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Control over the mesoscale to microscale patterning of materials is of great interest to the soft matter

community. Inspired by DNA origami rotors, we introduce a 2D nearest-neighbor lattice of spinning

rotors that exhibit discrete orientational states and interactions with their neighbors. Monte Carlo simu-

lations of rotor lattices reveal that they exhibit a variety of interesting ordering behaviors and morphologies

that can be modulated through rotor design parameters. The rotor arrays exhibit diverse patterns including

closed loops, radiating loops, and bricklayer structures in their ordered states. They exhibit specific heat

peaks at very low temperatures for small system sizes, and some systems exhibit multiple order–disorder

transitions depending on inter-rotor interaction design. We devise an energy-based order parameter and

show via umbrella sampling and histogram reweighting that this order parameter captures well the order–

disorder transitions occurring in these systems. We fabricate real DNA origami rotors which themselves can

order via programmable DNA base-pairing interactions and demonstrate both ordered and disordered

phases, illustrating how rotor lattices may be realized experimentally and used for responsive organization.

This work establishes the feasibility of realizing structural nanomaterials that exhibit locally mediated micro-

scale patterns which could have applications in sensing and precision surface patterning.

1. Introduction

The Ising model1 has long served as a valuable pedagogical
device for describing order–disorder transitions. This model,
originally developed to explain ferromagnetism, treats mag-
netic spins as one of two states: spin up or spin down, where it
is energetically favorable for neighboring spins to be pointing
in the same direction. In a one-dimensional lattice of spins,
the enthalpic cost of disorder becomes negligible in the
thermodynamic limit N → ∞, so the system will be disordered
at any temperature T > 0. However, in dimensions two or
higher this enthalpic penalty to disorder becomes non-negli-
gible, which gives rise to a first-order phase transition between
an ordered and a disordered state at finite temperatures. This
model enables many features of phase transitions to be cap-
tured, including spinodal and binodal decomposition as well
as divergent magnetic susceptibility and correlation length.

Furthermore, other transition types such as gas–liquid tran-
sitions2 and mixing–demixing transitions3 are also directly
mappable to the Ising model, making it useful for studying
real physical systems in addition to hypothetical ones.

Order–disorder transitions may be broadly classified into
two categories: those that involve translational motion of the
system constituents, either between phases of different den-
sities (e.g., in gas–liquid transitions) or local compositions
(e.g., in mixing–demixing transitions), and those that involve
only local rotational order and whose phase transitions incur
no change in density or composition (e.g., magnetic spins).
Translation-based phase transitions are ubiquitous both in
nature and in engineering systems, where they have been har-
nessed for numerous applications. For instance, in metallurgy,
specific thermal annealing procedures can yield distinct
phases of steel which have drastically different mechanical
properties, a phenomenon that has been exploited for thou-
sands of years.4 However, to the best of our knowledge, orien-
tation-based constant density phase transitions have not been
exploited in rationally designed nanomaterial systems.

DNA origami5 provides an opportunity to realize such a
system that uses local interactions between neighboring struc-
tures to induce large-scale control over ordering as is seen in
magnetic systems. DNA origami is a technique for rationally
designing nanostructures using DNA as a building material.
This allows DNA to be used as a building block for construct-
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ing arbitrary, yet precise, shapes and patterns. Many dynamic
devices have been made from DNA,6–8 including rotary
devices,9–12 which allows one to imagine the construction of
an array of nanomechanical rotors with neighbor interactions
that drive constant-density phase transitions fundamentally
similar to those in conventional spin lattices. Importantly, at
the length scales of DNA origami, thermal fluctuations still
play a key role in organizational behavior, and order–disorder
transitions may still be directly observable using standard
imaging techniques such as transmission electron microscopy
(TEM) or atomic force microscopy (AFM).

