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An organic brain-inspired platform with
neurotransmitter closed-loop control, actuation
and reinforcement learning†

Ugo Bruno, ‡ab Daniela Rana,‡cd Chiara Ausilio,ab Anna Mariano,§a

Ottavia Bettucci, ¶a Simon Musall, ce Claudia Lubrano8cd and
Francesca Santoro *acd

Organic neuromorphic platforms have recently received growing

interest for the implementation and integration of artificial and hybrid

neuronal networks. Here, achieving closed-loop and learning/training

processes as in the human brain is still a major challenge especially

exploiting time-dependent biosignalling such as neurotransmitter

release. Here, we present an integrated organic platform capable of

cooperating with standard silicon technologies, to achieve brain-

inspired computing via adaptive synaptic potentiation and depression,

in a closed-loop fashion. The microfabricated platform could be

interfaced and control a robotic hand which ultimately was able to

learn the grasping of differently sized objects, autonomously.

Introduction

Neuromorphic computing represents an emerging and promis-
ing approach in the development of the next generation of
hardware. The continuous endeavour of researchers reaches a
panoply of different fields, spanning from the design of digital
processing architectures, to the development of smart adaptive

hardware. In this sense, organic semiconductors, featuring a
polymer structure and ionic-electronic mixed conduction prop-
erties, have been shown to emulate short- and long-term
memory1–3 when integrated into three terminal devices such
as organic electrochemical transistors (OECTs) and arrays.4–6

Here, these devices were capable of information processing7,8

classification,9,10 performing reservoir computing,11,12 act as
fast switching memory elements13 and spiking neuronal
networks.14–17 Furtherly, inorganic materials have been largely
employed to engineer artificial neurons,18 with the aim of
improving device responsiveness, lowering power consumption
and integrating into large arrays. On the other hand, organic
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New concepts
In this manuscript a brain-inspired closed-loop system has been
demonstrated for the accomplishment of motor control and actuation
tasks, through a learning process mediated by a neurotransmitter. This
system integrates well established silicon technologies with organic
materials, more suitable for communication with biological neurons.
While the intelligence and the decision-making process is completely
delocalized, it lies in the local adaptation of a neuromorphic OECT. Such
adaptation is closed-loop controlled using a PID control law, and it
mimics the neurotransmitter-mediated synaptic plasticity of biological
neural networks (BNNs). From the existing field of research, sensing and
motion control have been achieved by exploiting organic neuromorphic
architectures, with the goal to recapitulate autonomous local learning
typical of the human neural processing (Krauhausen, I. et al. Organic
neuromorphic electronics for sensorimotor integration and learning in
robotics. Science Advances 7, eabl5068, 2021). In these applications there
are two main aspects still missing: the first one is the lack of a
neuromorphic control-loop architecture strongly desirable for the
adaptive responsiveness to external stimuli of the system; the second
one is the employment of biological signalling as responsible of the
synaptic plasticity during the learning process, typical of the human brain
and useful for the active integration of this technologies in a biological
environment. In this new concept dopamine is the signal used for the
strengthen of the artificial synapse, integrated in a closed-loop system
able of adaptive and reinforcement learning with an object-specific
recognition and training.
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materials have recently found major applications as neuro-
morphic interfaces.19 In fact, conductive polymers can also
provide a biocompatible and stable coupling for biological cells
and tissues and therefore support hybrid interfaces between
artificial neuromorphic and living neuronal systems.20,21 Notably,
neurohybrid synaptic platforms have been built exploiting elec-
trical communication,22 electrochemical signalling through single
and multiple neurotransmitter release23,24 and direct tissue inter-
facing and stimulation with implantable probes.25

