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1 Introduction

Stochastic microstructure modeling of SOC
electrodes based on a pluri-Gaussian method
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C
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Digital Materials Design (DMD) offers new possibilities for data-driven microstructure optimization of
solid oxide cells (SOC). Despite the progress in 3D-imaging, experimental microstructure investigations
are typically limited to only a few tomography analyses. In this publication, a DMD workflow is presented
for extensive virtual microstructure variation, which is based on a limited number of real tomography
analyses. Real 3D microstructures, which are captured with FIB-tomography from LSTN-CGO anodes,
are used as a basis for stochastic modeling. Thereby, digital twins are constructed for each of the three
real microstructures. The virtual structure generation is based on the pluri-Gaussian method (PGM).
In order to match the properties of selected virtual microstructures (ie., digital twins) with real
structures, the construction parameters for the PGM-model are determined by interpolation of a
database of virtual structures. Moreover, the relative conductivities of the phases are optimized with
morphological operations. The digital twins are then used as anchor points for virtual microstructure
variation of LSTN-CGO anodes, covering a wide range of compositions and porosities. All relevant
microstructure properties are determined using our standardized and automated microstructure charac-
terization procedure, which was recently published. The microstructure properties can then e.g., be used
as input for a multiphysics electrode model to predict the corresponding anode performances. This set
of microstructure properties with corresponding performances is then the basis to provide design guide-
lines for improved electrodes. The PGM-based structure generation is available as a new Python app for
the GeoDict software package.

coking,*® sulphur poisoning” and mechanical damage caused
by redox cycling.® Moreover, the electrochemical reaction is
bound to the three-phase boundaries (TPB), which induces a

Solid oxide cell (SOC) technology is a promising solution for the
efficient energy conversion. In the solid oxide fuel cell (SOFC)
mode, renewable fuels or natural gas are used for decentral
heat and power generation. Alternatively, in the solid oxide
electrolysis cell (SOEC) mode, this technology provides an
important option for conversion and storage of renewable
energy (power-to-gas). However, there are still issues especially
concerning the degradation behaviour and life-time, which
calls for the development of alternative material systems. For
example, the most commonly used anode material in SOFCs
is Nickel - yttria-stabilized zirconia (Ni-YSZ), which shows vari-
ous types of degradation™? including Ni coarsening,’ carbon
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specific microstructure limitation towards the electrochemical
activity in Ni-YSZ cermet anodes. As an alternative anode
concept, mixed ionic and electronic conductive (MIEC) materials
are drawing much attention. An obvious advantage of MIEC
materials is the fact that the fuel oxidation reaction can take
place on the complete MIEC/pore interface (two-phase bound-
aries). Thereby, composite ceramic anodes consisting of perovs-
kite and gadolinium doped ceria (CGO) represent one of the most
important alternative material concepts (e.g:, ref. 1, 9, 10 and 11).
Thereby, the Ni-phase is replaced by a conductive perovskite-
phase (e.g, La, Sr, titanate) with the goal to get rid of the harmful
degradation phenomena associated with Ni. In addition, CGO is a
MIEC phase with relatively high ionic conductivity and catalytic
activity. The optimization of such ceramic electrodes is currently
the topic of ongoing research.

To accelerate the research in this field in a cost-efficient way,
we suggest supporting the development using Digital Materials
Design (DMD) methodologies. In Fig. 1, a DMD workflow for
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Fig. 1 Overview of the entire workflow for Digital Materials Design (DMD), which includes various methodological modules. The module of stochastic
geometry modeling and associated realization of digital twins, which is the main topic of the present paper, is highlighted with a red frame. The other
methodological modules of the DMD workflow are described in great detail in separate papers, such as the module including materials processing and
cell fabrication (see Burnat et al.1*?), the modules for imaging and standardized microstructure characterization (Marmet et al.'* and Holzer et al.*¥), and

the module for performance prediction with a multiphysics electrode model (Marmet et al.'®). A detailed description of the entire DMD workflow,

including all the different modules, is also given in the PhD thesis of Ph. Marmet.

SOC electrodes is illustrated. The overall goal of this workflow
is to establish a quantitative relationship between fabrication
parameters, microstructure properties and cell performance,
in order to accelerate the microstructure optimization in a
systematic and knowledge-based way with digital feedback
loops. In our DMD approach we combine stochastic micro-
structure modeling (Fig. 1, red frame), virtual testing of 3D
microstructures and a multiscale-multiphysics electrode model
to explore the design space by performing parametric studies.
The basis for the DMD process is a set of fabricated solid oxide
cells. The real microstructures are reconstructed using FIB-SEM
tomography for a small number of fabricated cells representing
a variation of the parameters to be optimized (e.g., composition
and porosity). Digital microstructure twins with matching
microstructure properties are then constructed for each real
structure using a pluri-Gaussian method, which is the main
focus of the present paper. On that basis, the microstructure
can be virtually varied for a large parameter space in a realistic
way. The real and subsequently the virtual 3D structures need

© 2023 The Author(s). Published by the Royal Society of Chemistry
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to be characterized quantitatively by means of image analysis
and numerical simulations. A standardized and automated
microstructure characterization tool has been developed
(see Marmet et al.'®), which enables the fast determination of
an extensive set of microstructure properties relevant for SOC
electrodes. The determined microstructure properties for
the virtual structure variation can be used directly for micro-
structure optimization (based on qualitative estimations)
or alternatively, the microstructure properties can serve as an
input for multiphysics electrode models as illustrated in Fig. 1.
The multiphysics simulation model can be used to predict the
impact of the microstructure variation on the electrode perfor-
mance. This model-based performance prediction enables to
establish the relationship between fabrication parameters,
materials choices, microstructure properties and cell-performance.
Due to the integration of stochastic modeling (pluri-Gaussian
method) and its combination with automated characterization
and model-based performance prediction, the number of the
involved 3D microstructures can be significantly increased.

