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Design of hydrogel-based wearable EEG
electrodes for medical applications
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The electroencephalogram (EEG) is considered to be a promising method for studying brain disorders.

Because of its non-invasive nature, subjects take a lower risk compared to some other invasive

methods, while the systems record the brain signal. With the technological advancement of neural and

material engineering, we are in the process of achieving continuous monitoring of neural activity

through wearable EEG. In this article, we first give a brief introduction to EEG bands, circuits, wired/

wireless EEG systems, and analysis algorithms. Then, we review the most recent advances in the

interfaces used for EEG recordings, focusing on hydrogel-based EEG electrodes. Specifically, the

advances for important figures of merit for EEG electrodes are reviewed. Finally, we summarize the

potential medical application of wearable EEG systems.

1. Introduction
1.1 Overview of EEG

The electroencephalogram (EEG) is a widely used method for
monitoring an individual’s brain activity. With electrodes that are
highly sensitive to electrical activity, the electrical potential of neuron
cells that carries physiological information is recorded. The electrical
action potential, the so-called neural spike, is the basic unit of all
kinds of brain neural activity, that is important for understanding
and monitoring brain functions and neurological diseases.
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To understand the information on brain structure and
neural activity, the four main measures are Functional Mag-
netic Resonance Imaging (fMRI), Magnetoencephalography
(MEG), Functional Near-Infrared Spectroscopy (fNIRS), and
EEG. The fMRI or fNIRS is a neuroimaging system that mea-
sures the changes in blood flow to determine brain function
and neural activity. The blood flow is correlated with the
electrical neuron activity due to neurovascular coupling. The
strength of fMRI and fNIRS are their spatial resolution but
lower temporal resolution than EEG due to the direct measure-
ment of neural activity. MEG, on the other hand, maps brain
activity by magnetic fields generated from electrical currents
occurring in the brain. In comparison to fMRI, MEG could have
improved spatial and temporal resolution but both fMRI and
MEG are limited by the immobility of the instruments: these
equipments are too large to be used as an ambulatory measur-
ing tool. This is hard for user cases in hospitals, not to mention
the chance of transferring these techs to home-use health
monitoring systems. EEG, on the other hand, has essentially
the same signal source as MEG but it is more capable of being a
movable measuring instrument through direct measurement of
electrical neural activity. Thus, EEG can be a promising method
to approach neurological applications, especially considering
its high temporal resolution, high versatility, and cost-
efficiency. Fig. 1 shows the comparison between these mea-
sures of brain activity for their portability, spatial resolution,
and temporal resolution.

EEG has been a powerful and popular tool for brain-
computer interface (BCI) and event-related potentials (ERPs)
research ever since these fields thrived. In recent years, thanks
to the blossoming of artificial intelligence and big data in this
era and the dramatic evolution of microelectronics as well, EEG
applications have expanded from research-oriented tools to
more practical use. EEG has become one of the main evaluation
tools of brain disease including sleep disorders1–6 and epileptic

seizures7–11 clinically, potential applications in stroke
recovery12–15 and head trauma.16–19 To date, developers have
further extended EEG applications’ reach outside of medical
use to other fields such as sports training and condition
monitoring for athletes,20–22 robot controls,23–26 evaluation of
driver vigilance.27,28 Even though these applied technologies
have not yet developed to a very mature stage, it shows that
more advanced EEG applications are one of the most promising
technologies soon.

Conventionally, wired EEG systems are still a mainstay
approach to conduct EEG monitoring, both in laboratories or
clinics. The current EEG system setup and configuration are
elaborated in the following section. Since the wired EEG
recording requires numerous wiring connections, the frequent
cable disconnections from both ends of electrodes and instru-
mentation can be extremely frustrating. Furthermore, a wired
system must increase the total volume of the system that is
directly connected to a subject. Lastly, a conventional EEG
system needs a long-winded wet electrode preparation by a
trained specialist to ensure the best signal quality of the
measurement. As a result, the development of wireless and
wearable systems seems to be a reasonable solution to this
current situation. A wireless and wearable system also enables
experiments and clinical applications that a wired one can
never do, for instance, some motion-rich experiments or long-
term and continuous disease monitoring while not taking
patients out from their daily lives to a hospital.

Bearing all that in mind, developing a wireless and wearable
EEG system is a favorable and promising orientation in this
field. Prior to this review, numerous independent studies have
been done to approach this aim from various angles, which are
the driving force of this article. In particular, we focus on the
development of wearable EEG hydrogel electrodes that enables
advanced wearable EEG recording for medical applications. We
start with the conventional setup of EEG systems in medical

Fig. 1 The comparison between fMRI, MEG, EEG, and fNIRS on their
portability, spatial resolution, and temporal resolution. EEG and MEG have
the highest temporal resolution, while fMRI has the best spatial resolution.
However, to push the wearable brain activity monitoring system forward,
portability is critical. EEG and fNIRS both could be developed into portable
or wearable devices. Because of the high temporal resolution of EEG, it is
now gaining more attention on developing wearable neural activities
recording systems.
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applications, including the meaning of different EEG bands,
circuit setup for EEG system, algorithm, and classification.
Next, in the ‘‘Wearable, hydrogel-based EEG electrode system:
a cutting-edge solution’’, we discuss the important part of data
acquisition technology – the electrodes, including over the
different types of electrodes including hydrogel electrodes,
and figure of merits for designing the electrodes. We will
then report the developed wearable EEGs that target the most
widely applied brain-related diseases and disorders. For exam-
ple, BCIs,29–31 epilepsy diagnosis,7–11,32,33 sleep disorder
diagnosis,1–6 and mental health evaluation.34,35