In addition, neuromorphic architectures, by exploiting
neural primitives, may enable real-time interaction with the
surrounding environment. Indeed, state-of-the-art neuro-
morphic controllers may either leverage on neuromorphic
models to determine a control law,26,27 or they can rely on
spiking neural networks (SNNs) to implement long-standing
control laws, such as proportional, integral and derivative (PID)
controllers on silicon neuromorphic chips.28,29 Crucially, such
approaches still fail in recapitulating the autonomous adapta-
tion that characterizes neural processing. As a result, while
neuromorphic sensing and motion control in organic neuro-
morphic architectures were demonstrated,7,30 a neuromorphic
control-loop controlled system is still missing. Indeed, the
implementation of a neuromorphic closed-loop architecture
is strongly desirable, enabling fully autonomous systems, that
could adapt as a response to external stimulation. Here, we
present a simple and direct approach in the realization of a
neuromorphic closed-loop system, in which silicon and organic
materials cooperate to accomplish real world tasks, in real-time.
In the presented closed-loop system a silicon microcontroller
controls actuation and motion, while the intelligence and the
decision-making process is completely delocalized, as it lies in
the local adaptation of a neuromorphic OECT. Such adaptation
is closed-loop controlled using a PID control law, and it mimics
the neurotransmitter-mediated synaptic plasticity of biological
neural networks (BNNs). Dopamine (DA) oxidation was exploited
to strengthen/weaken the artificial synapse, that controls in real
time the opening and closure of a robotic hand in a closed-loop
configuration. Finally, autonomous reinforcement learning,
based on a reward/punishment protocol is implemented. Here,
the organic synaptic device ‘learns’ how to drive the hand to
grasp different-sized object. The proposed architecture demon-
strated how an organic brain-inspired platform can cooperate
with either biological and electronic systems, establishing a
neuromorphic closed-loop system.

Results and discussion

The working principle of the neuromorphic device is schema-
tically represented in Fig. 1a. The channel current of the
electrochemical neuromorphic organic device (ENODe) was
sampled and digitalized, enabling the communication with
inorganic hardware, that would eventually drive an actuation.

In brief, the neural signalling was recapitulated by applying
square voltage pulses at the gate terminal, emulating action
potentials (APs) of biological synapses. In a biological synapse,

when an action potential reaches the axon terminal of the pre-
synaptic neuron, neurotransmitters are released in the synaptic
cleft. Such neuroactive molecules, then, bind to specific receptors
of the post-synaptic neuron, eliciting an electrical response.31

In the organic synaptic device, upon the application of the
gate potential, ions would migrate from the electrolyte to the
polymeric channel of the transistor, resembling the neurotrans-
mitter release. In addition, such ions would dope/de-dope the
polymeric channel of the transistor, modulating its current,
and mirroring the post-synaptic potential response.

In addition, continuous stimulation/inhibition of neural
connections results in potentiation/depression of specific neural
pathways, resulting in the so-called synaptic plasticity.31 Here, the
ENODe could emulate such synaptic potentiation and depression,
by controlling in real time the local concentration of a neuro-
transmitter. A faradaic reaction was indeed exploited to elicit a
charge transfer mechanism, doping/de-doping the channel of the
ENODe in a non-volatile way (Fig. 1b, c and d, e, respectively).

Among the variety of voltage-oxidizable neurotransmitters23,32

that could be employed in the non-volatile conductance modula-
tion of the ENODe channel, dopamine (DA) was chosen, as this
molecule is crucial in the closed-loop circuitry of motor-learning
in the brain, in which it is used to enforce positive behavioural
outcomes, such as the correct execution of a movement.33,34

First, open-loop non-volatile potentiation and depression
(i.e., synaptic plasticity) of the ENODe were demonstrated and
characterized. When DA was present in the electrolyte, the
application of a gate bias, matching the neurotransmitter’s
oxidation potential,32 favoured an oxidation reaction and a
consequent release of protons and electrons in the electrolyte.35

Cations generated in such reaction would elicit a charge-transfer
process to both gate and channel of the organic transistor,
reducing the PEDOT:PSS and finally decreasing the device’s
conductance (Supplementary Discussion S1, ESI†).24 As a result,
the redox reaction permanently de-doped the ENODe channel, as
the current decreased with the number of pulses (Fig. 1b). The
change in the baseline of the current (Fig. 1b) represented the
synaptic potentiation of the neuromorphic device, as it mirrored
the long-term strengthening of biological synapses that takes
place as a response to an increased stimulation.36