Energy Adv, 2023, 2,1942-1967 | 1943
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This approach is thus capable to explore a much larger design
space than it would be possible with experimental methods
only. On this basis, design guidelines for the fabrication of
improved electrode performance can be provided, which closes
the loop of this iterative workflow. This DMD workflow is
described in more detail in the ESI,{ of a previous publication
(Marmet et al'?), which is dealing with standardized and
automated microstructure characterization. In the present pub-
lication, we will describe the construction of digital microstruc-
ture twins based on a pluri-Gaussian method and the virtual
microstructure variation on that basis (Fig. 1, red frame), which
is another key element in our DMD approach.

A suitable method for virtual 3D structure generation is the
basis for stochastic modeling. An overview of microstructure
modeling approaches for electrochemical devices like batteries,
PEM fuel cells and SOFCs can be found in Ryan and Mukherjee."”
Thereby, different stochastic 3D reconstruction methods are
presented, which include Monte Carlo modeling, dynamic parti-
cle packing, stochastic grids, simulated annealing and controlled
random generation. A general overview for stochastic microstruc-
ture modeling is, e.g., presented by Holzer et al.,'® Chiu et al.,"
Matheron,”® Jeulin,*' Lantuéjoul,”* Schmidt*® and Bargmann
et al*>* The two main quality criteria to be fulfilled are the
prediction power and the efficiency of the method. Thereby,
two main approaches for microstructure modeling can be
distinguished: (a) Physics-based methods, which simulate the
physical processes of microstructure formation (e.g., grain
growth by sintering), for example with the phase-field method.
(b) Geometrical methods aiming to mimic the material’s mor-
phology disregarding the underlying physics of microstructure
formation, for example due to random packing of particles
(spheres, ellipsoids, polyhedron, cylinders, fibres etc.) based on
discrete element modeling (DEM), see, e.g., Sheikh and Pak.*

In the following, we will focus our discussion on (b) geo-
metrical methods and on the application for SOFC electrodes.

3D tomography
LSTN

CGO

Virtual structures based on
Gaussian random fields

View Article Online

Paper

The most frequently used approach is based on particle pack-
ing algorithms**™® as illustrated in Fig. 2(c). However, SOFC
microstructures are typically strongly sintered, which results in
well connected, continuous phases. In images acquired by
tomography or electron microscopy, the individual powder
particles and the boundaries between the particles of the same
phase (e.g., CGO) are typically not visible anymore, due to
the sintering process. An example of such a well-connected
structure is reported in Fig. 2(a). The image represents a 2D
orthoslice from FIB-SEM tomography, after phase identifi-
cation by threshold segmentation. In 3D space, each phase
(CGO, LSTN, pores) forms a contiguous phase network. Such
microstructures are not well described with particle packing
models using spherical or ellipsoidal grains.>® The particle
packing used for illustration in Fig. 2(c) is a very simple
example based on mono-sized spheres. More sophisticated
versions of this methods are available (see e.g., introduction
of Moussaoui et al.®®). However, matching the properties of
contiguous phase networks based on the packing of discrete
particles is challenging and it requires computationally expen-
sive algorithms. As a more suitable approach, an alternative
method based on pluri-Gaussian random fields was proposed
in the literature.”®*° This approach was demonstrated to be
particularly suitable for the stochastic microstructure modeling
of SOC electrodes, and it is therefore used in our DMD work-
flow. The structure generation with this method results in
realistic anode microstructures with contiguous phases as
illustrated in Fig. 2(b). The visual inspection reveals a much
better match of the pluri-Gaussian method (PGM) with the real
structure in the tomography image. Moreover, the PGM is very
flexible, so that efficient structure variations can be realized with
this approach. It must be emphasized that the choice of the
method depends on the structure type. For a different structure
type (e.g., for battery electrodes with granular microstructures),
the particle-packing approach might be more suitable.

Virtual structures based
on sphere packing

Fig. 2 Comparison of a real versus two virtual microstructures (illustrated with 2D orthoslices from 3D structures): (a) segmented tomography data
representing a real LSTN-CGO structure with continuous phases, (b) virtual reconstruction of the LSTN-CGO microstructure based on a pluri-Gaussian
method (PGM) providing a good match to the real microstructure and (c) virtual reconstruction with sphere packing (not well suited for SOFC electrodes).
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In literature, further microstructure models are reported,
which are capable to match the properties of real SOFC
electrodes. Suzue et al.*' presented a modeling scheme for
SOFC anodes based on a stochastic method, where virtual 3D
anode microstructures are reconstructed from two-point corre-
lation functions of real 2D images by Monte Carlo sampling of
initially randomly assigned voxels. The Lattice Boltzmann
Method (LBM) was then used for the performance assessment
of the anode. A case study using a graph-based model for
the reconstruction of an Ni-YSZ structure was presented by
Neumann et al>® The graph-based model introduced by
Neumann et al. in ref. 32 was compared to a pluri-Gaussian
method (PGM) with the conclusion that the PGM provides a
better match for Ni-YSZ microstructures. Gayon-Lombardo
et al.®® and Hsu et al.** used a generative adversarial network
(GAN) to model Ni-YSZ anode microstructures based on 3D
training data. The authors reported a very good agreement of
the microstructure properties (volume specific interface area,
TPB-length and transport properties) between real and virtual
microstructures. Sciazko et al.*® reported the generation of 3D-
microstructures based on GAN using only 2D training data,
which can be advantageous because of the easier acquisition
of 2D-images by electron microscopy compared to 3D-data by
tomography. The approach was successfully tested for a Ni-CGO
SOFC anode.