Here, we introduce a new class of self-organizing lattice
systems that we call “rotor lattices” (distinct from another
lattice model of the same name13), which exhibits unique be-
havior such as low transition temperatures and multiple
order–disorder transitions and can be realized as physical 2D
arrays of DNA origami rotors using base pairing interactions
between complementary single-stranded oligonucleotides
(sticky ends)14–16 or unstacked bases at the ends of DNA
helices (blunt ends)17–21 to mediate their organization. These
rotor lattices are motivated by phase transitions of water where
the geometric nature of neighbor interactions between mole-
cules dictates their transition behavior and ordering in liquid
and solid phases.22 2D lattices of rotors should be simple to
image and provide a 2D model system which could eventually
inform the organization of 3D systems. Rotary elements can
only form a finite number of bonds, which can give rise to beha-
viors such as termination and the formation of switchable
shapes and patterns that can be toggled between their phases
by modulating the interaction strength. We use Monte Carlo
simulations to predict the unique organizational behavior of
these rotor lattices, and then demonstrate how DNA origami
may be used to actualize such a system by designing small
arrays of DNA rotors which exhibit nearest-neighbor interactions
through overhang base pairing. The DNA rotors are shown to
exhibit both ordered and disordered phases, establishing the
feasibility of realizing Ising-like structural nanomaterials.

2. Results
Model development

The magnetic lattice models that inspired this work normally fit
within the n-vector model23 wherein a d-dimensional lattice of
spins, which have their own dimensionality n, interact with all of
their nearest neighbors. In the case of the Ising model, n = 1 and
each site contains a 1D spin. The n = 2 case describes the XY
model,24 and the n = 3 case, known as the Heisenberg model,25

is used to study phenomena such as ferromagnetism. The rotor
lattice model that we describe here does not fit within the
n-vector model. It instead utilizes directional interactions where
an interacting “arm”, which protrudes from the rotor, can inter-
act with only a single neighbor, contrasted by the spins’ ability to
interact with all neighbors in the n-vector model or in variations
of the Ising model such as the Potts model.26 We will show that
this gives rise to its own class of interesting transition behaviors.

Our rotor lattice model is described by a space-filling unit
cell in any number of dimensions d and coordination number
z. Each unit cell harbors a single rotor which can exhibit p
orientations coinciding with the directions of neighboring
unit cells (in the case of 2D systems, p can equal some natural
number multiple of z, but in 3D systems, this becomes more
complex, e.g., a 3D cubic rotor in a 3D cubic unit cell can
exhibit 24 or more orientations). Each “face” of the rotor con-
tains an interacting region (arm) that can interact with a
neighboring rotor in the direction the arm is pointing. In this
work, we will focus on the d = 2 and p = z = 4 case, i.e., a 2D
square lattice with four-armed rotors (Fig. 1a). The rotors can
be diagrammatically described using squares with colored
arms sticking out in each interaction direction (Fig. 1b).
Interactions within the interaction tensor described below are
represented schematically by the color and width of the arms
in each rotor, where color denotes interaction type and width
denotes interaction strength. When neighboring arms are
pointed toward each other, they can interact if they are of the
same color and can exhibit interactions at the strength corres-
ponding to the lesser of the two arm widths (Fig. 1c), so, a
rotor can only exhibit favorable interactions with another rotor
if both possess arms of the same color and non-zero width
along their coordination direction. For example, a rotor face
with one sticky end can interact with a rotor face with three
identical sticky ends, but only one of those three sticky ends
can hybridize and thus the energy change induced by this
interaction will only correspond to base pairing between a
single set of sticky ends. Such interaction scenarios could be
realized experimentally in DNA origami using blunt ends or
sticky ends of varying strength or quantity.

Quantifying the energy of microstates of such a rotor lattice
system requires the use of a Hamiltonian containing a 3D inter-
action tensor M of dimensions p × z × p which accounts for the
orientational state of the rotor, the coordination site of the
rotor’s neighbor, and the orientational state of the neighbor:

HðsÞ ¼ 1
2

XN
i¼1

Xz

j¼1

Msi;j;sj ð1Þ

where s is the system microstate containing the states of all
rotors, N is the number of rotors in the device, z is the number
of neighbors that each device has (coordination number), si is
the orientational state of one device, j is the site location of the
neighbor being compared, and sj is the orientational state of
that neighbor. In Fig. 1d, we provide an example of an inter-
action tensor corresponding to the rotor design shown in the
figure, where all interaction strengths are specified in units of ε,
the energy scale of the system. Interaction tensors for all other
rotors in this study can be found in the ESI in Fig. S1–S5.†