1.2 Introduction to EEG bands

EEG is the language of the brain, telling the stories of our
bodies with electrical signals. For a long time, raw EEG data has
been depicted as consisting of several different frequency
bands, which are Delta (0.1 to 4 Hz), Theta (4 to 8 Hz), Alpha
(8 to 13 Hz), Beta (13 to 30 Hz), and Gamma (greater than 30
Hz). The delta-band is the dominant frequency band during
sleep. It helps humans to decrease their awareness toward the
outside world, allowing us to enter a deeply relaxed state and
enabling us to access the unconscious corner in our brain. The
delta-band generally declines during our time of focusing and
concentrating states. A disease that is largely related to this
band is called Attention Deficit Disorder (ADD). Patients with
ADD suffer from focusing because of the increase of delta-band
amplitude instead of decrease. Theta-band is more related to
the subconsciousness state of the brain and hence often related
to the research of memory and emotion36,37 and sleep monitor-
ing. The alpha-band is the bridge between consciousness and
subconsciousness, working as a critical role in the coalescence
of brain activity in different frequencies. Alpha-band plays an
active role in cognitive processes of brain activity, such as
knowledge access and information processing.38 Beta activity
has a long history of relation to Parkinson’s disease. The
neurodegenerative nature of Parkinson’s disease is associated
with the neuronal activity in the beta-band. In addition to
observing Parkinson’s disease by patients’ motor impairments,
the decreased dopamine release and increased beta-band oscil-
lations are also important indicators. High-frequency Gamma
band oscillation in EEG is thought to be a diagnostic biomarker
in Alzheimer’s disease (AD) and mild cognitive impairment
(MCI). The increased gamma-band power has been reported in
AD and MCI patients compared to healthy control subjects.39

To obtain these biomarkers that are hidden in the brainwaves,
the EEG measuring system has already been developed for
decades and is still being improved and innovative. Next, we
introduce the conventional wired measurement system that has
been used for a long time in clinics, and the more recent EEG
sensing platform, the wireless systems.

1.3 Circuit setup for EEG measurements

An EEG circuit measures the electrical potentials caused by post-
synaptic potentials generated by neurons.40,41 Two electrodes
placed on the surface of the skin function together in a manner
similar to that of a voltmeter, measuring the strength of the

dipole.40,41 Naturally, the potential encounters several sources of
impedance along its journey from the cortex to a processor, with
most impedance coming from the outermost layer of the skin, the
stratum corneum, in the case of most EEG circuit designs. Contact
impedance between EEG electrodes must be greater than 1 kO, lest
a shortcut is created between them, and below 10 kO to ensure a
signal can be acquired.40 The cables connecting the electrodes to
the rest of the circuit are often twisted and ultimately blended
together to improve electromagnetic compatibility and shielded
with a driven guard to reduce current leakage. Of course, a full EEG
system could include hundreds of electrodes, so groups of electro-
des may feed into a multiplexer, allowing for a selection of inputs,
reducing demands on other circuit components.

Ideally, as much of the EEG circuit is housed within a metal
container to minimize electronic noise. The use of differential
measurements helps to eliminate noise from the signal
that would otherwise be caused by electromagnetic interfer-
ence. A differential amplifier with a common-mode rejection
ratio greater than 80 dB is frequently employed to eliminate
any signals that appear in both electrodes. Consequently,
the inclusion of a differential amplifier, typically an instrumen-
tation amplifier, in an EEG circuit serves to increase the
strength of signals of interest while removing noise.42 An EEG
system normally will have a set of amplifiers and band-pass
filters in the analog front-end circuit for providing robust and
amplified EEG signals to the following steps in the data
preprocessing.43–45 Data acquired via the skin electrode(s) will
normally first be amplified by analog amplifiers, then processed
with a low-pass filter (LPF) and high-pass filter (HPF) to filter out
the unwanted signal. In tandem, these filters are used to create a
specific range of possible frequencies for data, typically between 0.1
Hz and 100 Hz, but no narrower than 0.5 Hz to 70 Hz. This upper
bound is chosen to eliminate the movement artifacts caused by
muscles, which normally vary above 100 Hz. The lower bound is
chosen to remove artifacts caused by the accumulation of sweat
and any minor electrode movements. With the raw data sufficiently
attenuated, the data after filtration must now pass through an
analog-digital converter (ADC). If the system has a wireless trans-
mission feature, a wireless transmitter module such as Bluetooth is
needed for transmitting the collected data to the processors. If the
data is in alternating current, an ADC with a 10–12 bit digital
resolution may suffice, though a direct current circuit may necessi-
tate a 20-bit digital resolution. The digital signal can be delivered to
a processor for analysis such as a laptop or a smartphone in more
recent devices.

1.4 Wired and wireless EEG systems

The conventional EEG recording systems in clinical settings are
traditionally composed of an EEG headset with metal or Ag/
AgCl (silver/silver chloride) electrodes on the corresponding
channels. The number of channels on a multichannel EEG
recording system can range from 8 to 256 or more (Fig. 2(a)). To
collect the EEG signals, the conductive gel will be filled in the
space between the scalp and the electrode46 (Fig. 2(b)). Then,
the electrodes are connected to the circuit board with metal
wires. These wire connections can be complicated and messy,
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and the entire system is far from portable. From wired and
cumbersome systems to wireless and portable one, wireless
systems allow EEG signals to be acquired with a further
shortened preparation time and in a much easier way com-
pared to the traditional system. To date, there are quite a few
wireless EEG monitoring systems on the market such as B-Alert
X24 and Mindwave, etc. As a multi-channel EEG system, the
configuration of a wireless system is simpler than the conven-
tional system. Table 1 shows the advantages and disadvantages
of wired and wireless systems (Fig. 2(c)). While Mindwave is
using dry electrodes for data acquisition, B-Alert X24 is using
wet electrodes instead. This is because of the different targeting
consumers, while B-Alert is more like a medical/research-grade
instrument, Mindwave is targeting daily use or education and
entertainment. Owing to the difference in electrodes, the two
systems have contrasting setup times. As expected, only 3
minutes to set up for a dry-electrode-use system (Mindwave),
and 420 minutes to set up for a wet-electrode-use system (B-
Alert X-24).47 Even though a wireless system can largely save
time for setting up all the wires, we generally still need gels for
the electrodes to operate, which is both very time-consuming
and does not last for a long time. That brings us to the next
topic of this review, cutting-edge technology for the electrodes.

1.5 Data processing and classification

EEG signals are often subjected to a variety of interferences
resulting in a heavily noisy bioelectrical signal. Preprocessing

steps are necessary to isolate the EEG signal from these noises
in order to achieve the most ideal information for post-
processing in many applications. However, the removal of all
noise in the measurement is impossible. Thus, the best we can
do is to remove the major noise components that jeopardize the
following steps of signal processing via feature extraction and
classification.