Stochastic geometry methods are not only used to create
virtual microstructures with properties matching to real micro-
structures. Those methods are then also used for microstruc-
ture variation, so that the numerous virtual structures can serve
as a basis for data-driven microstructure optimization. For
example, Prioux et al.®® constructed a digital twin based on
Gaussian random fields for a Ni-YSZ fuel electrode and varied
the Ni:YSZ ratio for a fixed porosity of 24%. Thereby, the three-
phase boundary (TPB) length, the volume specific surface areas
and the M-factor (i.e., relative conductivity) of the Ni- and
YSZ-phases were reported for the different compositions and
for two grain sizes of Ni. With an electrode-model, the impact
of the different microstructures on the electrode performance
was then predicted. Thereby, a composition of YSZ: Ni = 70: 30 has
been suggested to yield the best performance. Hasanabadi et al.*”
presented a method for the optimization of the microstructure
of two-phase (a solid and a pore-phase) SOFC MIEC cathodes.
Two-point correlation functions were used to manipulate the
microstructure. The tortuosity of the solid-phase and the active
surface area were used as objective functions to search for the
optimal microstructures. Buchaniec et al*® presented an
approach for the optimization of Ni-YSZ anodes by the combi-
nation of numerical modeling of transport phenomena, cellular
automata and evolutionary algorithms, allowing to determine
the phase volume fractions for an optimized performance at
different operating conditions. Riazat et al>*® suggested an
optimization approach for Ni-YSZ electrodes by investigating
a property hull for ionic conductivity, gas diffusivity and TPB-
density. A large number of three-phase microstructures was
thus generated using a Monte Carlo approach.’”*' These
structures were used to train a neural network. A property hull

© 2023 The Author(s). Published by the Royal Society of Chemistry
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for ionic conductivity, gas diffusivity and TPB-density was then
realized applying the neural network and an optimal micro-
structure was determined by using an objective function with
weighting of the three target properties. In a similar study,
Tafazoli et al.*® investigated the geometric property hull for
infiltrated SOFC-electrodes including gas diffusivity, three-
phase and two-phase boundary density.

In the present study, a workflow for the virtual but realistic
microstructure variation based on real tomography data is
presented, which is a key-module of the DMD framework
reported in Fig. 1. Digital microstructure twins are constructed
for a set of real microstructures from LSTN-CGO electrodes.
The latter have been reported in a previous publication
(Marmet et al."®). The stochastic model makes use of a pluri-
Gaussian method (PGM). The microstructure twins are then
used as anchor points for a virtual microstructure variation.
Thereby, composition and porosity are varied in a wide range.
For all the virtual structures of the parameter study, the
corresponding microstructure properties are determined using
a standardized and automated procedure for microstructure
characterization, which was presented in Marmet et al.'® This
dataset of microstructure properties for the studied parameter
space can be used as a basis for microstructure optimization, in
order to fabricate SOFC anodes with improved performances.
Thus, the predictions by such DMD methodologies need suffi-
cient accuracy to provide a quantitative correct range. On the
other hand, the effort for digital methodologies need to be
considerably lower compared to the purely experimental
approach in order to accelerate the development process.
Moreover, there is only limited benefit if the stochastic model-
ing exceeds the accuracy level of other uncertainties in the
study. Hence, there is a trade-off between accuracy and needed
effort for a DMD approach in order to achieve an efficient
improvement of SOC electrodes, which will also be discussed in
the present publication.

2 Methods and materials

2.1 Overview of the concept for digital twin construction
of three-phase microstructures

In this section, an overview is provided for the workflow of
virtual microstructure generation and variation by stochastic
modeling based on the pluri-Gaussian method (PGM). In general,
two different approaches can be distinguished: (a) a rather
complex expression is used to model the correlation function
of the Gaussian random field. This expression includes several
fit-parameters, but the angles between the sectors of the thresh-
olding plane remain constant. Examples are presented by
Abdallah et al.*® and Neumann et al.*>** (b) A rather simple expres-
sion is used to model the correlation function (typically a Gaussian
distribution with only one fit-parameter representing the structure
size). However, the angles between the domains of the thresholding
plane are variable and can thus be used for adaptation of the
microstructure properties. Examples of this type are presented
by Moussaoui et al.>® and Prioux et al.*® In the present work,

Energy Adv, 2023, 2,1942-1967 | 1945


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3ya00332a

Open Access Article. Published on 09 Oktoba 2023. Downloaded on 02/10/2025 17:05:05.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Energy Advances

we follow the second approach (b), whereby we are using only
two parameters for the two Gaussian correlation functions, and
five additional parameters for the thresholding, as will be
described in Section 2.2. To match the microstructure properties
of the real tomography data described in Marmet et al.,"* a data-
driven approach is used with a systematic variation of the
threshold angles for different porosities and compositions.
Thereby, the same standard deviation is used in the Gaussian
model for the correlation functions of both solid phases
(i.e., LSTN and CGO). This can be justified, since the charac-
teristic particle sizes and size distributions are very similar for
both phases in all the LSTN-CGO electrodes that are studied in
this contribution. The parameter set for the digital microstruc-
ture twin is then obtained by interpolation of the database,
which is obtained by the systematic variation of construction
parameters (e.g., threshold angles). Therewith, a good match
of the interface areas and the TPB-length can be achieved.
However, the relative conductivities of the virtual microstruc-
tures show considerable deviations compared to the conductivi-
ties of the real microstructures from tomography. To improve
the match of the relative conductivities, the geometry of the solid
phases in the digital twins are modified with morphological
operations. The digital twin construction is described in further
detail in Section 2.3. The main benefit of the digital microstruc-
ture twins is the possibility to construct realistic virtual micro-
structures, which have not yet been realized experimentally.
However, it is not obvious, how the set of construction para-
meters evolve upon a parameter variation. Therefore, these
construction parameters are interpolated and extrapolated
between and upon the three realized digital twins as reported
in Section 3.4.