Notably, this was a concentration-dependent process
(Fig. 1c). A linear dependence of the synaptic potentiation on
the concentration of DA employed in the faradaic process was
observed in the range 5–30 mM. However, at higher values (50 to
100 mM), the channel conductance modulation would exhibit a
saturation behaviour without any significant increase (Fig. S1,
ESI†). Here, protons released during the DA oxidation reaction
penetrated the bulk of the CP (Fig. 1c), progressively reducing
the PEDOT:PSS and de-doping the transistor channel24 whereas
the saturation behaviour might occur because of the limited
oxidative species present at the gate electrode.23

In addition, synaptic depression could be recapitulated here
by introducing H2O2 in the electrolyte solution (Fig. 1d) that
oxidizes PEDOT:PSS, reversing the DA-mediated (30 mM) de-
doping, restoring the initial conductance level of the ENODe
(Supplementary Discussion S1, ESI†).
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As shown in Fig. 1e, the conductance variation was not
dependent on the concentration of H2O2: the synaptic depres-
sion slightly increased with increasing H2O2 concentration (up to
60 mM), while it remained constant for higher concentrations.
Such non-dependency of the synaptic depression on the concen-
tration of the analyte may imply that the H2O2-mediated oxida-
tion of PEDOT:PSS was elicited by a reaction occurring at the
surface of the material (Fig. 1d; Fig. S2, ESI†).37 Importantly, the
difference in the numerical values of synaptic potentiation and
depression was correlated to the aforementioned PEDOT:PSS
reduction and oxidation mechanisms. In the former, the oxida-
tion of the neurotransmitter could immediately reduce the
polymer, dramatically reducing its conductance. In the latter,
the H2O2 in the electrolyte slowly oxidized the PEDOT:PSS,
recovering its conductance.

Subsequently, to achieve real time control of the synaptic
potentiation/depression, a y-shaped microfluidic module (see
Methods) was coupled to the transistor to regulate the DA and
H2O2 – gate interface and therefore exploit the flowrate as a
control variable. In fact, as previously reported, the flowrate might
increase the number of species available for the oxidation, while
preventing fouling at the gate electrode.23 While no significant
difference in synaptic potentiation was observed for a 30 mM DA
solution under static condition and at low flow rates (0.1 ml
min�1), high flow rates (0.5 and 1 ml min�1) induced an almost
linear increase of the conductance modulation (Fig. 2a). Further-
more, a linear dependence of synaptic depression was observed
when employing the H2O2 solution at different flow rates, suggest-
ing that the flowrate increases the amount of solution that actively
washed the surface of the polymeric channel (Fig. 2b).

Fig. 1 Overall neuromorphic closed-loop architecture and open-loop artificial neuron characterization. (a) Schematic of a closed-loop neuromorphic
system, coupling a silicon microcontroller to drive external actuation, while delocalizing the decision-making process to the organic synaptic device
(left). Comparison between a biological synapse and the organic synaptic device (right). (b) Synaptic potentiation elicited by a train of square voltage
pulses applied at the gate terminal in presence of DA. (c) Synaptic potentiation as a function of DA molarity (Numerical values: 3.9 � 0.3; 4.6 � 1.9; 6.6 �
2.2; 10.3 � 1.3; 19.8 � 5.5; 21.0 � 6.7; 18.7 � 7.1; (N = 3)), along with schematic of the PEDOT:PSS reduction mechanism. (d) Synaptic depression elicited
by a train of square voltage pulses applied at the gate terminal in presence of H2O2. (e) Synaptic depression as a function of H2O2 molarity (Numerical
values: 1.2 � 0.6; 1.8 � 1.3; 2.6 � 1.6; 2.4 � 1.0; (N = 3)), along with a schematic of the PEDOT:PSS oxidation mechanism.
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Then, to determine the simultaneous effect of DA and
H2O2 solutions on the synaptic modulation, different flow
rates conditions were numerically simulated (Fig. 2c–e) and
correlated to the measured channel conductance variation
(Fig. 2f–h). Notably, different distributions of DA and H2O2

were achieved in the microfluidic channel by changing the ratio

between flowrates
uDA

uH2O2

. When uDA { uH2O2
, (Fig. 2c)

Thus, the DA-mediated synaptic potentiation (synaptic
potentiation DG = 9.9%, Fig. 2f) was comparable to the poten-
tiation obtained with same concentration of neurotransmitter

under static conditions (Fig. 1c). When
uDA

uH2O2

¼ 1, half of the

microfluidic channel volume was filled with DA, increasing
the synaptic potentiation in comparison to the static case (DG =
17.4%, Fig. 2g). Lastly, as uDA c uH2O2

, DA was present in the
whole microfluidic channel, strongly increasing the synaptic
potentiation (DG = 28.5%, Fig. 2h).

