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Theoretical insights into the lattice thermal
conductivity and thermal expansion of CoNiFe
medium-entropy alloys†

Jian Zhang, ab Haochun Zhang,*a Jie Xiong, cd Shuai Chen *cd and
Gang Zhang *b

Medium-entropy alloys (MEAs) have important potential applications in aerospace as well as nuclear

energy due to their excellent mechanical and thermodynamic properties. In this paper, we calculate the

lattice thermal conductivity of CoNiFe MEA using the equilibrium molecular dynamics method. We

investigate the impact of the elemental concentration in MEAs (Co1.5NiFe, CoNi1.5Fe, and CoNiFe1.5) on

their lattice thermal conductivity. Increasing the Co and Fe concentration will slightly decrease the

lattice thermal conductivity. On the other hand, by increasing the Ni concentration, its lattice thermal

conductivity increases up to 17%. Such anomalous lattice thermal conductivity enhancement is

explained by an increase in the mode participation rate and acoustic phonon lifetime. Moreover, the

impacts of tensile strain and temperature on lattice thermal conductivity are explored. This study

contributes to the understanding of the thermal behavior of MEAs and promotes the development of

MEAs in the field of thermal science.

1. Introduction

Medium-entropy alloys (MEAs)1–3 have been attracting the
attention of researchers due to their excellent mechanical
properties,4–8 especially the alloy systems based on Al and the
fourth row elements Fe, Co, Ni, Cr, Cu, Mn and Ti, and Pd.9–15

For example, Lang et al.14 studied and compared the formation
and evolution of irradiation-induced defects in CoNiFe alloys and
pure Ni using molecular dynamics (MD) simulations. They found
that the defect recombination rate of ternary CoNiFe MEA was
higher than that of pure Ni, which was mainly due to the decrease
in the energy dissipated by atomic displacements during cascade
collisions with the increase of chemical disorder.

Recently, the thermodynamic properties of high-entropy
alloys have also attracted extensive research attention, particu-
larly their thermal conductivity.16–25 For example, Farias et al.17

calculated the lattice thermal conductivity of random solid
solution Cantor alloys using the Green–Kubo method in the
temperature range from 0 K to 300 K. The thermal conductivity
at 300 K was found to be within 21% of the experimental
results.18 Chou et al.19 studied the thermal conductivity of
AlxCoCrFeNi (0 r x r 2), which is significantly lower than
that of the pure metal. Jin et al.20 synthesized a series of nickel-
based face-centered cubic (FCC) isotropic alloys and investi-
gated their thermal conductivity. The thermal conductivity of
the alloys is lower than that of the pure metal, primarily due to
the high resistivity that inhibits electronic thermal conductiv-
ity. Lee et al.23 investigated how the ratio between the thermal
conductivity and yield strength of FCC CoNiFeCrMn can be
controlled by varying the number of principal elements (NPE)
and temperature. CoNiFe MEA exhibited the lowest thermal
conductivity and the highest yield strength in solid solutions
ranging from Ni to ternary alloys. However, the temperature
dependence of the lattice thermal conductivity of CoNiFe is still
not clear.24,25 In addition, Jin et al.26 reviewed the contribution
of lattice thermal conductivity to the total thermal conductivity
in different multi-principal alloys to illustrate that lattice
thermal conductivity is a transport property well-worth investi-
gating. However, the associated data of CoNiFe have not been
reported. Therefore, it is necessary to directly calculate the
lattice thermal conductivity of CoNiFe.

In this paper, we investigated the lattice thermal conductivity
of CoNiFe MEA using the equilibrium molecular dynamics
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(EMD) method. The impacts of various factors on the lattice
thermal conductivity, including supercell size, elemental concen-
tration dependence, tensile strain, and temperature, were
explored. The underlying mechanisms were revealed through
phonon localization theory and phonon lifetimes. In addition,
we explored the coefficient of thermal expansion of different
MEAs. This study can help researchers to better understand the
thermodynamic properties of MEAs.

2. Method

The primitive unit cell of CoNiFe MEA used in this paper is
shown in Fig. 1(a). It is a face-centered cubic (FCC) structure
and contains 144 atoms with a lattice constant of 3.66 Å. We
characterize the chemical order of all atomic pairs by calculat-
ing the Warren–Cowley parameters (WCPs) in the first-nearest-
neighboring shell,27

WCPij ¼ 1� Zij

wjZi
(1)

where Zij is the number of atoms i in the first nearest neighbors
of atom j, Zi is the total number of atoms in the first nearest
neighbors of atom j, and wj is the atomic ratio of atom j in the
MEA. When WCPij = 0 the atom i and atom j are randomly
distributed. The WCP of the initial structures of CoNiFe is shown
in Fig. 1(b). The WCP are all 0, indicating that each element is
randomly distributed. The primitive unit cell is replicated to
calculate lattice thermal conductivity, and the supercell contains
(N � N � N) unit cells. We use LAMMPS packages28 to perform
MD calculations. The modified embedded atom method (MEAM)
potential15 is used to describe the interaction between atoms. Cui
et al.29 have proved the accuracy of the potential in terms of
CoCrFeMnNi. The periodic boundaries are used in all directions,
and the timestep is 1 fs. The system is fully relaxed by first being
placed in the isothermal–isobaric (NPT) ensemble for 1 ns and
then in the canonical (NVT) ensemble for 1 ns. Finally, the system

is placed in the microcanonical (NVE) ensemble to calculate heat
current.