2.2 Structure generation based on pluri-Gaussian random
fields

The structure generation based on pluri-Gaussian random
fields used in this work is implemented as a Python app
(subsequently called - PGM-app). It is implemented in GeoDict
in order to obtain a closed workflow, whereby stochastic
microstructure generation can be combined with a fully auto-
mated and standardized characterization procedure. The latter
was presented in Marmet et al.'® This PGM-app is published on
Zenodo** from where it can be downloaded and then be used
within GeoDict. The graphical user interface (GUI) of the PGM-
app is reported in Section B of the ESI.{ Moreover, a modified
version of this app was released in the GeoDict software
package (GeoDict release 2023°) as a so-called GeoApp. The
implementation follows closely the methods presented by
Moussaoui et al.®® and shall not be repeated here in detail.
Instead, a conceptional overview of the method will be pre-
sented in the following with a focus on the input parameters of
the PGM-app and how these parameters are reasonably chosen
to model microstructures with specific properties. Fundamental
information about the method can e.g., be found in the book of
Lantuéjoul.

The principle of structure generation with the pluri-
Gaussian method (PGM) for three-phase structures is illustrated

1946 | Energy Adv, 2023, 2,1942-1967
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Fig. 3 Illustration of virtual structure generation with the pluri-Gaussian
method (PGM). A microstructure consisting of two solid phases and a
pore-phase is generated by combining two Gaussian random fields for
both solid phases. The phase volume fractions and the wetting behaviour
of the solid phases can be controlled with specific threshold operations.

in Fig. 3. The method is based on two statistically independent
Gaussian random fields GRF1 and GRF2, one for each solid phase.
The two Gaussian random fields (GRF) are then combined using
threshold operations to obtain three phases (two solid phases and
one pore-phase) with defined phase volume fractions and wetting
behaviour. Thus, many different structures can be obtained for the
same set of two GRFs by using different threshold parameters.
The model parameters for the two GRFs are reported in Table 1
and the model parameters for the threshold operations are
reported in Table 2.

The Gaussian random field can be generated by the convolu-
tion of an uncorrelated Gaussian random noise with a normalized
and symmetric weight function, which can be interpreted as the
filtering of the uncorrelated random noise with the weight
function.”® With this operation, the requested spatial correlation
is obtained, as described by the correlation function px(h):

px{h) = cov(Gx(2),Gxlz + 1), (1)

where % is a vector. The Gaussian random fields are thereby
used as provided by the GeoDict software (see GeoDict 2023 User
Guide, GrainGeo handbook,*® section “Create Gaussian random
fields”). In this work, a Gaussian function is used as a model:

|}
p(l) = exp | 5gpy— | @)

where SDggrr is the characteristic length of the phase, which
corresponds to the standard deviation of the Gaussian function
and |A| is a scalar. Note that in general three different model
functions can be used for each spatial direction x, y, z within
GeoDict. However, in this publication we restrict ourselves to
isotropic structures using an identical model function p(|k|) for
each spatial direction. Following Moussaoui et al.,*® the two fields
are then combined to form a pluri-Gaussian random field,

Gx(2) = {Gx(2);Gr(2)} ®)

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Parameters to define the two Gaussian random fields (GRF)
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Description Parameter Unit
Number of voxels in X-direction NX Voxel
Number of voxels in Y-direction NY Voxel
Number of voxels in Z-direction NZ Voxel
Voxel size Lyox m
Standard deviation (characteristic length) of the Gaussian random field 1 SDGRrr1 Voxel
Standard deviation (characteristic length) of the Gaussian random field 2 SDGrr2 Voxel
Random seed for GRF 1 RSGre1 —
Random seed for GRF 2 RSGri2 —
Filter factor for GRF 1 Kkrilter,GrE1 —
Filter factor for GRF 2 Krilter,GrE2 —

Table 2 Parameters for the thresholding of the two Gaussian random
fields in order to obtain a three-phase structure (two solid-phases and one
pore-phase) with defined phase volume fractions and wetting behaviour

Parameter Unit

Solid volume fraction SP1 dsp1 —
Solid volume fraction SP2 Dspa2 —
Angle between the domains Dgp; and Dgp, o
Angle between the domains Dsp; and Dpore p
Angle between the domains Dpore and Dgpy y
Tolerance for the solid volume fractions ¢gp; and ¢gp, Jg

Description

o o o

%
where the one-dimensional marginal distribution of the field
follows a standard normal bivariate distribution®® Gyy(z) ~

0 0 1
p(x)y) is given by:

N(u = {0] , 2= {1 OD whose probability density function

_(x2+)/2)). @

1
p(x,y) = 3 EXP 3

In order to obtain a virtual microstructure with three phases
(i.e., solid-phase 1 = SP1, solid-phase 2 = SP2 and pore-phase), a
specific numerical realization of a pluri-Gaussian random field
Gxy(2) using GeoDict has to be segmented (note that a repro-
ducible realization can be obtained by specifying the corres-
ponding random seeds RSgrrs and RSgrr,). The segmentation is
performed by partitioning of p(x,y) in three domains Dgp;, Dsp, and
Dpore as illustrated in Fig. 4. The sets of voxels Qgpi, 2spp and Qpore
belonging to the corresponding phases are thus obtained by
thresholding Gx{(z) with the three domains as follows:

Qgp1 = {2:Gxy(z) € Dgpy } (5)
Qspo = {2:Gxy(2) € Dspo} (6)
Qpore = Qsp1 U Qsp2. )

The domains Dgpy, Dsp, and Dy are thereby defined by the
angles o, f and y, and the threshold parameters TH; and TH,
as illustrated in Fig. 4. However, the threshold parameters
TH; and TH, are not direct model input parameters, but are
determined according to the specified phase volume fractions
(¢sp1, Pspz), which corresponds to the integral values of the
domains:

Pso1 = JD p(x,y)dxdy (®)

© 2023 The Author(s). Published by the Royal Society of Chemistry

-4 -3 -2 -1 0 1 2 3 4

X

Fig. 4 Thresholding plane with indication of the domains for solid-phase
1(SP1), solid-phase 2 (SP2) and pore-phase defined by the angles o,  and y
and the threshold parameters TH; and TH,.

p(x,y)dxdy. 9)

Dsp,

bspr = J

The volume fraction of the complementary pore-phase results
in e =1 — ¢gp1 — ¢spp. In the current implementation, the
threshold values resulting in the specified volume fractions
are determined iteratively. The procedure could be slightly
accelerated using analytical expressions. However, some itera-
tive steps would still be needed for a precise control of the
volume fractions because there are some deviations of
the realized segmented volume fractions and the theoretical
analytical volume fractions.