Typically, the process of EEG-based algorithms on disease
prediction and monitoring can be represented in Fig. 3. When
the raw EEG data is acquired from a subject, some common
noise and artifacts are induced. Fortunately, a well-established
foundation of prior studies has already developed a multitude
of ways to remove artifacts in EEG data.48–50 While all these
preprocessing methods and toolboxes are well-built and per-
form greatly in removing artifacts from EEG data, independent
component analysis (ICA) has shown to be a common solution
to noise/artifact removal. Besides the analysis methods without
prior knowledge of a signal such as ICA, the prior-knowledge-
based signal decomposition methods are also frequently
used in EEG artifacts removal. By having prior knowledge
and/or assumptions about the signal of interest and artifacts
through physiological understanding in previous studies,
the artifacts can be extracted by the design of the signal
separation function of an algorithm. For example, wavelet
decomposition is regarded as an ideal approach for motion
artifact and ocular artifact suppression in EEG.51–53 With pre-
processing being vital in noise removal and signal of interest

Fig. 2 (a) A schematic diagram of a conventional EEG system. (b) A conventional gel-based wet electrode. A wet electrode has a silver/silver chloride
electrode and a conductive gel to connect the scalp and the electrode. (c) An example of a wireless system. The image is a B-Alert X24 EEG recording
system. Copyright 2010 by Advanced Brain Monitoring, Inc, All Rights Reserved and/or its suppliers. All rights reserved.

Table 1 A comparison between wired systems and wireless wearable systems

Advantage(s) Disadvantage(s)

Wired
systems

� Connecting to the power system instead of a battery, long-term
EEG monitoring can be achieved.

� Complicated wiring.

� Data security is better than wireless systems. � Systems can be sometimes bulky and cumbersome.
� Longer setup time.
� Not able to be a portable daily-use device but a medical center
instrument, which is not conducive to its widespread development.

Wireless
systems

� More portable and compact size. � More external interferences.
� No wire connection issues. � The battery capacity and power consumption can largely affect the

recording time.
� Less noise from the wiring. � Data security can be an issue.
� Less setup time.
� Has a great chance to monitor/record brain activity without
being in the medical center (less interruption to daily life).
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isolation, postprocessing follows subsequently in extracting
meaningful data dependent on the aim of the application.
Therefore, with feature extraction being a basis in determining
feature vector from a regular one in EEG signal analysis, the
methods can be mostly, if not all, classified into four categories:
(1) non-linear methods,54 (2) time-domain methods,55 (3) fre-
quency domain methods56 and (4) time-frequency domain
methods.56–58

After feature extraction, diverse EEG classification algo-
rithms will be applied for different medical/clinical applica-
tions of EEG systems. All classifiers fall under the category of
supervised and unsupervised learning. In supervised learning,
such as support vector machines (SVM),59–62 decision tree
(DT),61,63 random forest (RF),64,65 and K-nearest neighbor
(KNN),66 the input data is provided along with labelled output
data for training the classifier in making accurate predictions.
Contrarily, unsupervised learning, such as neural network
(NN),67–70 involves only the input data provided for training
the classifier via the innate differences in feature vectors
extracted from the input.

2. Wearable, hydrogel-based EEG
electrode system: a cutting-edge
solution
2.1 Categories of EEG electrodes

In order to obtain a high-quality, continuous recording of EEG
signals over time, the materials of electrodes are the first
priority. Generally, EEG electrodes need to provide good and
constant contact with the skin or scalp to lower the impedance.
In this section, different types of EEG electrodes are introduced
briefly.

2.1.1 Wet electrodes. Wet electrodes are the electrodes
accompanied by a conducting gel, which can ensure good
electrode/skin contact during EEG measuring.71 The most
well-known wet electrodes are based on Ag/AgCl and are
divided into disposable electrodes (Fig. 4(a)) and reusable
electrodes (Fig. 4(b)).72 Another type of wide-used wet electrode
is called gold cup electrode (Fig. 4(c)).73 These electrodes rely

on the use of a conductive gel to help transduce currents from
the skin by minimizing the impedance between the skin and
the electrode as well as movement of the electrode (Fig. 4(d)).74

Due to the good conformability, the wet electrode generally can
provide low impedance and high-quality EEG signals.

Wet electrodes have previously been adopted to study the
overnight sleep EEG signals, while the replacement of the
electrodes after each measurement is indispensable, as the
dry-out of conducting gel will significantly hamper the record-
ing of high-quality EEG signals.83 In addition, conducting gel
may bring some allergic problem, as skin irritation or rashes
sometimes happens to the patients after wearing the wet
electrodes for a few hours.84 As a result, wet electrodes are
not suitable for prolonged EEG monitoring for wearable devices
due to the high cost of electrodes replacements and issues
related to stability and biocompatibility.

Up to now, wet electrodes are still considered as a bench-
mark of quality to which novel electrodes designs are com-
pared. However, the inconvenience of their application has
driven research into alternative electrode designs.85

2.1.2 Dry electrodes. Dry electrodes seek to circumvent
the need for gel using unique shapes and materials to help
transduce currents. This can be accomplished by using
small pins to reduce impedance (particularly impedance that
might be caused by the hair), at the risk of piercing patient
skin, frequently coated in gold to improve conductivity
(Fig. 4(e)).86–88 While these efforts can produce electrodes that
are, in some conditions, comparable to Ag/AgCl wet electrodes,
these designs are susceptible to half-cell potentials created by
sweat that can skew signals, though half-cell potential magni-
tude has been found to vary with the different metals
employed.89 Other dry electrodes sharing the pin-focused
design (albeit sometimes applying different metal coatings)
have been found to be more prone to movement artifacts
(Fig. 4(f)).75 Other groups studying similar electrodes have
concluded that these designs achieve quality comparable to
that of wet electrodes.90 Many groups noted that these dry
electrode designs were far easier to use than wet electrodes,
improving their utility for unskilled users.91–93 However, such
electrodes typically make use of long ‘‘comb’’ or ‘‘pin’’ designs
to push past hair, which might cause discomfort or even pain
during prolonged use.