The flow rate could therefore be selected as a control
parameter to regulate the long-term modulation of the ENODe
and a closed-loop system including an organic synaptic device
was implemented (Fig. 3a).

Here, the completion of a desired task (i.e., hand closure/
opening) corresponded to a certain channel current (setpoint),
and the competing DA/H2O2 flow rates were closed-loop con-
trolled to reach this setpoint. At each loop iteration, the
channel current was measured (IMEAS) and compared to the
setpoint (ISET), to quantify the error (e = ISET – IMEAS) of the
closed-loop system. This error described how far the actual
value of current was from the setpoint. At this stage, a PID
controller interpreted the error and computed a control law u,
as a linear combination of the error, its integral and derivative
over time (Fig. S3, ESI†).

The control law u determined the optimal flowrates of DA
and H2O2 to minimize the error e. Finally, a square voltage
pulse was applied at the gate terminal (VGS), oxidizing DA (if

Fig. 2 Artificial neuron closed-loop application and synaptic plasticity control. (a) Synaptic potentiation as a function of the flowrate when 30 mM DA was
present in the electrolyte (red trace, numerical values: 10.2 � 2.4; 14.4 � 2.5; 15.0 � 3.8; (N = 3)) and comparison with synaptic potentiation obtained with
30 mM DA under static condition (black circle. Numerical values: 10.3 � 1.3; (N = 3)). (b) Synaptic depression as a function of the flowrate when 30 mM
H2O2 was added to the electrolyte (blue trace. Numerical values: 1.9 � 1.5; 2.5 � 1.9; 3.4 � 1.1; (N = 3)) and comparison with synaptic potentiation
obtained with 30 mM H2O2 under static condition (black circle. Numerical values: 1.8 � 1.3; (N = 3)). (c)–(e), Numerical simulation of DA and H2O2

distribution inside the microfluidic channel at different flowrates ((c), 30 mM DA, 0.1 ml min�1 and 30 mM H2O2, 0.9 ml min�1; (d) 30 mM DA, 0.5 ml min�1

and 30 mM H2O2, 0.5 ml min�1; (e) 30 mM DA, 0.9 ml min�1 and 30 mM H2O2, 0.1 ml min�1), along with numerical simulation of the total DA
concentration in the microfluidic channel. (f)–(h), channel current modulation obtained in the same combinations of simulated 30 mM DA and 30 mM
H2O2 flowrates ((c), (d), and (e), respectively).
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present in the microfluidic channel), changing the channel
conductance and, consequently, the channel current. The
current was measured again, determining a new value of IMEAS,
and triggering a new iteration. This process was repeated until
the channel current reached the setpoint (e o e).

Notably, the channel current IDS was measured after the
application of a pulse (Fig. 3b), not including the transient
response of the transistor due to ions injected from the
electrolyte to the polymeric channel (rising edge of VGS) and
then migrating back to the electrolyte (falling edge of VGS).38