A known issue of the PGM (e.g., ref. 29) is that the thresh-
olding of the Gaussian random fields result in an irrelevant
noise at the interfaces of the phases. Therefore, an option is
implemented to filter the Gaussian random fields with a low-
pass Gaussian filter in order to suppress these interface arte-
facts as e.g., suggested by Abdallah et al.?® This noise-filtering
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option is reported in Section A of the ESI.f Note that a filter
factor kgijier = 0.025 (Table 1) is a good default choice, which
does not need to be adapted in general.

In summary, the PGM procedure includes two major steps:
(1) the generation of two independent Gaussian random fields
(GRF) and (2) the thresholding of these GRFs in order to get a
defined three-phase structure. If a structure with different
characteristic particle sizes for the two solid phases shall be
generated, the standard deviations of the two corresponding
Gaussian random fields need to be chosen accordingly, as
illustrated in Fig. 3. With appropriate thresholding operations,
the resulting structures can be varied in a large range by only
changing the threshold operations for the same set of two
Gaussian random fields. Especially, the phase volume fraction
and the wetting behaviour of the phases can be varied very
easily and efficiently. The possibilities of structure variations
with the thresholding operations shall be illustrated in the
following. For these examples, the same characteristic size
(i.e., standard deviation) for the Gaussian random fields will be
used for solid-phase 1 (SP1) and solid-phase 2 (SP2). In Fig. 5,
threshold parameters to achieve different phase volume frac-
tions and compositions are illustrated. We define a reference
case as shown in Fig. 5(a), where all the domains Dgp,, Dsp, and
Dpore meet in the centre. The sector Dpore 0Occupies one fourth of

a) Reference

b) Porosity change

View Article Online

Paper

the plane, which results in porosity of ¢ = 25%. The two
domains Dsp; and Dsp, occupy the rest of the plane with equal
shares, which results in the solid-phase volume fractions ¢gp; =
¢sp2 = 37.5%. If for example, a higher porosity of ¢ = 50% shall
be realized while still maintaining equal solid volume fractions,
the corresponding sector for the pore-phase can be enlarged in
x- and y-direction to the same extent, which is illustrated in
Fig. 5(b). Note that the phase volume fractions correspond
to the integral values of the probability density function over
the domains as stated in eqn (8) and (9). To achieve a lower
porosity, the sector would need to be reduced accordingly.
To change the composition of the solid phases to e.g., SP1:
SP2 = 70:30, the domain Dgp; can be enlarged and the domain
Dgp, reduced, resulting in the defined composition and constant
porosity of ¢ = 25% as illustrated in Fig. 5(c).

In addition to the composition and porosity, also the wetting
behaviour of the two solid phases can be modified in a
controlled way. This is achieved by changing the angles
between the domains of the phase assignments as illustrated
in Fig. 6. The corresponding volume specific interface areas
for the three exemplary structures are reported in Fig. 7.
In Fig. 6(a), the reference structure with o = 45°, f# = 0° and
7 = 0° is shown, where a cutout at higher magnification is used
for better visualization. The reference structure exhibits (almost)

¢) Composition 70:30

Fig. 5

Illustration of the threshold parameters in order to achieve different phase volume fractions and compositions: (a) reference structure with a

porosity of ¢ = 25% and equal solid-phase volume fractions ¢sp1 = pspo = 37.5%, (b) structure with higher porosity of ¢ = 50% and with equal solid-phase
volume fractions ¢sp1 = ¢sp2 = 25% and (c) structure with solid-phase fractions of SP1:SP2 = 70:30 and with an unchanged porosity of ¢ = 25%.
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a) Reference

b) Dewetting
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c) SP2 wets SP1

Fig. 6 Visualization of thresholding operations and their impact on the wetting behaviour: (a) reference structure with neutral wetting behaviour,
(b) example for a dewetting and (c) example for a wetting of the solid-phases.

15
1.32 1.32

1.26
1.02
L1 11
=
<>:" 0.64
= 05F H 0.43
0

a) Reference b) Dewetting c) SP2 wets SP1
]-pore — SP1 mmpore — SP2[ |SP1 — SP2‘

Fig. 7 Volume specific interface areas for the exemplary structures of
Fig. 6. Note that the values are normalized to the volume specific pore—
SP1 interface area of the reference structure (a).

identical volume specific interface areas for pore-SP1, pore-SP2,
and SP1-SP2 (Fig. 7(a)). In Fig. 6(b) a dewetting example is shown
with « = 45° f =20° and y = —20°, which represents the physical
case where the solid phases do not like to touch each other.
As a result (Fig. 7(b)), the volume specific interface areas pore-SP1
and pore-SP2 are significantly larger and the solid-phase interface
SP1-SP2 is significantly lower compared to the reference structure.
In Fig. 6(c), an example with « = 80°, f = —40° and y = 0° is shown,
where SP2 wets SP1. Consequently, the volume specific interface

© 2023 The Author(s). Published by the Royal Society of Chemistry

area pore-SP1 is less than half the value of the reference, while the
value for pore-SP2 is significantly higher (Fig. 7(c)). Moreover,
the volume specific interface area SP1-SP2 is enlarged by 50%.
In the literature,?® there is no analytical expression available yet
for the relation between the threshold angles and the volume
specific interface areas. Therefore, in this work these relations
will be captured empirically by performing a systematic para-
meter variation.