Standard Monte Carlo (MC) simulations can be used to
investigate the ordering behavior of rotor lattices at equili-
brium for specified reduced (dimensionless) temperature kBT/
ε, which could be tuned in the real system by varying the
actual temperature or the environmental conditions such as
salt concentration or pH that modulate ε. We employed a
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single MC move type consisting of random rotations to one of
the other p − 1 orientations of randomly selected rotors (from
N rotors) with the standard Metropolis acceptance criterion:27

Pacc ¼ 1
e�ΔH=ðkBTÞ

ΔH , 0
else

�
ð2Þ

where ΔH is the change in the lattice energy described by eqn (1)
and kB is the Boltzmann constant. We found that this single
move type was sufficient to adequately sample the microstates of
the rotor lattice for the range of temperatures used in this work.

Using this simulation scheme, we studied the ordering be-
havior of six distinct rotor designs, including two that exhibit
Ising-like behavior in 1D and 2D (Fig. 2 and Fig. S6†):

• L-shaped rotor contains two arms each of interaction
strength −ε located at a 90° angle to each other

• Chiral rotor has the same arm locations as the L-shaped
rotor but with one arm’s strength double relative to the other,
that is, arms of strengths −ε and −2ε

• 2-2-2-1 rotor containing three stronger arms of strength
−2ε and a single weak arm of relative strength −ε

• 4-1-4 rotor contains two opposite stronger arms of relative
strength −4ε and a single weak arm of relative strength −ε

• 2D Ising-like rotor contains two different types of arms that
interact favorably with arms of their type (with energy −ε) and
unfavorably with arms of the other type (with energy +ε)

• Quasi-1D Ising rotor contains two arms on opposite faces
of interaction strength −ε

Fig. 1 Rotor lattice model. (a) Square lattice structure with square interactions denoted by dashed lines. (b) Rotor element in each unit cell. The
body of the rotor is colored green, and the interaction sites are colored red. The interaction strength of individual arms is represented diagrammati-
cally by the width of the individual arms of each rotor; wider arms are capable of interacting with a higher strength. As an example, the 4-1-4 rotor
pictured has two opposite arms of relative strength 4 and one perpendicular arm of relative strength 1. (c) Energy evaluation for an example 2 × 2
system with and without periodic boundaries. Light-colored rotors represent mirror images from periodic boundaries. Inter-arm interaction energies
denoted in parentheses have already been accounted for on the opposite boundary and are not added to the microstate energy. (d) Interaction
tensor used for describing every possible interaction between neighboring rotors, where si refers to the orientational state of some rotor i, j refers to
the coordination site of the neighbor being considered, and sj refers to the orientational state of that neighbor.
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In each case, we examined 2D square lattices of rotors of size
10 × 10, with and without periodic boundary conditions (PBCs).

Order–disorder transitions of rotor lattices

Phase transitions are usually characterized by a peak in
specific heat at some temperature. The reason this occurs is
that the average microstate energy of the disordered phase is
significantly higher than the average microstate energy of the
ordered one; the specific heat peak arises because the system
is able to transition back and forth between relatively ordered
and relatively disordered states as the energy barrier between
two states disappears at this transition (critical) temperature,

denoted by Tc. Therefore, we carried out MC simulations for
each of the six rotor designs introduced earlier and the specific
heat was determined from the energy fluctuations:

cv ¼ hE2i � hEi2
NkBT2 ð3Þ

where 〈·〉 denotes an ensemble average. By plotting cv as a
function of T, we can then use local maxima in specific heat to
identify order–disorder transitions.

