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us on the use of real-world datasets for yield
prediction

Latimah Bustillo and Tiago Rodrigues *

The prediction of reaction yields remains a challenging task for machine learning (ML), given the vast search

spaces and absence of robust training data. Wiest, Chawla et al. (https://doi.org/10.1039/D2SC06041H)

show that a deep learning algorithm performs well on high-throughput experimentation data but

surprisingly poorly on real-world, historical data from a pharmaceutical company. The result suggests

that there is considerable room for improvement when couplingML to electronic laboratory notebook data.
Machine learning (ML) has seen formi-
dable applications in diverse elds of
science, including chemistry.1 The
prediction of retrosynthetic routes,2 the
de novo design of chemical entities,3 and
the prediction of pharmacological
proles for small molecules4 are just
a few examples where ML is currently
making an impact and accelerating
research.5,6 These advances are made
possible chiey due to improved algo-
rithms, methods for describing molec-
ular structure and, above all, available
datasets. In fact, a corollary in ML
research is that a model can only be as
good as its training data.7 To that end,
a considerable amount of time in the ML
development process is devoted to col-
lecting, curating and harmonizing data.

With the emergence of large language
models (LLMs; e.g., ChatGPT) that
‘converse’ with human users one may
assume that predicting reaction yields is
only a simple task. That is not the case.
Predicting yields remains challenging
due to the absence of robust reaction
precedents.8 Among the many shortcom-
ings, datasets tend to be biased towards
productive reactions. This has deep roots
in the chemistry literature given the
preference to report positive results and
omit ‘failures’.9 It is also known that
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observational uncertainty affects the re-
ported yield (usually measured once
rather than veried through replicates)
and, in some cases, the values are mis-
assigned in databases.5 These errors
propagate and impact the ML model
accuracy. Finally, the search spaces are so
vast that any currently available dataset
remains sparse in terms of coverage. As
a result, there is a need to develop new
ML methodologies and approaches that
mitigate the referred limitations.

Active and reinforcement learning
have been previously employed in the
optimization of reaction conditions using
yield as a metric to gauge success.10,11

High-throughput experimentation (HTE)
data is a viable starting point for reaction
optimization campaigns and is compat-
ible with diverse avours of molecular
descriptors.8,10,12 Those data can however
be too focused on certain regions of the
search space and the resulting ML tools
might generalize poorly. It has been
hypothesized that electronic laboratory
notebooks (ELNs) – for example those
from pharmaceutical companies – can
provide less biased dataset alternatives to
HTE datasets. As an additional selling
point, the larger chemical space coverage
in ELNs may be instrumental for
improved model generalizability and the
identication of new reactivity patterns.
Still, the utility of ELNs as data sources
remained unknown until now partly due
to their restricted access.
© 2023 The Author(s
In a collaborative study,13 Wiest (Notre
Dame), Chawla (Notre Dame), Doyle
(University of California), Norrby (Astra-
Zeneca) and co-workers delved into ELNs
to build ML models and predict reaction
yields. Using pharmaceutically relevant
transformations as examples (e.g., Buch-
wald–Hartwig and Suzuki couplings) it
was found that state-of-the-art represen-
tation learning performs unsatisfactorily
and not much better than other simpler
methods, such as random forests.

The team started by querying Astra-
Zeneca's legacy data and pre-processing
the retrieved information. As expected,
incomplete reactions and those with 0%
yield were highly prevalent in the ELN.
Still, a total of 781 Buchwald–Hartwig
reactions fullled the pre-established
quality criteria, which was a minute
number of reactions in comparison to the
whole search space size (∼4.7 × 108).
Notwithstanding the diversity of the ELN
data, its size was in stark contrast with
a related HTE dataset which comprised
3960 Buchwald–Hartwig reactions
covering a space of 4140 possibilities for
only ve distinct products. These datasets
were then used to train ML models with
chemically meaningful descriptors. The
performance of random forests, BERT, k-
nearest neighbours, Lasso, and support
vector machines was subsequently
compared. For a realistic assessment of
the expected baseline performance, Y-
randomized (shuffled) datasets were
also generated and optimized models
). Published by the Royal Society of Chemistry
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Fig. 1 Architecture of the YieldGNN method that combines structural (atom and bond features over their neighbourhood) with chemical
features stemming from a random forest. The two yield scores that originate from the graph-based and ensemble tree methods are concat-
enated and passed through a linear layer to generate the final predicted yield. Figure reproduced from Wiest, Chawla et al. (https://doi.org/
10.1039/D2SC06041H).
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were trained. From all the surveyed
methods, the random forests and BERT
models performed best for HTE datasets,
providing r2 values > 0.82.