We use EMD simulations to calculate the lattice thermal
conductivity based on the integration of the heat current auto-
correlation function (HCACF) using the Green–Kubo formula
(GKF),30,31

k ¼ 1

3kBT2V

ð1
0

dt J
!ð0Þ � J!ðtÞ
D E

(2)

where V is the volume, kB is the Boltzmann constant, T is the
temperature,

-

J(t) is the heat current and the angular bracket
denotes an ensemble average. In principle, there is no computa-
tional error in the EMD method,32 but due to the computational
time constraints, computational errors are introduced.33

Researchers have proposed First Dip (FD)34 and First Avalanche
(FA)33 methods to determine the cutoff time. It has been shown
that the cutoff time determined by the FA method is more
accurate;35 therefore, in this paper, the FA method is adopted.

3. Results and discussion
3.1 Effect of elemental concentration on lattice thermal
conductivity

We first consider the finite size effects present in the EMD
calculations, the details of which are given in the ESI.† As shown
in the ESI,† Fig. S2, when N Z 3, the thermal conductivity
converges to 5.05 � 0.20 W m�1 K�1, which agrees well with the
range of lattice thermal conductivity (1.95 to 7.83 W m�1 K�1)
reported in previous experiments.23,24 This consistency also
demonstrates the robustness of the interatomic potential. The
applications of MEAs in aerospace and nuclear energy require
them to have high thermal conductivity. Therefore, in this section,
we investigate the feasibility of enhancing the lattice thermal
conductivity by adjusting elemental concentrations. We increase
the concentration of one element in the MEA from 33.3% to
42.9%, respectively, and reconstruct three non-equiatomic MEAs

Fig. 1 (a) The primitive unit cell of the equiatomic MEA (CoNiFe) and three non-equiatomic MEAs (Co1.5NiFe, CoNi1.5Fe, and CoNiFe1.5) and their phase
structure. (b) The WCP of equiatomic MEA. (c) The WCP of three non-equiatomic MEAs.
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(Co1.5NiFe, CoNi1.5Fe, and CoNiFe1.5). The WCPs of the initial
structures of three non-equiatomic MEAs are shown in Fig. 1(c).
The atomic configurations after EMD calculation are also character-
ized by WCPs. The WCPs of all atomic pairs in different MEAs are
shown in the ESI,† Fig. S3. The results indicate that each element is
still uniformly distributed. The lattice thermal conductivity at 300 K
of these three alloys is shown in Fig. 2. With increasing the Ni
concentration from 33.3% (CoNiFe) to 42.9% (CoNi1.5Fe), the lattice
thermal conductivity increases by 17%. Usually, the lattice thermal
conductivity increases when the concentration of light element
increases;36,37 however, Co (58.93), Ni (58.69), and Fe (55.85) are
comparable in atomic mass. Therefore, it is worth studying the
underlying mechanisms of the increased lattice thermal conductiv-
ity with increasing Ni concentration.

We use phonon localization theory to explain the variation
of lattice thermal conductivity. We first calculate the mode
participation rate (MPR) in four MEAs. The MPR can be used to
determine the delocalized characteristic (i.e., MPR 4 0.4) and
localized characteristic (i.e., MPR o 0.4) of phonon modes. The
localized mode leads to a decrease in the lattice thermal
conductivity. The MPR is calculated as follows:38

MPRðoÞ ¼ 1

N

P
i

PDOSiðoÞ2
� �2
P
i

PDOSiðoÞ4
(3)

where N is the number of atoms; the phonon density of states
(PDOS) can be calculated by the Fourier transform of the
velocity autocorrelation,39

PDOSðoÞ ¼ 1

N
ffiffiffiffiffiffi
2p
p

ð
e�iot

XN
j¼1

vjð0ÞvjðtÞ
* +

dt (4)

where o is the phonon frequency, and v is the velocity vector.
We calculate the MPR in the four MEAs (three non-equiatomic
and one equiatomic MEAs) as shown in Fig. 3. The MPRs of the
four MEAs show a large variation in the range of 12–17 THz,
with CoNi1.5Fe having the largest MPR, suggesting that the
anomalous lattice thermal conductivity is affected by the MPR.