Fig. 2 shows the heat capacity curves for several of the
studied rotor systems. All systems show a peak in the specific
heat when using periodic boundary conditions, indicating that

Fig. 2 Specific heat behavior of non-canonical spin systems and some representative examples of array microstates: (a) L-shaped rotor. (b) Chiral
rotor. (c) 2-2-2-1 rotor. (d) 4-1-4 rotor. (e) Ising-like rotor.
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they all exhibit orderisorder transitions, though the number of
such transitions and the transition temperature varies across
the six rotor designs. Specifically, the L-shaped, chiral, 2-2-2-1,
and quasi-1D rotors exhibit peaks at low temperatures (kBT/ε <
1), significantly lower than those expected from first-order
phase transitions associated with the Ising lattice (Fig. 2a–c
and Fig. S7†); the 2-2-2-1 rotor with very small differences
between all interactions exhibits an especially low transition
temperature of kBT/ε ≈ 0.1. The 2D Ising-like rotor (Fig. 2e), as
expected, exhibits a peak at the same temperature as the
classic 2D Ising lattice (kBT/ε ≈ 2.269). Lastly, and most intri-
guingly, the 4-1-4 rotor exhibits two peaks, one at a very low
temperature, akin to those of the L-shaped and chiral rotors,
and another at a much higher temperature which is coinciden-
tally closer to the Tc of the classic 2D Ising lattice (Fig. 2d).

All non-Ising rotor designs form interesting morphologies
at low temperatures in the ordered phase. For example, the
L-shaped rotor tends to form arrays of closed loops (Fig. 2a).
Increasing the strength of interactions on one arm to form the
chiral rotor leads to the formation of chiral zigzags or radiating
loops (Fig. 2b). The 2-2-2-1 rotor forms a brick wall structure
from the three stronger arms’ interactions (Fig. 2c). The 4-1-4
rotor (Fig. 2d) tends to form an alternating ladder-like mor-
phology at very low temperatures, while at intermediate temp-
eratures, the “rungs” of this morphology will tend to dissociate
while the stronger interactions will remain intact. At the
highest temperatures, all order is lost. This system thus exhi-
bits three distinct morphologies; correspondingly, this design
exhibits multiple peaks in the specific heat curve.

The critical temperature of each order–disorder transition
can be qualitatively explained by the enthalpic difference
between ordered and disordered phases. For each design, the
ordered energy 〈ET→0〉 is equal to that of the ground state,
which may be directly enumerated or can be computed using
MC simulations. With PBCs, the disordered energy reflects a
completely random selection of microstates and can be shown
to reduce to:

ET!1h i ¼ N
2p2

X
i;j;k

Mi;j;k ð4Þ

where 〈ET→∞〉 is the average microstate energy as temperature
approaches infinity. The Ising lattice has an energy difference
between ordered and disordered states of −2ε per unit and a
transition temperature kBT/ε ≈ 2.269. The L-shaped rotor has
an energy difference between ordered and disordered states of
−0.5ε per unit and a transition temperature that is correspond-
ingly much smaller, kBT/ε ≈ 0.25. The 2-2-2-1 rotor has an even
smaller energy difference between ordered and disordered
states of −0.375ε and a correspondingly even smaller tran-
sition temperature kBT/ε ≈ 0.1. Assuming that the intermediate
phase of the 4-1-4 rotor retains strong bond order but destroys
weak bond order, this system has an energy difference
between the lowest temperature and intermediate temperature
phases of −0.5ε per unit and correspondingly has a similar
first transition temperature to the L-shaped system, while the

difference between intermediate and disordered phases is
−1.375ε, yielding a much higher transition temperature than
the other systems, except for the Ising lattice. It is noted that
the lack of perfectly linear scaling between transition tempera-
ture and the energy difference between ordered and disordered
states likely arises from multiple factors including entropy and
the cooperative nature of these geometric bonds, i.e., the
ability of bonds to form connected chains.

Also of interest in these systems is the dependence of the
height of the specific heat peaks on the presence or absence of
PBCs. All systems experience higher specific heat peaks
without PBCs resulting from greater fluctuations due to edge
effects (see Fig. S7†).

Order parameters

In contrast to magnetic systems which can easily be described
by average magnetization, there is no simple analogous quan-
tity for characterizing order in spins with four orientational
states. Since the microstate energy is a function of system con-
figuration and number of bonds, we elect to use a microstate
energy-based order parameter to describe order–disorder
transitions:

χ ¼ ET!1h i � ET
ET!1h i � ET!0h i : ð5Þ

This equation ensures that the order parameter is 1 at zero
temperature where the system resides in the lowest energy
microstate, and the order parameter is 0 as temperature
approaches infinity where there is effectively no bias toward
any microstate. Fig. S8 and S9† demonstrate that this order
parameter describes order–disorder transitions as well as the
magnetization parameter in the case of the Ising lattice,
suggesting that an energy-based order parameter may also be
sufficient for describing order–disorder transitions in other
rotor systems.

