell and a normal cell. Our findings in this study support the
possible use of this spectroscopic method to detect precancer-
ous and cancerous cells early.

Conclusion

This study emphasizes the critical necessity to characterize the
precancerous stage, which has been largely overlooked in
Raman spectroscopy studies. This study uses Raman spec-
troscopy, ANOVA-based feature selection, and log-likelihood
ratio decision logic to distinguish between normal, precancer-
ous, and cancerous cells systematically. The findings indicate
different spectrum indicators associated with essential biologi-
cal changes in cancer progression, such as changes in nucleic
acid contents and protein structures. Combining various
analytical methods improves classification accuracy and pro-
vides a deeper understanding of the chemical alterations that
drive cancer development. Combining Raman spectroscopy
with feature selection methods and machine learning creates a

powerful diagnostic tool capable of characterizing and accu-
rately diagnosing the precancerous stage. Early cancer diagno-
sis has the potential to revolutionize public health, profoundly
transform public health, elevate the quality of life, and drive
significant economic benefits.
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