Other conducting materials, such as gold and microporous
titanium,94–96 conducting polymer poly(3,4-ethylenedioxythiophene)
doped with poly(styrene sulfonate) (PEDOT:PSS),97–99 carbon nano-
tubes (CNTs),100 and graphene,101–103 have also been investigated for
their possible use in EEG electrodes. For example, Leleux et al.
fabricated a flexible EEG electrode via depositing PEDOT:PSS on a
polyimide substrate and obtain a signal-to-noise ratio (SNR) of 24.4
dB when measuring the somatosensory evoked potentials
(Fig. 4(g)).76 Li et al. reported the ultrathin, conformable, and
breathable reduced graphene oxide (rGO) electrodes prepared by
simultaneous room temperature reduction and patterning process,
and achieve an EEG recording with a high fidelity due to the
conformal contact with skin (Fig. 4(h)).77 Yang et al. developed an
ultrathin (150 nm), ultralightweight (0.24 mg cm�2), self-adhesive,

Fig. 3 The process of EEG-based algorithms on disease prediction and
monitoring.
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and transparent Ag nanowire/thermoplastic elastomer electrode,
which exhibited a maximum SNR of 51 dB over the wide frequency
range of 0–22 000 Hz.104 Unfortunately, these innovations have yet to
consistently match the quality of wet electrodes.

2.1.3 Semi-dry electrodes. Semi-dry electrodes seek to
match the accuracy of wet electrodes but minimize the amount
of gel required to avoid many of their inconveniences. Efforts to
design electrodes that used aqueous electrolyte, rather than gel, to
lower impedance produced viable electrodes, though with a life-
span insufficient for practical EEG application.105,106 For instance,
Peng et al. presented a novel passive electrode based on porous
titanium (Ti) and a reservoir with a capacity of 200 ml electrolyte
(Fig. 4(i)).78 The electrolyte in the reservoir will permeate from
micro-holes of the porous Ti onto the skin under pressure, provid-
ing a continuous wet interface between electrode and skin to
maintain low and stable contact impedance. Li et al. also reported
a novel porous ceramic-based ‘semi-dry’ electrode whose tips can
slowly and continuously release a tiny amount of electrolyte liquid
to the scalp, supplying an ionic conducting path for detecting
neural signals (Fig. 4(j)).79 Like research into dry electrodes, semi-
dry electrodes have found mixed success, but none have managed
to match the standards set by wet electrodes.

2.1.4 Hydrogel or hydrogel-like electrodes. Recently, hydro-
gel electrodes have shown promise as a possible replacement
for the Ag/AgCl wet electrodes often used today. Their high
water content and conductive fillers allow for superior
conduction.107–109 Pedrosa et al. fabricated a novel alginate-
based hydrogel via injecting the viscous precursor into the
electrode cap cavities and this hydrogel electrode shows no
considerable differences between signals acquired with the
commercial electrolytic gel during the same in vivo EEG acqui-
sition (Fig. 4(k)).80 The hydrogels possess intrinsic flexibility,
which can provide seamless contact with the skin, thus low-
ering the skin-contact impedance.110 In addition, the mechan-
ical properties and biocompatibility of hydrogels can be tuned
easily, which presents an additional advantage over standard
wet electrodes, as hydrogel-based designs are better suited to
complement the trend in EEG models towards a more ambu-
latory design.109 For example, Wang et al. reported a stretch-
able, conductive, and self-healable polyacrylic acid (PAA)
hydrogel electrode, which can capture the EEG data in the
quiet and excited state (Fig. 4(l)).81 Carvalho et al. developed
various non-drying, skin-adhering, skin-friendly, and transpar-
ent electrodes based on glycerol–polyacrylamide hydrogels, and

Fig. 4 Different types of EEG electrodes. (a)–(d) Wet electrodes: (a) disposable and (b) reusable silver/silver chloride (Ag/AgCl) passive wet EEG
electrodes.75 (c) Gold cup wet electrode.73 (d) Close-up of an Ag/AgCl electrode contacting skin via a conductive gel. (e)–(h) Dry electrodes: (e) a dry and
through-hair EEG sensor. (f) 3D printed EEG electrode coated with silver paint.75 (g) Photograph of dry PEDOT:PSS electrodes with different diameters.76

(h) The conformal contact at the skin-rGO electrode interface during compression and stretch.77 (i) and (j) Semi-dry electrodes: (i) the passive Ti
electrode as well as the electrode under pressure and after the pressure removal.78 (j) Photo of a single semi-dry electrode and schematic diagram of the
semi-dry electrode prototype, including flexible electrode tips (a), porous ceramic wicks (b), a built-in reservoir (c), 3.5% saline solution (d), and sintered
silver/silver chloride (Ag/AgCl) electrode (e).79 (k)–(m) Hydrogel electrodes: (k) alginate-based hydrogel electrodes.80 (l) Photograph of a hydrogel
coating on non-woven fabric (commercial bioelectrode with electrolyte hydrogel removed).81 (m) Headband for signal acquisition with hydrogel
electrodes integrated on the textile with printed silver interconnect on the other side of the textile and EEG signals acquired by the headband during
sleep.82
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integrated these electrodes into a series of comfortable e-
textiles for wearable monitoring of brain signals through EEG
(Fig. 4(m)).82 In the following section, the figure of merit and
recent development of EEG electrodes, with a special emphasis
on the hydrogel-like electrodes are reviewed. Electrodes
improvements for other bio-potential recordings like electro-
cardiogram (ECG) or electromyography (EMG) are reviewed
since these could generally be applied as EEG electrodes
as well.

2.2 Figure of merit in hydrogel EEG electrodes

In order to understand the advantages and disadvantages of
different electrodes, the qualities of interest and the techniques
used to measure them must be defined. For the EEG devices,
especially for prolonged monitoring, the impedance, adhesion,
stability as well as biocompatibility are considered as the most
important figures of merit.