To obtain the instantaneous order parameter χ for any
microstate using Eq. 5, we need to first obtain the two limits
〈ET→0〉 and 〈ET→∞〉. At low temperatures, most systems have a
trivial ground state and 〈ET→0〉 can be readily enumerated
from this state. Where systems do not have a trivial ground
state, 〈ET→0〉 can be computed using MC simulations. At high
temperatures, 〈ET→∞〉 can be analytically obtained using
Eq. 4. To characterize the ordering behavior of rotor lattices as
a function of temperature, we conducted umbrella sampling28

MC simulations on four different 10 × 10 rotor designs using χ

as a reaction coordinate. Using weighted histogram analysis,
we then determined the free energy of the system as a function
of χ. The value of χ corresponding to the lowest free energy at
any temperature, χmin, provides the most representative value
of order at a given temperature.

Fig. 3 shows these obtained values of χmin as function of
reduced temperature kBT/ε for four of our rotor designs as a
way of characterizing their ordering behavior. We found that
the L-shaped, quasi-1D Ising, and Ising-like systems exhibit a
single inflection point approximately coinciding with the
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temperature of their specific heat peak (Fig. 3b–d), while the 4-
1-4 design exhibits three inflection points corresponding to its
two peaks in specific heat (Fig. 3a). These results indicate that
this order parameter is reasonably capturing the order–dis-
order transition behavior of this system. The more gradual
slope of the 4-1-4 rotor design is also consistent with its
broader specific heat peak compared to the other rotor
designs.

To investigate the role of specific arms in order–disorder
transitions, especially those with multiple order–disorder tran-
sitions, we can additionally assign a single order parameter ψ
to each arm of a rotor design:

ψarm ¼ Earm;T!1
� �� Earm;T

� �
Earm;T!1
� �� Earm;T!0

� � ð6Þ

where Earm is the binding energy associated with a particular
arm of the unit cell. This discretizes the order parameter into
distinct components that help identify anisotropy and the
specific sites involved in order–disorder transitions.

In the case of the Ising-like system, all four arms lose order
simultaneously (Fig. 4b); the same is true of the L-shaped and
quasi-1D Ising rotor designs (Fig. 4c and d). However, the “4-1-
4” design loses order in the weak arm first and then the stron-
ger arms at a higher temperature (Fig. 4a). Also interesting
about this design is that the weak arms are less ordered in the
intermediate state than in the fully disordered state, yielding a
negative order parameter. This is due to the persistence of the
stronger bonds leaving the smaller ones in unfavorable con-
figurations, while at higher temperatures, the small arm has

the opportunity to bond with any of the three rotor arms, yield-
ing an order parameter approaching zero. This corroborates
our observation of three distinct phases for this system and
emphasizes the role of individual arm order in its transitions.

Experimental design of rotor arrays

To demonstrate the feasibility of experimentally realizing rotor
arrays, we designed and fabricated DNA origami nanostructure
(DON) designs with rotary elements coupled to a fixed base
platform capable of self-assembling into arrays (Fig. S19†).
These structures were designed using the MagicDNA design
software package.29 DNA origami structural units were
designed to contain two L-shaped rotor elements each to
enable a simpler assembly of 2 × 2 arrays. We used hierarchical
assembly protocols30 to form the two-rotor unit into 2 × 2
L-shaped rotor arrays. The two-rotor structural units were
folded from two orthogonal sequence scaffolds in a single-pot
folding reaction. We first tested folding over a broad range of
magnesium concentrations (Fig. S10†). Based on this initial
screen, we chose to use 14 mM MgCl2 to fold the two-rotor
units. TEM imaging of gel-purified structures revealed that
they were well-folded, containing two randomly oriented rotors
in the absence of specific inter-rotor binding interactions
(Fig. 5b and Fig. S11†). To form the 2 × 2 array, we folded two
separate versions of the two-rotor unit, each version being pas-
sivated on one side, either left or right, of the base platform
with poly-T overhangs and with unpaired scaffold strand on
the other side, allowing for selective higher order assembly
only on one side leading to dimer formation. After removal of
excess staple strands, dimerization was carried out by the
addition of staple strands connecting unpaired scaffold