Fig. 3 Closed-loop neuromorphic system and robotic actuation. (a) Block diagram of the closed-loop neuromorphic system. IDS was measured and
compared to a desired setpoint, computing the error of the closed-loop system e and then the control law u, subsequently releasing either DA or H2O2,
changing their concentration inside the electrolyte of the ENODe, ultimately closing the loop. In addition, IMEAS was digitalized and sent to the robot,
opening or closure the hand. (b) Square voltage pulse applied at the gate terminal during the closed-loop operation, along with the measured current. (c)
Closed-loop regulation of the channel current of the neuromorphic device, connected to the robotic hand. Two setpoints (I1, and I2, horizontal dotted lines)
were chosen as - 235 and - 260 mA, respectively. If the measured current was higher than the setpoint, DA was released to potentiate the synaptic device
(red trace), decreasing the amount of current flowing inside the polymeric channel. Conversely, when IMEAS was lower than ISET, H2O2 was released in the
electrolyte (blue trace) achieving synaptic depression. In addition, two tasks were identified (open and closed hand, yellow and green regions, respectively),
corresponding to different neurotransmitter’s level. As IMEAS reached the ‘open’ region, the hand is completely open. Conversely, when the current was
within the ‘close’ region, the hand was fully closed. (d) Pictures of the open (d-i) and closed hand (d-ii) during the closed-loop measurements.
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Fig. 4 Closed-loop reinforcement learning. (a) Block diagram of the electrical closed-loop for autonomous reinforcement learning. The measured current
IMEAS was digitalized, controlling the grasp of the hand, that was equipped with a pressure sensor. Based on the sensor readout, it was possible to determine
either if the hand was able to complete (or not) a task, i.e., grasping an object. In case of failure, DA was released in the electrolyte solution and a punishment
electrical signal (square voltage pulse) was applied at the gate terminal, decreasing IMEAS and further closing the hand. In case of a successful execution of the
task, a reward signal was applied (VGS = 0 V), while removing DA from the electrolyte. (b) Measurements of the electrical closed-loop during a reinforcement
learning experiment. (b-i), A tennis ball was employed. If the pressure sensor did not detect the contact with the object (top plot), DA was continuously oxidized
in the microfluidic channel, decreasing the channel current (bottom plot) and closing the hand by increasing the angles of the motors (middle plot). The
procedure stopped when the grasping is complete. (b-ii) A ping-pong ball was introduced into the system, restarting the learning procedure. (b-iii) The former
object (tennis ball) was presented again to the system. Here the grasp was completed instantaneously, as the ENODe had already learned to grasp such object.
(c) Pictures of the hand grasping a large object (tennis ball, (c-i)), a small object (ping pong ball, (c-ii)) and the larger object once again (c-iii).
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In addition, the value of IMEAS was sent to a microcontroller
that determined a control signal as an input to servo motors,
driving a 3D-printed robotic hand (Fig. S4, ESI†).

The robotic hand could be closed or opened by adjusting
ISET, transducing synaptic potentiation/depression of the
ENODe into motor commands: initially, (i.e., before execution
of the closed-loop system) the value of IMEAS sent to the
microcontroller was encoded as a complete closure of the hand.
If, depending on ISET, synaptic potentiation occurred, IMEAS

progressively decreased. Such current decrease would be
encoded by the microcontroller as the opening command of
the robotic hand. Conversely, in case of synaptic depression,
the IMEAS increase would be encoded as a closing command of
the hand.

Fig. 3c shows a closed-loop system example where two
setpoints were arbitrarily chosen (I1 and I2, dashed horizontal
lines). Initially, as ISET was lower than IMEAS, the system
required synaptic potentiation to complete the regulation task.
DA was released inside the electrolyte (Fig. 3c), while square
voltage pulses were applied at the gate terminal, oxidizing the
neurotransmitter, and decreasing the ENODe conductance
by reducing PEDOT:PSS. Concurrently, the prosthetic hand
gradually opened as IMEAS decreased, until full opening was
achieved (Fig. 3d). Eventually, the measured current IMEAS

decreased, and the regulation task was successfully completed,
i.e., IMEAS D ISET. Once the value I1 was reached, ISET changed to
I2. Here, as the setpoint was higher than the measured current,
the system required synaptic depression. The control system
responded to such variation by releasing H2O2 (Fig. 3c, blue
trace), oxidizing the surface of PEDOT:PSS and increasing the
channel current, that reached the setpoints (Video S1, ESI†).
The workflow of the software for the control is reported in
Supplementary Discussion S2 (ESI†).

Finally, by integrating a pressure sensor in the closed-loop
architecture (Fig. 4a), reinforcement learning39 was introduced.
The goal of this system was to learn to recognize and grasp
objects of different sizes, using reward and punishment sig-
nals, as shown in Fig. 4a.