2.2.1 Impedance. Impedance refers to the resistance of the
electrode to current. A greater impedance causes the electrode
to be less sensitive to the signals of interest as well as any noise
it might acquire from the patient. The geometric parameters
affect the impedance of electrodes, as thicker electrodes or
electrodes with a smaller surface possess a higher impedance.
However, this is not the only factor that influences an electro-
de’s impedance. For hydrogel electrodes, different electrically
conductive fillers, such as conducting polymers, carbon-
based materials, or metals are added into the hydrogel matrix

or surface to enhance the conductivity, thus lowering the
impedance.111–113 Majidi et al. incorporated micrometer-sized
silver flakes into polyacrylamide-alginate (PAAm-alginate)
hydrogel matrix, obtaining a high electrical conductivity
(4350 S cm�1) after going through a partial dehydration
process, due to the formation of silver flakes percolating
networks.114 Li et al. developed a highly stretchable, self-
healing, and degradable multifunctional epidermal sensor
assembled from the conductive MXene/amorphous calcium
carbonate (ACC)/PAA hydrogels (Fig. 5(a)).115 The introduction
of highly conductive MXene significantly lowers the impe-
dance, leading to a higher SNR (19.96 dB) in EMG testing
compared to that of the Ag/AgCl electrodes (0.82 dB) and the
commercial electrodes (14.75 dB). Similarly, electrodeposited
coatings such as PEDOT:Nafion, PEDOT:PSS, and interfacing
with liquid metals like eutectic gallium indium have been
applied to the electrode to lower impedance.116,117 In other
cases, coatings of platinum and graphite have been applied to
lower the impedance.118

Another method to lower the impedance relies on the
incorporation of ions, either by soaking hydrogels in the
electrolyte solution (two-step solvent exchange) or adding salts
into the precursor of hydrogels during synthesis (one-pot
synthesis). For instance, increasing the ionic strength by
including ionic compounds like salt in that hydrogel electrode
lower the impedance.122 To improve the ionic conductivity,
Pan et al. introduced 5 wt% lithium chloride (LiCl) into the

Fig. 5 EEG electrodes with decreased impedance. (a) Schematic illustration of the fabrication of the MXene-PAA-ACC hydrogel.115 (b) The photos of
ionogel electrode adhered to human skin. (c) Skin interfacial impedance of ionogel electrode IG-25 and commercial gel electrode.119 (d) Schematic of
the proposed flexible skin electrode. A gold layer is electrodeposited to maximize the surface area. (e) Atomic force microscopy (AFM) images of bare
gold (left) and electrodeposited gold (right) electrodes. The surface area was increased 1.5 times by the electrodeposition process.120 (f) The relationship
between the skin impedance and the hydration level after application of skin lotion.121
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PAAm-alginate hydrogel.123 The resulting hydrogel had an
intrinsic impedance of 270 O (the impedance of the hydrogel
without LiCl is EMO at 1 Hz), which is similar to commercial
electrodes of 210 O at 1 Hz. Besides the salts, ionic liquids or
polymerized ionic liquids are often adopted to enhance the
ionic strength in the electrodes. Yu et al. designed a high-
performance and adhesive ionogel by one-step free radical
polymerization (Fig. 5(b)).119 The obtained ionogel electrodes
exhibited similar impedance and ECG recording performance
as commercial electrodes and provided a continuous and stable
ECG monitoring in the aquatic environment due to the strong
adhesion to human skin (Fig. 5(c)).

In terms of EEG monitoring, it is worth noting that the
outermost layer of the skin, the stratum corneum, is respon-
sible for much of the impedance encountered at the electrode-
skin interface in most electrode designs. As a result, skin
contact impedance dominates the quality of EEG signals. Of
course, skin contact impedance depends on certain factors of
skin as well, including the presence of hair follicles and sweat
glands, the patient’s hydration, temperature, and external
force.124–126

Electrodes with greater areas of contact with skin typically
have a lower impedance.127,128 This greater surface area of
contact manifests in the overall size of the electrode’s face as
well as its texture-a rougher surface affords a greater surface
area. For example, Yun et al. increased the surface area of
flexible polyimide substrate by 1.54 times via the electrodeposi-
tion of gold nanoparticles (Fig. 5(d) and (e)). Due to the
improvement in the surface area, the optimized electrodes
demonstrate a higher SNR in ECG and EMG compared to
commercial wet Ag/AgCl electrodes.120 In addition, the surface
moisture affects the skin-contact impedance significantly, as
high water-ratio hydrogel electrodes can generally hydrate the
skin, thus leading to a lower contact impedance. Matsukawa
et al. studied the variation of the impedance of gold nanomesh
electrodes under different hydration levels, showing that the
measured skin impedance was negatively correlated with the
hydration level (Fig. 5(f)).121 Similarly, ions or ionic species
released from the electrodes can penetrate the pores of the
skin, providing a more conductive skin and better EEG signals.
Leleux et al. compared the performance of conformal electrodes

made of Au and PEDOT:PSS in a dry state and in conjunction
with an ionic liquid gel, discovering that the ionic liquid
decreased impedance at the interface with human skin to levels
that are similar to those of commercial electrodes (at 1 kHz).129

In addition, the ionic liquid gel did not dry out and the
electrodes continued to show a low impedance over the course
of 3 days, while the commercial electrode gave up after only 20
hours. However, high ion concentration inside the recording
electrodes may cause skin irritation for patients.

Some preparation methods, such as abrading the skin,
using a gel, or wiping the skin with ethanol, may be employed
to help reduce the impedance of the skin-electrode interface by
partial removal of the stratum corneum. Nevertheless, these
methods will generally cause pain for the patients, which is not
recommended for long-term monitoring. In the previous
reports, additional treatments may make use of penetration
enhancers like surfactants, terpenes, and Azones, to reduce the
impedance of the skin by altering the hydration of stratum
corneum or packing structure of the ordered lipids in the
intercellular channels.130

2.2.2 Adhesion. The adhesion property of electrodes plays
an important role in long-term healthcare monitoring. The
electrode for recording EEG signals is directly contacted with
human skins or stratum on the head with hair. However,
human bodies are easily exposed to various environments
(raining, snowing, fog, etc.), and susceptible to human activities
like swimming, diving, showering, etc. Besides, mechanical
movements such as compression, shear, and torsion are una-
voidable in daily life, leading to large deformation of the skin,
thus resulting in the loss of EEG signals.131 High adhesion can
provide a seamless contact between the electrodes and skin,
thus lowering the impedance and providing stable reliable EEG
signals.132 Therefore, it’s crucial for on-skin electrodes to keep
adhesive and repetitively usable in daily life and even in
extreme environments.