Fig. 3 Free energy minimizing order parameters as a function of
reduced temperature for four different rotor designs: (a) 4-1-4 rotor, (b)
Ising rotor, (c) quasi-1D Ising rotor, and (d) L-shaped rotor. All sampling
was performed for 10 × 10 lattices using PBCs. Approximate locations of
the inflection points are shown with red arrowheads.

Fig. 4 Arm-specific order parameters as a function of reduced temp-
erature for: (a) 4-1-4 rotor, (b) Ising rotor, (c) quasi-1D Ising rotor, and
(d) L-shaped rotor.
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domains of the base platform. Gel electrophoresis revealed the
dimerization reaction led to one major population (Fig. S12†),
and TEM imaging of these 2 × 2 L-shaped rotor arrays con-
firmed the formation of precisely designed objects with four
randomly oriented rotor elements (Fig. 5c, Fig. S13 and S14†).
Lastly, introduction of additional DNA strands that bind to
rotor arms leaving overhangs capable base-pairing across rotor
arms led to formation of the ordered square loops of 4 rotors
(Fig. 5d and e, Fig. S15, S16 and S18†). In some cases, for-
mation of individual dsDNA domains between the rotary
elements can be visualized, further indicating the interaction
between the overhangs (Fig. S17†). These results establish that
interacting arrays of DNA rotors can be feasibly constructed,
serving as evidence that rotor arrays exhibiting real order–dis-
order transitions may be realizable.

3. Discussion

This work introduces a new lattice model composed of fixed
rotary units that can adopt a discrete set of orientational states
and mediate directional interactions with neighboring units.
We show via MC simulations how these features cause such
lattices to exhibit unique order–disorder transition behavior
(low transition temperatures and multi-transitions) and capti-
vating ordered morphologies (closed loops, radiating loops,
and ladder-like patterns). Although it does not appear that

these devices explicitly exhibit conventional second order phase
transitions, similarly to the XY model, these systems may require
more complicated analysis for the potential existence of phenom-
ena analogous to the vortex transitions described by Kosterlitz
and Thouless.24 Regardless, a vast design space of rotors remains
to be considered. It is possible that some systems, especially
those on different lattices such as a Kagome lattice or 3D cubic
lattice, could exhibit even more complex and interesting behav-
ior. In addition, while we have studied smaller systems out of
experimental interest, system size effects could be significant and
warrant further study. Further, it may be worth modifying this
model to address a continuum of rotational orientations as
opposed to a set of discrete rotational states as we have done
here. Finally, implementing multiple types of rotors together in
an alternating 2D pattern is experimentally viable; alternating
rotor patterns could provide additional interesting morphological
behavior.

Crucially, these rotor lattices can be experimentally realized
using DNA origami, as we demonstrate for the case of the
L-shaped rotors. While we focused on proof-of-concept for
feasibility, this experimental work sets the stage for creating
larger scale and more diverse sets of rotor lattices whose
spatiotemporal ordering behavior can be measured using both
modern imaging and fluorescence techniques. The versatility
of individual rotor designs could be enhanced using toehold-
mediated strand displacement31 to add and remove overhangs
in situ. This would effectively modify the rotor interaction