In comparison, the ELN data did not
afford a model with satisfactory perfor-
mance. Random forests performed best
but with an r2 value of only 0.266. While
the obtained performance was slightly
better than a randomized baseline, the
result suggested that the vast search
space was only sparsely populated by the
training data. As a potential solution, the
authors hypothesized that the maximum
amount of information could be captured
by retaining elements of the two best
performing methods in HTE datasets –

random forests and BERT. This meant
that an optimized model – herein named
YieldGNN – would combine molecular
properties (i.e., chemical features or
descriptors) from the tabular data used in
random forests with the molecular graph
structure in attributed graph neural
networks (GNN; Fig. 1).

In short, Weisfeiler–Lehman networks
were employed wherein atom and bond
information was aggregated using con-
volutional operations. The embedded
neighbourhood features were then
concatenated with atom representations
to ultimately access attended GNN
features that were the basis of yield
predictions. To avoid overtting of the
neural network, a random forest was
trained in parallel, and its outputs were
linearly combined to those of the atten-
ded GNN to afford a nal yield
© 2023 The Author(s). Published by the Royal So
prediction. The resulting composite
model outperformed all previous
methods on HTE datasets, including the
random forests, as indicated by more
favourable r2 and mean absolute error
values. However, as the authors correctly
mention, the obtained improvements are
more relevant from a statistical point of
view than in a real-life laboratory setting.
This owes to the fact that the marginally
higher r2 value absorbs uncertainties and
errors in yield measurements. Still, the
results show some evidence that connec-
tivity data is important for model perfor-
mance and that its inclusion is a viable
strategy for future ML implementations.

The application of YieldGNN to ELN
data provided less promising and unex-
pected results in comparison. No mean-
ingful predictions were obtained (r2 # 0)
even aer extensively ne-tuning the base
model. One of the reasons for this
observation was the inability of YieldGNN
to learn key features that govern the
transformation, according to weight
values that did not surpass 0.05.

In an attempt to solve this issue, the
research team investigated whether pre-
training of a GNN with a large corpus of
molecules could help improving the ML
model performance. Three different pre-
training approaches were surveyed,
including attribute masking, context or
edge prediction, followed by transfer
learning with the relevant datasets for
yield prediction. Rather surprisingly,
those GNNmodels performed worse than
the random forest baseline for HTE data,
ciety of Chemistry
likely due to a domain mismatch. A
marginal improvement was observed for
the corporate data (r2 = 0.177 vs. r2 =

0.049), but the ML utility remained far
from ideal for prospective applications.
Altogether, the obtained results suggest
that future ML implementations should
exploit datasets that are closer to the
problem of interest. Despite our ability to
generate large volumes of data, this study
also shows that the underlying experi-
mental design rarely has a ML applica-
tion in mind – i.e., ‘big data’ is not
linearly linked to information and model
performance. Further, YieldGNN is
conceptually different from the previ-
ously reported random forest10 and
Bayesian optimization8 approaches for
yield optimization that use reaction
conditions and/or density functional
descriptors. Together with the imple-
mentation of LLM chemistry agents14,15 to
streamline experimental work, the future
of data-driven chemistry and yield
prediction in particular does seem
promising. Still, we re-emphasize a recent
call for metrics in ML model evaluation
that go beyond accuracy.16 Said metrics
should gauge advances with sustain-
ability in mind. In summary, Wiest and
colleagues provide an excellent account
on ML models for yield prediction, the
importance of information (arguably
higher than the importance of the algo-
rithm) and hint at a clear disconnect
between ML performance and the supe-
riority of corporate ELNs over publicly
available data sources. Whether those
Chem. Sci., 2023, 14, 4958–4960 | 4959
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conclusions generalize to other ELNs
remains to be seen.
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