The ways promoting adhesion could be categorized into
three directions: (i) functional design of materials, (ii) biomi-
metic structural design of electrodes, (iii) post-treatment. The
adhesion strengthened by these three ways is summarized in
Table 2. The functional design aims at creating strong chemical
cross-links between electrodes and skin. Among all bonds,

Table 2 Summary of adhesives based on functional design, structural design, and post-treatment

Fabrication method Materials Energy toughness (J m�2) Adhesion (kPa) Ref.

Functional design DST 4710 120 (Normal) 138
Ca2+ doped PAAm-alginate hydrogel 41000 140
PAAm-alginate hydrogel 1250–1500 141
PAAm + PDMS 866.9 133

Biomimetic structural design PAA 4750 134
PDMS 10–50 45–70 142
PDMS 4120 143

108 (Normal),147 (Shear) 144
PDMS 25–200 (Normal) 145
Polyunsaturated aldehyde (PUA)

Post treatment PUA 210 (Shear) 146
Polystyrene 350–1050 41000 (Shear) 147
Polypropylene (PP) 148
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covalent bonds,133 hydrogen bonds,134,135 and electrostatic
interactions,136 are commonly used for the enhancement of
on-skin adhesion. A covalent bond has quite high energy, while
static covalent bonds are not irreversible, namely, it couldn’t
reform once the bonds are broken. Dynamic covalent bonds
could compensate for such weakness since it is able to reform
by pH, light, and heat stimulus. Although a single hydrogen
bond is weak, two or more polymer chains can form hydrogen-
bonded complexes to strengthen adhesion.137 Yuk et al.
proposed a dry double-sided tape (DST) by a combination of

gelatin or chitosan and acrylic acid (AA) grafted with N-
hydroxysuccinimide ester, which removes water from the
surface by hydration and forms rapid and robust adhesion
with the tissue surface within 5 seconds under pressure at
around 1 kPa.138 Ji et al. copolymerized dopamine methacryla-
mide (DMA), AA, and methoxyethyl acrylate (MEA) monomers
to obtain a random copolymer p(DMA-co-AA-co-MEA)
(pDAM) (Fig. 6(a)).139 Due to the strong adhesion of
dopamine-containing motif and ionic conductivity provided
by AA, the electrophysiological signals recorded using these

Fig. 6 Possible methods to improve the adhesion of EEG electrodes. (a) Voids exist at the commercial gel electrode–skin interface due to skin surface
structure, which allows water in and cause decreased adhesion. Schematic showing the water-resistant pDAM polymer coating bridging the Au/
Polydimethylsiloxane (PDMS) electrode and skin, and the corresponding circuit. Chemical structures of the dopamine-containing ionic-conductive
random copolymer pDAM.139 (b) Photograph of pads of a tree frog and scanning electron microscopy (SEM) images of hexagonal structures on its pads
and the hierarchical structures (400 mm thickness, PDMS) of frog-inspired hexagonal microchannels (200 mm in width, 300 mm in height, and 600 mm
spacing). (c) Photographic images of Octopus vulgaris tentacle and suction cup with protuberance and SEM images of the hierarchical structures with
octopus-like convex structures (15 mm in radius and 18 in height) on hexagonal microchannels. (d) Schematic illustration of the amphibian and octopus-
like hierarchical architectures.142 (e) Soft electrode with grasshopper inspired microstructured surface for improved dry adhesion to the skin (thickness =
100 mm). The scale bars are 200 mm (200�) and 20 mm (2000�). (f) The alpha waves disappear when the eyes are kept open. The peaks in the time signal
correspond to typical eye blink effects.149
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water-resistant electrodes were stable and insensitive to the
impact of water flow.

Biomimetic structural design is gaining more and more
focus in recent years due to its wide application and univers-
ality for all materials.142,150 According to the functions of
adhesives in different environments, such a design is divided
into wet adhesives inspired by amphibians and marine crea-
tures such as octopus,142,151 and dry adhesives from insects and
lizards like beetles, flies, spiders, geckos, and anole.144,152,153

For wet adhesives, it has significant adhesive performance as a
result of obvious suction force underwater and moisture
environment.145 For example, Kim et al. designed adhesive
skin patches with hexagonal micropatterns inspired by the
hierarchical microchannel network in the toe pads of tree frogs
and convex cup architectures in the suckers of octopi (Fig. 6(b)–
(d)).142 The amphibian- and octopus-like adhesives possess
enhanced pulling adhesion and omnidirectional peel resis-
tance against various dynamic wet skins, hence enabling the
stable monitoring of vital biosignals. As far as dry adhesives are
concerned, the adhesion is enhanced through van der Waals
interactions, and the adhesion strength is affected by the tilt
angle and the aspect ratio. Stauffer et al. reported super-soft
and self-adhesive microstructured electrodes inspired by grass-
hopper feet, and it could adhere repeatedly to the skin with a
force of up to 1 kPa without further attachment even during
strong movement or deformation of the skin (Fig. 6(e)).149 This
electrode could obtain excellent alpha activity signals in the
EEG recording from the back of the head through dense hair
(Fig. 6(f)).

Post-treatment could be classified into two types: chemical
modification and plasma treatment. Chemical modification of
polymers is aiming to create new chemical groups or moieties
that could optimize the polymer matrix to strengthen the
adhesion.154 For instance, alkaline treatment is one of the most
common chemical treatments of natural fiber polymer compo-
sites. Polymers are dipped into the sodium hydroxide solution
for several hours to increase the adhesion by removing impu-
rities like lignin, wax, or oil covering.155 Plasma treatment is
another way to promote surface adhesion between two layers by
adjusting the parameters like gas flow, pressure, and treatment
time.148 Dirk et al. used different discharge of gases such as Ar,
He, and N2 to etch, and found that the gas type and plasma
conditions have to be adjusted on the polymer type to minimize
the aging effects.156

2.2.3 Stability. In the context of practical EEG applications,
the greatest threat to hydrogel electrode stability is dehydra-
tion. Because some amount of water is required for the elec-
trode to properly function, electrodes losing water via
evaporation can limit their life span to a few hours, a window
of the time insufficient for some EEG applications, such as
sleep studies.157 Not only does water loss reduce the flexibility
of hydrogel electrodes, but also increases their impedance.158