Fig. 5 Design, simulation, and fabrication of a small rotor array. (a) Schematics depicting fabrication of double-rotor monomers whose dimerization
leads to 2 × 2 rotor arrays. TEM imaging of: (b) single monomer, (c) 2 × 2 array displaying a disordered morphology, and (d) 2 × 2 array displaying an
ordered morphology. (e) oxDNA molecular dynamics simulations of an ordered 2 × 2 array. (f ) States of the rotor lattice model corresponding to the
shown experimental results in c, d, and e. (g) Binding scheme of the rotor–rotor interactions. Scale bar: 100 nm.
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tensor of an already-fabricated rotor array; the morphology of
existing arrays can potentially be readily switched between the
interesting phases that we observed in this study and perhaps
more. It is worth noting that the experimental implementation
of this system does not correspond perfectly to the presented
model, especially when considering neighbor interactions
mediated by sticky ends. This rotor lattice model will likely
produce the correct qualitative behavior but will not reproduce
exact quantitative transition values or specific heat values for
real DNA origami. This may be addressed in the future by
addition of continuous rotational states, and temperature- and
angle-dependent hybridization enthalpy32 in the rotor lattice
model, additions that must ultimately be evaluated on a case-
by-case basis corresponding to the experimental design. This
modeling may also be conducted using Brownian dynamics
with hydrodynamic coupling to reveal the correlated rotational
dynamics exhibited by neighboring rotors during the order–
disorder transition.

While static lattices assembled from DNA origami constitu-
ents are not new and have been well-explored,33–39 no dynamic
structure consisting of independent dynamic components has
been created using this lattice arrangement. Hierarchical lat-
tices offer the major advantage of enabling the production of
much larger devices than are possible with the use of a single
DNA origami scaffold. Here we have exploited hierarchical assem-
bly in a dynamic lattice system which may eventually achieve
characteristic length scales of several µm while remaining
dynamic and exhibiting switchable organization over the entire
surface. The rotor lattices introduced here could find future
applications in sensing, where local changes in salt or other
environmental conditions may be detected on surfaces by local
regions of order in large-scale DNA rotor systems using fluo-
rescence or plasmonics. These ordering systems could also be
useful for templating inorganic materials in the observed pat-
terns, where such inorganic molecules could be functionalized
onto the rotors and subsequently mineralized into robust fixed
inorganic surfaces. Rotor lattices could also find use in a pedago-
gical setting, where basic and accessible imaging like TEM could
be used to showcase order–disorder phase transitions to students
in a theoretically justified system. Finally, rotor lattices could
hypothetically function in a role similar to that of quantum com-
puting:40 just as quantum computing may be especially useful
for solving problem classes whose mathematics are fundamen-
tally similar to the physical behavior of the qubits used to solve
them (e.g., ab initio electronic structure calculations), these rotor
lattices could potentially be used to simulate phase transitions or
other mathematical problems involving emergent phenomena
from nearest-neighbor interactions. Furthermore, electrical actua-
tion of large-scale DNA rotor systems can lead towards appli-
cations like cargo transport.41

4. Conclusion

We developed a model for DNA-based nanoscale rotors which
exhibit short-range interactions that can be used to induce

large-scale ordering, and which can be switched between
ordered and disordered states by modulation of the interaction
strength or temperature. This study has elucidated several of
the features and achievable order–disorder transitions of this
class of DNA rotor devices, where we showed that they are
capable of forming several unique morphologies, and individ-
ual rotor designs can form up to three different patterns each
by way of order–disorder transitions. Finally, we constructed a
physical realization of these rotors and demonstrated their
capability to assume ordered and disordered morphologies.

5. Methods
Simulation of DNA origami rotor arrays

MC simulations were performed on custom scripts written in
C++. A single move type was used (perturbation of a single
spin). Total system energy was recorded periodically, and
specific heat was calculated using Python scripts which can be
found in the data package for this publication. All simulation
codes can be found on GitHub.42

Umbrella sampling

To harmonically constrain this system to an order parameter χ,
we modify the Hamiltonian to the following:

HðsÞ ¼ 1
2

X
i;j

Msi;j;sj þ kχ χðsÞ � χ0ð Þ2 ð7Þ

where kχ is a harmonic spring constant, generally set to 10 kcal
mol−1 unless this was found to be insufficient; χ(s) is the
instantaneous value of χ calculated based on system microstate
s, and χ0 is a desired value of χ corresponding to the specific
umbrella window. Simulations were performed in the range of
χ0 = 0.03 to χ0 = 1 in increments of 0.03. Free energy was calcu-
lated using the Grossfield group’s weighted histogram analysis
method (WHAM) software.43

oxDNA simulations

The oxDNA44 model and its associated simulation package
were used to sample the equilibrium configurational space45

of rotor structures and to identify undesired rotation of the
rotors. Relaxation of structures was conducted with a con-
straint on maximum backbone force and with mutual traps
between all paired nucleotides to relax the structure into a con-
figuration that could be simulated without these constraints.
Simulations were performed at a salt concentration of 0.5 M,
equivalent to standard DNA origami fabrication conditions.