The task presented increased because of the variable object
size where diverse degrees of movement were required to adjust
and close the hand motors. Initially, the hand was completely
open and the current IMEAS determined the closure of the
robotic hand. The extended system could sense the environ-
ment through the sensor, describing whether the hand was
able to grasp the object or not. In case of a failed grasp, a
punishment signal in the form of a square voltage pulse was
applied at the gate terminal, oxidizing DA present in the
electrolyte of the device. The punishment signal caused IMEAS

to decrease, leading to a further closure of the hand. Conver-
sely, when the hand was able to grasp the object, a reward
action was provided, by biasing the gate terminal at zero voltage
level, keeping a stable channel current, and preventing a
further closure of the hand.

A large (tennis ball) and small (ping pong ball) objects were
used in the reinforcement learning experiment. The pressure
was continuously read from the sensor to detect contact with

the test object, while the angle of the motors was recorded and
used as a hand closure parameter. The channel current (mea-
sured after each reward/punishment signal), instead, indicated
the learning of the neuromorphic ENODe (Fig. 4b).

First, the tennis ball was employed (Fig. 4b-i), and the
robotic hand closed (based on the value of IMEAS) in the attempt
of grasping it. The task initially failed (Fig. 4c-i) and conse-
quently a punishment signal was supplied, oxidizing DA, and
decreasing IMEAS. As this process was iterated, the oxidation of
the neurotransmitter progressively caused the hand to close
(increasing motor angle). When the ENODe learnt how to grasp
the tennis ball (i.e., when the pressure sensor detected that the
hand correctly touched the object), the reward was provided, and
the robot stopped moving (constant motor angle). Then, the ping
pong ball was introduced (Fig. 4b-ii). Because the closed-loop
system was not trained to grasp such a small object (Fig. 4c-ii),
the hand failed in executing the assigned task. Therefore, a
punishment signal was supplied, eliciting DA oxidation, and
progressively closing the hand (motor angle increases). Punish-
ment signals were continuously provided until the hand com-
pletely grasped the smaller ball and completed the learning
protocol. Further details are reported in Fig. S5 (ESI†).

Last, the first object (tennis ball) was introduced again.
Here, considering that the ENODe had already learned how to
grasp it before, the object was immediately grabbed correctly
(Fig. 4b-iii and 4c-iii and Video S2, ESI†).

Experimental methods
Device fabrication

ENODe were fabricated on a 25 � 25 mm square glass sub-
strate, with 10 � 10 mm indium tin oxide (ITO) square at
each corner (Xinyan Technology Ltd, QGM20210930119). PED-
OT:PSS (Hereaus, Clevios PH1000, 81076212) aqueous solution
was prepared by adding 5 vol% ethylene glycol (Sigma-Aldrich,
102466-1L-M), 1 vol% (3-glycidyloxypropyl)trimethoxysilane
(Sigma-Aldrich, 440167-100ML) and 0.02 vol% dodecylbenzene
sulfonic acid (Sigma-Aldrich, 44198-250ML). Glass substrates
were treated with oxygen plasma (Tecno-Service) for 2 min at
20 W. Subsequently the PEDOT:PSS solution was spin coated on
the substrate at 2000 rpm for 2 min. Thermal annealing at 140 1C
on hotplate was performed. PEDOT:PSS gate and channel were
patterned through oxygen plasma dry etching technique for
15 min, at 100 W. The physical masks used to define the
transistor geometry during the etching procedure were made
of polydimethylsiloxane, mixed in ratio 10 : 1 wt/wt with a cross-
linker, and cured at 80 1C, 1 h (PDMS, Silgard 184). Finally,
through the etching process two symmetrical PEDOT:PSS stripes
7 � 17 mm wide were deposited 2 mm apart. Then the devices
were immersed in milliQ water for 1 h to allow for the complete
swelling of the PEDOT:PSS prior to further measurements.

Microfluidic system

To allow the electrolyte to flow between the channel and the
gate of the ENODe, a microfluidic channel, made of PDMS, was
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attached on the device by means of uncured PDMS, placed on
the edges of the channel, and subsequently cured at 80 1C, 1 h.
The microfluidic channel had a rectangular shape (17 � 4 mm)
with a y-shaped junction at one end. Three holes were created
with the use of a 1.2 mm punch at the ends of the y-shaped
channel. Two input holes were connected through microflui-
dics tubes to two pumps, one for the DA solution and the other
one for the H2O2 solution. The third output hole was connected
to a waste container.