Encapsulating the hydrogel in an elastomer like polyur-
ethane or latex has been found to reduce dehydration and
improve general mechanical stability.159 Liu et al. sandwich the
PAAm-alginate hydrogel in the elastomer PDMS or Ecoflex and

found that the water retention of the hydrogel was around 70%
after 6 days still high enough to maintain its function (Fig. 7(a)
and (b)).160 However, the inability to establish a strong bond
between the elastomer coating and the hydrogel has prompted
exploration into alternatives. As the ions of dissolved salts are
known to alter the material properties of gels by interacting
with the water molecules, a variety of salts (i.e. CaCl2, NaCl,
LiCl, LiBr, et al.) have been explored as additives.161–163 Bai and
colleagues have found that the use of greater salt concentra-
tions and certain salt species such as LiCl, potassium acetate
(KAc), and MgCl2 can extend hydrogel electrode lifespan to
several days.164 The best water retention was observed for 12 M
LiCl with a cumulative water loss of 11% after 5 days (rel.
humidity of environment 20%) (Fig. 7(c)). The higher ionic
hydration degree of LiCl enables stronger bond strength
between cation/anion-water molecule pairs and more bonded
water molecules, resulting in more difficulty of water molecules
evaporation and better water retention capacity (Fig. 7(d)).

Water loss was also found to be affected by atmospheric
humidity.167 The fragility and temperature sensitivity of these
designs can be mitigated by instead employing an organohy-
drogel, essentially a hydrogel but formed with a binary solvent
consisting of an organic solvent, such as ethylene glycol or
glycerol, mixed with water.168 The inclusion of an organic
solvent confers a greater mechanical strength and a greater
temperature resistance to the material. Han et al. obtained
mussel-inspired glycerol–water hydrogel (GW-hydrogel) with
CNTs as conducting nanofillers, via a gelation process in
glycerol–water binary-solvent system.165 The GW-hydrogel
exhibited no performance degradation after prolonged storage
in normal condition (25 1C) for 30 days (Fig. 7(e)). Similarly, via
the exchange of water, ionic liquids can be employed to form
ionogels. By radical polymerization of AA in the ionic liquid 1-
ethyl-3-methylimidazolium ethylsulfate, Chen et al. synthesized
a transparent, stretchable ionogel that might have promise in
EEG applications (Fig. 7(f) and (g)).166 Due to the non-volatility,
the ionic liquid and ionogel show much less weight loss and
better stability compared to the hydrogels after being in the
thermostatic chamber for 12 h (Fig. 7(h)).

All of these solutions have been relatively successful in their
endeavor to retain the benefits inherent to hydrogel’s flexibility
while improving upon its stability. However, further testing is
needed to identify if one stands out as clearly superior for the
purposes of EEG signal acquisition.169

2.2.4 Biocompatibility. To compare the properties of EEG
electrodes, biocompatibility refers to the likelihood of an
electrode design producing deleterious effects on the patient.
For example, the conductive gel required by wet electrodes is an
inconvenient irritant that can be difficult to wash off.170 The
metal dry electrodes employ biocompatible materials silver and
titanium can be placed on the skin without concern, while the
3D printed components may pose little danger to patients.171

However, those designs that rely on breaking the stratum
corneum present the risk of damaging the skin or causing pain
if designed or applied incorrectly. Pogo probes have been
employed to ensure that probes remain in contact without
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harm, though they can still cause discomfort.172 Unfortunately,
some metal electrode designs prevent water vapor from leaving
the skin, causing irritation and inflammation.121 Gas-
permeable nanomeshes have been found to not cause these
symptoms by allowing the patient’s skin to breathe freely.173

With this improvement, metal dry electrode designs represent
an unequivocal improvement over wet electrodes.

While hydrogel-based designs offer a method to circumvent
the need for the conductive gels used in wet electrodes, they offer
advantages in other aspects as well. Naturally, hydrogel electrodes
offer greater pliability, helping them stay in contact with the skin
for longer periods and provide more conduction and improved
comfort, as it affords more motion for patients.174 Furthermore,
to improve the biocompatibility, many biocompatible polymers
(i.e., polyvinyl alcohol, polyethylene glycol, PAA, chitosan, col-
lagen, etc.) have been exploited for either hydrogel-based on-
skin applications, causing only mild and even no irritation no
reaction at all in either in vivo or in vitro testing, so it is unlikely
that major issues will be encountered in using them.175–181

Unfortunately, all of the salt species discussed above have the
potential to harm the human body. Although KAc and MgCl2 only
present a threat of mild irritation, LiCl, the most promising
species can severely burn skin, induce dehydration, and even
damage kidneys.182–184 If salts are to be pursued as a method to
improve hydrogel electrode conductivity, special care needs to be
taken to either identify less dangerous species or ensure that salts
in the hydrogel have no chance of coming into contact with the
skin. Of course, the same also applies to any other additives being
investigated for use in hydrogel electrodes. While ionogels have
not been explored to a similar depth within the context of EEG
electrode applications, biocompatible ionogels using compounds
like SiO2 are available and might be employed in future
research.185

2.3 Potential medical applications of hydrogel-based wearable
EEG systems

With more and more advancements in hydrogel-based electro-
des, the development of wearable EEG systems based on

Fig. 7 Possible methods to improve the stability of EEG electrodes. (a) Schematic diagram of the antidehydration of stacked elastomer/hydrogel. (b)
Normalized weight retention of the uncoated hydrogel, Ecoflex–hydrogel–Ecoflex (E-h-E), and PDMS–hydrogel–PDMS (P-h-P) kept at a dry
environment with a humidity of 26% at 30 1C.160 (c) Evolution of water loss with time for hydrogel with added LiCl kept in the chamber at 25 1C and
relative humidity of 30%. (d) Schematic of the hydration of LiCl in water.164 (e) Comparison of GW-hydrogels and hydrogels after being placed in air for
30 d or after 1 d of freezing dry.165 (f) Chemical structure of the hydrogel precursor AA, the crosslinker poly(ethylene glycol) diacrylate (PEGDA), and the
ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate. (g) The schematic image of the matrix of the ionogel. (h) Change of weight of the ionic liquid,
ionogel and hydrogel in a thermostatic chamber at 100 1C. Inset: Photos of the ionogel, and hydrogel before and after being in the thermostatic chamber
for 12 h.166
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hydrogel-based electrodes has started to accelerate. Due to the
advancement of electrode technology, the quality of the signal
is improving over time for applications in wearable EEG sys-
tems. We report several potential medical applications that
utilized single channel/multichannel EEG systems in the fol-
lowing sections. These applications would benefit from the
development of advanced wearable hydrogel-based EEG elec-
trodes. In particular, most of the EEG applications with wet
electrodes mentioned need to recalibrate repeatedly in the
hospital. The development of hydrogel electrodes will allow
wearable EEG systems to be utilized for continuous, long-term
EEG monitoring and diagnostics of disease at home.