Design and folding of DNA origami nanostructures

DNA origami nanostructures were designed in an iterative
process using MagicDNA29 and oxDNA.44 Staple strand rout-
ings were fine-tuned in caDNAno. The individual bundles of
the DON rotor device are based on a twist-corrected square
lattice.46 The main bundles of the base-platform are designed
to be shape-complementary, allowing seamless head-to-tail
multimerization. The struts between the main bundles and
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the cross-connection help to maintain the parallel orientation
of the main bundles. Rotors are connected to the base by two
stretches of 4 bases unpaired scaffold DNA, to allow full
rotation.41 Rotors are designed to carry 0, 1 or 2 overhangs,
allowing to tune the strength of interactions. The rotor size
allows hybridization of overhangs at the rotors’ interface. Out
of plane rotation of the rotor is reduced by the bundle at the
rotors back side.47

DNA origami nanostructures were folded by mixing all DNA
components in folding buffer (5 mM Tris, 1 mM EDTA, pH 8),
supplemented with 14 mM MgCl2. Scaffold strands (p8064,
produced as previously described48 and phiX174, purchased
from NEB) were used at 10 nM, while all staple strands were
used at 60 nM. Thermal annealing was performed by gradually
decreasing the temperature from 65 to 20 °C over 16 hours
(details in Table S1†). All staple strands were ordered as
desalted products from IDT in IDTE buffer.

Dimerization reactions were performed by pooling purified
structures, passivated on the left and right side, respectively,
and adding the staple strands designed to link structures
head-to-tail. Dimerization strands were added in 10× excess
over the DNA origami concentration. Dimerization was per-
formed by incubating the samples at 40 °C for 20 hours.
Successful dimerization was confirmed by agarose gel
electrophoresis.

Overhangs allowing rotor–rotor interaction were added in a
final step (see ESI Note 1†). The samples were then subjected
to an incubation from 45–20 °C over 14 hours. Samples were
then imaged without additional purification. The caDNAno
design file is available at nanobase.org.

Atomic force microscopy (AFM)

Gel purified samples were applied onto freshly cleaved mica
(V1 mica, Ted Pella) and incubated for 3 minutes. The mica
was subsequently rinsed carefully with ddH2O and dried using
a gentle flow of air. Samples were imaged using a Bruker
BioScope Resolve equipped with a Nanoscope V controller
using the ScanAsyst in Air mode. SiN probes with triangular
cantilevers, a nominal tip radius of 2 nm and a nominal
spring constant of 0.4 N m−1 were used. Scan rates during
imaging were usually around 1 Hz.

Transmission electron microscopy (TEM)

Purified structures were stained using a 1% Uranyl acetate
solution and imaged on a FEI Tecnai G2 Spirit electron micro-
scope. Briefly, 6–8 μl of sample were applied on a freshly glow-
discharged grid (Electron Microscopy Sciences, Hatfield, PA)
and incubated for 5–10 minutes. The sample solution was
then removed carefully with Whatman #4 filter paper and the
grid immediately stained with two 6 μl drops of 1% Uranyl
acetate solution. Grids were dried at least for 20 minutes
before imaging.

Agarose gel electrophoresis

Agarose gel electrophoresis was performed to confirm proper
folding of DNA origami nanostructures and to remove excess

staple strands and unspecific aggregates. 30 μl of folded DNA
origami (10 nM) were run in a 1.5% gel (1.5% agarose, 45 mM
Tris, 45 mM boric acid, 1 mM EDTA, 11 mM MgCl2) for
120 minutes at 90 V. Gel rigs were submerged into an iced
water bath. DNA origami samples were recovered from the gel
by excising the target bands, which were subsequently used
with Freeze ‘N Squeeze spin columns (BioRad).
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