Electrolyte solution preparation

PBS without Ca++ and Mg++ buffer solution was purchased from
Life Technologies, 14190169. DA solution was obtained by
dissolving dopamine hydrochloride in powder (Sigma-Aldrich,
USA) in PBS. A stock H2O2 (30% in water, Sigma-Aldrich, USA)
was diluted in PBS to obtain H2O2 solutions.

Electrical measurements

All electrical measurements were carried out using a commercially
available setup (Arkeo, Cicci Research, Italy) featuring two inde-
pendent source measure units (SMUs) simultaneously. Pulsed
operations were performed by keeping a fixed bias voltage VDS =
�0.2 V, while applying square voltage pulses VGS at the gate
terminal. Each measurement consisted of 6 pulses with amplitude
0.3 V, pulse width 3 s and delay between pulses 9 s.

PID control system

The PID control system was embedded in a LabVIEW routine
running on the measurement setup. The proportional coeffi-
cient is set to 0.005, the integral one was set to 0.05, while the
derivative was set to 0.01. These parameters were found
through manual PID calibration. All the details for the software
were reported (Supplementary Discussion S2, ESI†).

DA static measurements and data analysis

100 ml DA solution was inserted in the microfluidic coupled to
the channel of the ENODe. Each measurement consisted of
6 voltage pulses applied at the gate terminal. After each
measurement three washes were performed with 100 ml of
fresh PBS solution. The channel conductance was calculated by
dividing the channel current by VDS. Then, conductance varia-
tion (difference between values before and after the application
of VGS pulses) was represented as percentage.

Three consecutive measurements were performed, resulting
in the sum of 18 applied voltage pulses, and conductance
variations were computed and averaged for each device. At
least N = 3 devices were measured with this procedure to obtain
the results shown in the manuscript.

H2O2 static measurements and data analysis

H2O2 static measurements were carried out as described in
Methods (DA static measurements and data analysis). The only
difference in the procedure is that one measurement with DA
(6 voltage pulses) was performed before the application of
H2O2.

Data analysis

Data analysis was carried out through custom made MATLAB
scripts.

Numerical simulations

Numerical simulations were carried out through COMSOL
Multiphysics 6.0, by coupling ‘‘laminar flow’’ and ‘‘transport
of diluted species’’ built in modules.

Robotic hand printing and electrical actuation

The hand was 3D printed using an open-source cable-driven
design (InMoov, https://inmoov.fr/). Hand closure was achieved
by driving servomotors (one per fingers). Cables were mounted
on the motors so that the 0-degree position corresponds to
completely open hand, while 90-degree position corresponds to
a fully closed hand. Commands were sent to the servomotors
through a commercial microcontroller board (Arduino Uno
board). A custom-made Arduino script was used to read
data through serial interface from the electrical measurement
setup and drive the servomotors. When performing reinforce-
ment learning, a feedback signal was sent by serial interface to
punish or reward ENODe (Fig. S4 and S5, ESI†).

Conclusions

Neuromorphic systems featuring innovative materials are
emerging in the never-ending quest for the next generation of
hardware. In this sense, closed-loop processing is essential, as
it represent the foundation of countless real-time and real-
world tasks. In light of this, closed-loop neuromorphic system
are advisable, as they could potentially lead to fully autono-
mous and adaptive systems. Here, we presented a simple and
direct approach to endow long-standing closed-loop architec-
tures with neuromorphic capabilities. Organic synaptic devices
emerged as unique and singular option in such approach, as
they can communicate with silicon-based technologies, while
providing adaptive and smart features, ultimately leading to the
complete delocalization of the intelligence of the system. As a
result, while a microcontroller dealt with simple read/write
operation through serial interfaces, the organic chips adapted
to complete the required task. In perspective, by reducing
the size of the organic neuromorphic devices and optimizing
the geometrical ratio (W/L),6,40 the switching speed of the
devices could be reduced, allowing to match biologically plau-
sible operating speed. In addition, as the adaptation closely
mirrors biological potentiation/depression paradigms, and it is
based on biologically relevant signals, such approach may
represent the first step towards smart prosthetics devices and
adaptive clinical approaches.
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