If a structure with two different characteristic lengths shall
be generated, the standard deviations of the two corresponding
Gaussian random fields need to be chosen accordingly as
illustrated in Fig. 3. It has to be emphasized that the variation
of thresholding angles and associated change in the wetting
behaviour also affects the morphology of the pore-phase and
associated pore size distribution. This effect is particularly
strong, if two different characteristic phase sizes are used,
which is illustrated in Fig. 8. Thereby two different threshold
settings with different phase sizes (i.e., SDgrr; = 10vox and
SDgrr2 = 30vox) are compared with the reference structure that
is characterized by equal phase sizes. For all three structures,
the phase volume fractions are identical, but the pore morpho-
logy is different. The mean radius of the pore-phase rmax,pore,cont
(i.e., 150 of the continuous pore size distribution see Miinch and
Holzer"’) and the simulated gas permeability k™ (as described
in Marmet et al.'®) are reported in the captions. For both

Energy Adv., 2023, 2,1942-1967 | 1949
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(@) SDGrr1 = 10vox, SDGrrz = 10vox,
@ =452, B=0°, y=0",
Fmax, pore,cont = 0.3 pum, = 04010~ % m.

(b) SDgrr1 = 10vox, SDgrr> = 30 vox,
a=45,=0°y=0°

T'max, pore,cont = 0.42 um, KM =1.13-10"" m.

View Article Online

Paper

(¢) SDgrr1 = 10vox, SDgrr2 = 30vox,
o =45, =-20°, y=60°,

Fmax,pore,cont = 0.66 um, k5™ =1.97-10~""m

Fig. 8 Structures with different characteristic phase sizes and different wetting behaviours: (a) reference structure with equal phase sizes. (b) Structure
with different phase sizes: Note that the smaller phase (SP1, green) forms numerous fingers that extend into the pore-phase. (c) Structure with different
phase sizes: Note that due to a different wetting behaviour (compared to (b)), the smaller phase (SP1, green) is more confined to the vicinity of the larger

phase (SP2, red), which results in larger pores. The mean radius of the pore-phase rmax pore,cont and the simulated gas permeability x

the different structures.

structures in (b) and (c), an increase in the size of SP2 also leads
to an increase of the pore size and associated gas permeability.
However, for the structure with standard threshold angles
(o = 45° B =0° 7 = 0° in Fig. 8(b), the smaller phase (SP1,
green) is not strongly bound to the interface with SP2 and thus
it extends markedly into the pore-space. This results in a
limited increase of the pore size of only about 40% compared
to the reference structure (Fig. 8(b)), despite the fact that one
solid-phase is enlarged by a factor of three. For the example
reported in Fig. 8(c), the threshold parameters (« = 45°, f§ =
—20° 7 = 60°) are chosen such that the smaller phase (SP1,
green) is preferably wetting the larger phase (SP2, red). Conse-
quently, the smaller phase (green) is predominantly located
along the interface with the larger phase (red) and, therefore, it
does not extend significantly into the pore-phase. As a result,
the pore size is enlarged by more than a factor of two compared
to the reference case. These different morphologies directly
affect the transport properties of the pore-phase. For example,
the gas permeability for the structure in Fig. 8(c) is 75% higher
compared to the structure in Fig. 8(b).

2.3 Digital microstructure twin based on pluri-Gaussian
random fields

A relevant application of the PGM is the construction of a
digital microstructure twin, i.e., a virtual microstructure model
with almost the same properties as a real reference structure
(e.g., from tomography) with the ability for parameter variation.
There are different possibilities to match the digital twin to the
real structure. Neumann et al.*® fitted a parametric model for
the two-point coverage probability functions with two para-
meters for each solid phase. Thereby, they used constant
shapes (i.e., constant angles) for the thresholding domains.
In another work, Neumann et al.*® fitted two parameters for the

1950 | Energy Adv, 2023, 2,1942-1967

sim

are reported for

Gaussian correlation function (one for each GRF), and a factor
accounting for the correlation of the phases, again using
constant shapes for the thresholding domains. However, in
the present study, the shapes of the thresholding domains are
variable. Presently, there is no analytical expression available®®
in literature to describe the relations between the angles o, f
and y in Fig. 4 and the microstructure properties. Hence, the
fitting of the digital microstructure twins is achieved based on a
microstructure database, which is illustrated in Fig. 9. Thereby,
the angles o, ff and y are systematically varied for different

Variation of composition and porosity Examples variation

threshold angles

Dot/ %

50

40

Gret,sp1/%

Fig. 9 Visualization of the PGM-structure library for the fitting of the
construction parameters including 1575 realized virtual microstructures.
Note that for the variation of the threshold angles o, f and y only three
examples of a much larger variation are shown.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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porosities and compositions using the same set of two GRFs.
This parametric variation results in the realization of 1575
different virtual microstructures (see also Section F.2 of the
ESL, T for further details). This database can be constructed with
reasonable computational effort, because only the threshold
operations and not the GRFs need to be varied. Subsequently,
the relevant microstructure properties are determined for these
structures using the characterization app.**

The procedure to construct a digital microstructure twin is
illustrated in Fig. 10 and briefly described in the following
(see also Section F of the ESIt):

1. Standard characterization of the segmented real structure
from 3D tomography with the characterization-app."

2. Interpolation of the structure database to determine
appropriate threshold angles «, f and y, which match the
volume specific interface areas and TPB-length of the real
structure. First, the database is interpolated to the given phase
volume fractions of the real structure (i.e., composition and
porosity, respectively). Therewith, a normalized sub-dataset
relating the threshold angles with the selected microstructure
properties (i.e., volume specific interface areas and TPB-length)
is available for fixed phase volume fractions. Second, the
threshold angle set with the best match to the real structure
is determined based on error-functions. Thereby, also the voxel
size is scaled, while the number of voxels for the standard
deviations of the Gaussian random fields are held constant at
SDgrr1 = SDgrrz = 10voxels.

3. Generation of an initial PGM-structure with the correct
porosity and composition and matching volume specific inter-
face areas and TPB-length using the determined threshold
angles (o, f and y) and the appropriate voxel size from step 2.