Next, we calculate the phonon-weighted mode participation
rate (WPR), which removes the effect of frequency,40 so that the
average WPR can be calculated to assess the overall effect of
MPR on lattice thermal conductivity. The WPR can be calcu-
lated from the PDOS,

WPR ¼ 1

N

P
i

PDOSiðoÞ2
� �2

�ho=kBTð Þ2e�ho=kBT

P
i

PDOSiðoÞ4
� �

e�ho=kBT � 1ð Þ2
(5)

where �h is the reduced Planck constant. We study the difference
in WPR after increasing the element concentration with the
WPR of the equiatomic MEA as a reference. Fig. 4 shows the
difference in WPR between the non-equiatomic and equiatomic
MEAs, with CoNi1.5Fe having the largest WPR, which can
explain the increased lattice thermal conductivity.

The lattice thermal conductivity is mainly due to heat
transfer from lattice vibrations, on which the phonon lifetime
has an important effect. Therefore, to further explain the anom-
alous lattice thermal conductivity, we perform a double exponen-
tial fit to the normalized HCACF with two-time constants.41,42 The
existence of two phases of HCACF decay is due to the different
optical and acoustic phonon lifetimes, originally proposed by Che
et al.41 The fitted equations are as follows:

HCACF = A1e�t/t1 + A2e�t/t2 (6)

where A1 and A2 are fitting parameters, and t1 and t2 are the
phonon lifetimes of optical and acoustic phonons. The results of
HCACF fitting with four MEAs are shown in the ESI,† Fig. S4. The
phonon lifetimes of different MEAs are shown in Table 1. The
optical phonon lifetimes are almost the same. For most bulk
materials, acoustic phonons have the dominant contribution to
lattice thermal conductivity. However, the acoustic phonon life-
times show large differences, and the increase of Ni concentration
extends the acoustic phonon lifetime from 1.151 ps to 1.273 ps,
which suggests that the anomalous lattice thermal conductivity is
affected by both the MPR and the acoustic phonon lifetime. The
inconsistency between the WPR and the lattice thermal conduc-
tivity changes for the four MEAs is because the lattice thermal
conductivity is not only affected by the WPR, but also affected by
the atomic mass, phonon lifetime, etc. For Co1.5NiFe and CoN-
iFe1.5, the atomic mass of Co is larger than that of Fe, and the WPR
of Co1.5NiFe is also larger than that of CoNiFe1.5. However, the
acoustic phonon lifetime of Co1.5NiFe is short, which ultimately
leads to the lower lattice thermal conductivity of Co1.5NiFe.

3.2 Effect of tensile strain and temperature on lattice thermal
conductivity

MEAs are generally used in extreme environments, such as those
where tensile strain exists; so it is of great engineering impor-
tance to study the effect of tensile strain on lattice thermal
conductivity. We first calculate the stress–strain relationship of
the four MEAs by stretching the four alloys along the x direction,
and the stress–strain curves are shown in Fig. 5(a). When the
strain reaches about 13%, the alloy is fractured. Therefore, weFig. 2 The lattice thermal conductivity of different MEAs.
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calculate the effect of tensile strain on lattice thermal conductiv-
ity before the alloys are fractured. We first stretch the alloy in the
x-direction to a specified strain. Then, the system is placed in the
NVT ensemble for 1 ns. Finally, the system is placed in the NVE
ensemble to calculate heat current. The heat current autocorrela-
tion calculations are performed 10 times with an autocorrelation
time of 100 ps. The lattice thermal conductivity is then calculated
using eqn (2). The relationship of lattice thermal conductivity
with strain for four different MEAs is shown in Fig. 5(b). The
lattice thermal conductivity of all four alloys decreases with
increasing strain. For example, for CoNiFe MEA, the lattice
thermal conductivity decreases from 5.05 W m�1 K�1 at 0 strain
to 2.65 W m�1 K�1 at 10% strain. This is because the phonon
group velocity and phonon lifetime decrease with increasing

tensile strain.43,44 In addition, the CoNi1.5Fe MEA still has the
highest lattice thermal conductivity.