4. Optimization of the relative conductivities in order to
obtain a closer match to the real structures. Thereby, a sequence
of morphological operations (erode and dilate) is applied on the
solid-phases. Especially the connection between the features
within the individual solid-phases are manipulated to adapt the
relative conductivities, as illustrated in Fig. 11. Typically, the
relative conductivities of the pure PGM structures are too high
and thus the connectivity between the structure features needs to
be reduced. The needed numbers of involved voxels (Fyox mod,sp1

Real 3D
structure

®_ . Microstructure
Characterization properties (real structure)
/

Phase volume fractions,
interface areas and TPB-length

®r ®

effective
conductivities

Database PGM = Realization of ® Final twin
Virtual structures ~ °°"StUction pe_trycture " structure
Matching of volume parameters . . i Morphological with matched
fracti 90 (|n|t|a| twin) operations 8
ractions, interface with matched effective

areas and TPB-length interface properties conductivities

Fig. 10 Workflow for the construction of a digital microstructure twin for
a corresponding real structure, e.g., from tomography. (1) Characterization
of the real structure, (2) determination of the PGM parameters for match-
ing microstructure properties, (3) generation of an initial PGM structure
and (4) optimization of the relative conductivities with morphological
operations.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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&L

—

Fig. 11 Illustration of the effect of the morphological operations: Starting
from the pure PGM microstructure (step 3 in Fig. 10), the connection of the
features within the individual solid-phases are reduced (step 4 in Fig. 10).
Therewith, the composite conductivities can be matched closer to the real
structures from tomography.

and Nyoxmod,sp2 i Table 3) for the morphological operations are
determined in an automated iterative process. Thereby, the
relative conductivities of the PGM structure after the morpho-
logical operations are computed and compared with respect to the
target values of the real structure. Either the relative single-phase
conductivities (e.g., for Ni-YSZ) or the composite conductivities
(e.g., for LSTN-CGO) can be matched, depending on the material
system. Note that the volume fractions are no more precisely
defined by eqn (8) and (9) after application of the morphological
operations. However, the volume fractions are conserved within a
narrow range of typically 0.1%.

With the fitting procedure of step 2 in Fig. 10, a good match
of the interface areas and the TPB-length can be achieved
(see also results Section 3.3). However, the relative conduc-
tivities show larger deviations. Typically, the relative conduc-
tivities of the virtual structures are too high compared to the
real structures. The same behaviour can be observed in the

1.?% and Neumann et al.,*® where

studies of Moussaoui et a
the relative conductivities of the virtual structures show a
deviation around 20%. Thus, this a general issue for the
PGM, which also cannot be fully resolved by using and fitting
a more complex model for the correlation function, as
employed by Neumann et al.>° This is most probably because
the correlation function is a statistical property of how the
phase is distributed in space and hence is rather insensitive to
local morphological details like bottlenecks and phase network
connectivity of individual features, which, however, strongly
influence the relative conductivity. Thus, the morphological
operations described in step 4 in Fig. 10 are a valuable option to
improve the match of the relative conductivities.

Note that the current database of virtual structures is based
on parameter variations that are created with the same standard
deviation for the two GRFs. Consequently, the fitting procedure
only provides appropriate results for three-phase structures with
similar characteristic phase sizes. Fortunately, this is the case for
the used set of LSTN-CGO electrodes as confirmed in a previous
publication.’® If this was not the case, the database would need to
be extended to different characteristic phase sizes. Alternatively,
the approach could be combined with additional methods like
machine learning or more complex models for the correlation
functions of the Gaussian random fields.

Energy Adv, 2023, 2,1942-1967 | 1951
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Table 3 Parameters used for the morphological operations in order to improve the match of relative conductivities in virtual stochastic structure
realizations compared to real (experimental) structures. The detailed procedure is reported in Sections F.5 and F.6 of the ESI

Description Parameter Unit
Number of voxels used for the morphological operations on SP1 Tyox,mod,SP1 Voxel
Number of voxels used for the morphological operations on SP2 Tyox,mod,SP2 Voxel
Switch for morphological operations: if enabled (Y), SP1 is dilated at the expense of SP2 and Switch 1 Y/N

if disabled (N), SP1 is eroded while SP2 is dilated

A detailed documentation of the entire workflow to con-
struct digital microstructure twins with properties that show a
good match with the corresponding real structures is reported
in Section F of the ESL.{

3 Results

In this result section, the methods introduced in Section 2 are
applied to perform a parametric microstructure study by sto-
chastic modeling of LSTN-CGO anodes. In Section 3.1 the
computational efficiency for the PGM structure generation is
estimated. In Section 3.3, the construction and characterization
of the digital microstructure twins are presented. Their proper-
ties are compared and matched with those of three real micro-
structures of experimental LSTN-CGO anodes using the
procedure described in Section 2.3. In Section 3.4, the systema-
tic variation of virtual PGM microstructures is described. For
this purpose, the digital microstructure twins from Section 3.3
are used as anchor points for a parametric study. The corres-
ponding microstructure properties for these microstructure
variations are reported in Section 3.5.

3.1 Computation times with PGM and sphere-packing

As an estimate for the computational efficiency, the computa-
tion times to generate PGM structures and sphere-packing
structures are compared for three examples of each method
with the same structure size of 600° voxels. The tests are
documented in Section C of the ESI,{ in detail and the results
are summarized in the following:

e The construction times with PGM were around 6 minutes
for each of the three structures and thus almost independent of
the phase volume fractions.

¢ In contrast, the construction times for the sphere-packing
structures (using the GrainGeo module of the GeoDict software
package) were between 25 minutes and 8.7 hours and hence,
strongly depend on the porosity (i.e., higher construction times
for lower porosities).

e These examples clearly illustrate the higher efficiency of
the PGM approach compared to the sphere-packing method.

3.2 LSTN-CGO electrodes: materials processing, fabrication
and imaging

The workflow for the digital twin construction reported in
Section 2.3 shall be applied to a dataset of three microstruc-
tures obtained by FIB-SEM tomography. These three micro-
structures represent variations of experimentally fabricated
SOFC fuel electrodes consisting of CGO and LSTN with differ-
ent compositions and porosities. Visualizations of the three

1952 | Energy Adv, 2023, 2,1942-1967

LSTN-CGO microstructures are provided in Fig. 12 (top row).
In a separate paper, we provided a detailed description of the
properties of raw materials and powders, the fabrication pro-
cedure for the electrodes, as well as the 3D imaging methodol-
ogy (see Marmet et al," including the corresponding ESI,t
Section F). Furthermore, the entire fabrication process of such
titanate-CGO anodes was also described in another publication
(Burnat et al.'®). Nevertheless, a brief summary of the experi-
mental data and procedures shall be presented here as follows.
Button cells are produced by screen-printing of LSTN-CGO pastes
on a commercial solid electrolyte from Kerafol (scandium-
stabilized Zr-oxide). The used LSTN material (more precisely:
Ly, 5ST0.55Tip.05Nig 0505 _s perovskite, see also Burnat et al.'®) was
developed in an SNF-project (NRP70, Energy Turnaround) and
further information can be found here.”® For CGO (ie.,
Gd,.1Ce).901.05), commercial powder from H. C. Stark was used.
The BET measurements reveal SSA values of 21.2 m*> g™ ' (ie.,
mean particle diameter around 40 nm) for the reprocessed CGO
powder and 13.3 m> g~' (ie., mean particle diameter around
80 nm) for the LSTN powder. The screen-printed LSTN-CGO layer
was then sintered at a temperature of 1250 for 2 h. The intrinsic
conductivities of the two MIEC materials are estimated from
available literature data as reported in Table 4. For CGO10 (i.e.,
Ce-oxide with 10% doping of Gd), relatively precise conductivity
data are available.”” However, for LSTN the experimental results
are less precise so that only the order of magnitude can be
estimated.'®® Based on the available data, it is justified to make
the assumption that the intrinsic electronic conductivity of LSTN is
10 times higher compared to CGO, and the intrinsic ionic con-
ductivity of LSTN is 10 times lower compared to CGO. Hence, in a
MIEC anode consisting of LSTN and CGO, both phases will
contribute to the transport of both charge carriers. The resulting
effective transport property of composite MIEC electrodes is called
composite conductivity (see Marmet et al'®). This composite
conductivity is an important advantage of MIEC anodes, compared
to anodes consisting of single-phase conductors. Moreover, the
harmful degradation phenomena associated with Ni (see also
introduction Section 1) can be avoided by the replacement of Ni
with a perovskite. In fact, a high robustness against carbon coking,
sulphur poisoning and redox-cycling is reported for many different
perovskites and other MIEC materials.” The used LSTN-CGO fuel
electrode represents a specific example of this promising materials
concept for fully ceramic electrodes.

3.3 Digital microstructure twins for a set of three LSTN-CGO
structures

The workflow for the digital twin construction reported in
Section 2.3 has been applied on the LSTN-CGO dataset,

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 12 Orthoslices for visual comparison of the real LSTN-CGO anode microstructures captured by tomography (top row) with the correspond-
ing digital microstructure twins (bottom row). The widths of the image windows is 3 um for CGO40-LSTN60 and 3.84 pm for CGO60-LSTN40 and
CGO80-LSTN20.

Table 4 Literature data for intrinsic electronic and ionic conductivities of CGO and LSTN at a temperature of T = 850 °C. For the ionic conductivity of
CGO a reference oxygen partial pressure of Po, = 3 x 1072° bar was used, which corresponds to a humid hydrogen atmosphere with a water content of

7%

Material Intrinsic electronic conductivity Intrinsic ionic conductivity Ref.
CGO Goeoncao = 1.83 Scm ™! Gojonceo = 0.13 Sem ™ 49
LSTN Goeonrstn = 18.3 S em™! GojionLstn = 0.013 S em ™! 10 and 50

summarized in the previous Section 3.2. The corresponding
results shall be presented in this section.

In Fig. 12, a visual comparison of the real structures and
their corresponding digital microstructure twins is provided.
The visual comparison reveals a good agreement. However, the
sample with the composition CGO:LSTN = 80:20 shows some
inhomogeneities for the LSTN-phase, which is not captured by
the digital twin. It must be emphasized that the individual
structural features are not expected to be identical. However,
the morphology of the real and corresponding virtual micro-
structure should be characterized by the same (or at least very
similar) statistics, especially with respect to the most important
microstructure properties. In Table 5, selected microstructure
properties, which are particularly important for the parametri-
zation of an electrode model for performance prediction, are
compared for the three real structures and their corresponding
digital microstructure twins. For all three couples of real and
corresponding virtual structures, the volume fractions match
well, typically with a deviation of within 0.1%. The deviations of
phase volume fractions are predominantly caused by morpho-
logical operations after the PGM construction. The match of

© 2023 The Author(s). Published by the Royal Society of Chemistry

volume specific interface areas is typically within 2%. Thereby,
the largest deviations are reported for the volume specific
SP1-SP2 interface areas (maximal deviation of 2.85%). The
TPB-lengths are typically matched within 3%, expect for the
LSTN20-CGO80 microstructure, where a larger deviation of
11.83% is observed. This mismatch can be attributed to some
inhomogeneities that are present in the experimental sample
(see also Marmet et al.'®), which are not captured by the digital
microstructure twin.

The relative ionic and electronic composite conductivities
(see definition in Marmet et al.'®) exhibit relatively large devia-
tions up to 20%. Despite the corrections with morphological
operations, it is challenging to match the relative ionic and
electronic composite conductivities at the same time because of
the complex interplay between the two solid phases (i.e., the
morphologies and associated properties of the two solid phases
cannot be changed independently). However, the deviations are
still in a good range for the current application. Note that the
single-phase conductivities can be matched more easily with
the morphological operatio