In addition, it is of great engineering importance to study the
effect of temperature on the lattice thermal conductivity. Bag
et al.24 and Lee et al.23 calculated the lattice thermal conductivity
of CoNiFe at 0–300 K and 300–600 K, respectively. Their results
exhibited the opposite trends: the lattice thermal conductivity at
0–300 K decreased with temperature24 whereas at 300–600 K, it
increased with temperature.23 It is well known that the lattice
thermal conductivity decreases as the anharmonic effect is
enhanced with increasing temperature.45,46 Therefore, we focus
on the lattice thermal conductivity at high temperatures. The
system is fully relaxed at the desired temperature (300–1500 K) in
the NPT ensemble for 1 ns and then follow the method of
calculating the lattice thermal conductivity. The lattice thermal
conductivity of CoNiFe in the temperature range of 300–1500 K is
shown in Fig. 6. The lattice thermal conductivity decreases with
increasing temperature and shows an approximately linear rela-
tionship with the inverse of temperature. At high temperatures,
the lattice thermal conductivity is slightly lower than the T�1

dependence curve. This is attributed to the enhancement of the
phonon–phonon anharmonic effect, which suppresses the ther-
mal conduction. In addition, thermal expansion and phonon-
granular scattering may also lead to such discrepancy.

3.3 Thermal expansion properties of different medium-
entropy alloys

MEAs contain varieties of components with different coefficients
of thermal expansion, which may cause thermal stresses during
solidification and processing, thus affecting the strength.47,48

Therefore, it is important to calculate the coefficient of thermal
expansion. We calculate the coefficients of thermal expansion of
equiatomic and non-equiatomic MEAs at 400–1500 K as shown in
Fig. 7, and the details of the calculations are given in the ESI.† The
calculated results of CoNiFe are in good agreement with the
experimental results of Laplanche et al.49 In addition, we find that
Ni concentration has the least effect on the coefficient of thermal
expansion. This is because only Ni has an FCC structure among
the three elements and increasing the Ni concentration has a
smaller effect on the MEA structure. Co and Fe concentrations

Fig. 3 The mode participation rates (MPR) of different MEAs in the range of (a) 0–25 THz and (b) 12–17 THz.

Fig. 4 The difference in average phonon-weighted mode participation
rates (WPR) between non-equiatomic and equiatomic MEAs.

Table 1 The phonon lifetime of different MEAs

Alloy type
Optical phonon
lifetime (ps)

Acoustic phonon
lifetimes (ps)

CoNiFe 0.036 1.151
Co1.5NiFe 0.036 1.181
CoNi1.5Fe 0.039 1.273
CoNiFe1.5 0.036 1.028
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have opposite effects on the coefficient of thermal expansion, which
increases by increasing Fe concentration and decreases by increas-
ing Co concentration. For example, increasing Co concentration can

reduce the coefficient of thermal expansion from 1.178 � 10�5 K�1

(CoNiFe) to 1.159 � 10�5 K�1 at 300 K (Co1.5NiFe). This suggests
that the elemental structure can significantly impact the thermal
expansion of an alloy when it deviates from the alloy structure.

4. Conclusions

In summary, we used the EMD method to calculate the lattice
thermal conductivity of CoNiFe MEA. First, we investigated the
finite-size effect on the lattice thermal conductivity, which
reached a stable value as the supercell increased. Then, the
feasibility of adjusting the elemental concentration (CoNiFe,
Co1.5NiFe, CoNi1.5Fe, and CoNiFe1.5) to enhance the lattice
thermal conductivity was investigated. Since Co, Ni, and Fe have
comparable atomic masses, they should have the same effect on
the lattice thermal conductivity; however, by increasing the Ni
concentration (CoNiFe to CoNi1.5Fe), the lattice thermal conduc-
tivity increased by 17%. We found that increasing Ni concen-
tration increases the MPR at 12–17 THz. Besides, increasing Ni
concentration increases the acoustic phonon lifetime, while the
optical phonon lifetime was similar. These results indicated that
the MPR and acoustic phonon lifetime can be altered by adjust-
ing the elemental concentration, thereby affecting the lattice
thermal conductivity of MEAs. Therefore, we can increase or
decrease the lattice thermal conductivity of MEAs by adjusting
the elemental concentrations. Moreover, the lattice thermal con-
ductivity decreased with increasing tensile strain and CoNi1.5Fe
remains the largest. Next, the effect of temperature on the lattice
thermal conductivity was explored. The lattice thermal conduc-
tivity gradually decreased with increasing temperature from
300 to 1500 K and has an approximately linear distribution with
the inverse of temperature, which indicated that anharmoni-
city has a strong effect. Finally, the coefficients of thermal
expansion for the different MEAs were calculated. The result of
CoNiFe was in good agreement with the experimental report.
In addition, we found that increasing Co concentration can
reduce the coefficient of thermal expansion (from 1.178 �
10�5 K�1 to 1.159 � 10�5 K�1 at 300 K). This study is useful for

Fig. 5 (a) The stress–strain curves of four different MEAs. (b) The relationship of lattice thermal conductivity with strain for four different MEAs.

Fig. 6 The lattice thermal conductivity of CoNiFe MEA from 300 K
(0.0033 K�1) to 1500 K (0.00067 K�1).

Fig. 7 The coefficient of thermal expansion for different MEAs.
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advancing the application of medium-entropy alloys in ther-
mal sciences.
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