2.3.1 EEG-based brain-computer interface (BCI). Brain-
machine interface (BMI), is a technology that uses the brain’s
electrical activity for controlling an external device. Given the
extreme potential in clinical applications, brain-computer
interfaces (BCI) has attracted vast attention recently. Kidnose
et al. used ear-EEG (Fig. 8(a)) to acquire steady-state visually
evoked potential (SSVEP), which has been frequently used for
BCI.29 Norton et al. demonstrated a soft and curved electrode
system (Fig. 8(b)) for an SSVEP-based BCI text speller system.30

The electrode system remains mounted throughout daily activ-
ities over two weeks, which is a duration that current existing
gel-based wet electrodes in clinical settings cannot achieve
effectively.

Most recently, Mahmood et al. reported a wireless scalp
electronic system for motor imagery(MI)-based BCI.31 With the
imperceptible microneedle electrodes (Fig. 8(c)), the study
showed an advantageous contact surface area and the reduced
electrode impedance density, resulting in great classification
accuracy. Combining with the convolutional neural network
(CNN), the system realized real-time, continuous motor
imagery-based BCI.

To operate a BCI, the user must create various brain activity
patterns that the system will recognize through the classifica-
tion of EEG signals and translate into specific commands.
There are also different paradigms of EEG-based BCI such as
P300, SSVEP, and MI. The MI paradigm is especially popular in

the stroke rehabilitation field,186–188 enabling text-to-speech,
robotic control, smart wheelchairs, BCI prosthetics, and
more,25,189 as shown in Fig. 8(d).

According to a study from Lotte et al., in the case of
performance, adaptive classification techniques should be
favored over static techniques, both for classifiers and spatial
filters.190 Adaptive classifiers are those whose parameters are
routinely updated online based on the new data to deal with
EEG non-stationarity which helps follow changes in EEG
features over time and calibration of the BCI system to a
specific user. All linear classifiers may be made adaptive, and
adaptive SVM has been employed successfully and more fre-
quently in the last decade.189

2.3.2 Epilepsy detection. Recording seizures using a wired
bulky system can be challenging and hard to be integrated into
everyday life. Most of the seizure monitoring sessions need to
be done in a medical center. Because of that, many seizures are
missed or misreported. People living with epilepsy could ben-
efit by having a miniature, accurate and objective wearable EEG
system for counting seizures that can be used outside of the
hospital. To date, because of the rapid development of both
electrode technologies and algorithms for automatic detection,
there are several new miniaturized wearable EEG-based epi-
lepsy monitoring systems come to the public. Frankel et al.
developed a miniature behind-the-ear epilepsy monitoring
system called Epilog. (Fig. 9(a)) To compare this device with
the gold standard system, a total of 75 seizures were recorded
from 22 of 40 adults that wore Epilog during their visit to the
epilepsy monitoring unit. The authors conclude that reviewing
single-channel EEG is quick and more accurate (470% true
positive rate and 498% positive predictive value) than what has
been reported in the literature on self-reporting seizures in
seizure diaries, the current standard of care for seizure count-
ing outside of the epilepsy monitoring unit.191 Swinnen et al.
used a 2-channel monitoring device, Sensor Dot (SD), to detect
typical absence epilepsy in adults and children. (Fig. 9(b)) Blind
reading of full SD data resulted in a sensitivity of 81%, a
precision of 89%, which is close to the patient self-reporting

Fig. 8 (a) Images of a subject wearing an earplug Ear-EEG.29 (b) The schematic diagram of the design of a soft and curved electrode system for an
SSVEP-based BCI text speller system.30 (c) An illustration of a subject wearing the motor-imagery-based scalp EEG electronics with microneedle
electrodes and a closeup of stretchable interconnectors.31 (d) Generic concept diagram of EEG-based BCI controlling assistive devices.25
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results, which gave a sensitivity of 80%, precision of 100%.192

Japaridze et al. used the wearable BrainLink EEG to measure
the accuracy of fully automated absence seizure detection.
(Fig. 9(c)) They recorded 364 absence seizures in 39 patients.
The device deficiency was 4.67% and the average sensitivity per
patient was 78.83%.193 The device even correctly documented
nonresponsiveness in 30 absence seizures, and responsiveness
in six electrographic seizures, which is 100% in the automated
behavioral testing in 36 seizures.

Alongside the wearable system, there have been tremendous
efforts dedicated to developing generalizable machine learning
(ML) algorithms to extract information of epileptic activity in
EEG data as well. Recently, many ML methods are applied in
the detection of seizures in epilepsy from EEG signals which
may be more efficient and consistent than the diagnosis of
human physicians. According to the literature, studies related
to epilepsy EEG classification tend to use SVM the most, similar
to the situation in automatic sleep stage classification
(ASSC). Researchers choose other classifiers as well, includ-
ing ANN, KNN, RF, Naı̈ve-Bayesian (NB), DT, etc. In the study
by Acharya et al. in 2012, the researchers presented a method
for automatically detecting normal, pre-ictal, and ictal con-
ditions in recorded EEG signals from the Bonn University
dataset.55 They extracted four entropy-based non-linear
features: ApEn, SampEn, S1, and S2 from full time-series
EEG data and trained seven classifiers, including FSC (Fuzzy
Sugeno Classifier), SVM, KNN, PNN (Probabilistic Neural
Network), DT, GMM (Gaussian Mixture Model), and NB.
The FSC classifier turned out to outperform the others,
which presented the highest accuracy of 98.1%, highest
sensitivity of 99.4%, and specificity of 100%. In the case of
accuracy, SVM also gained a relatively high performance of
95.9%. We have summarized the classifications that used in
epilepsy EEG in Table 3.

2.3.3 Sleep monitoring. Polysomnography (PSG) is the gold
standard in evaluating sleep. In the conventional settings of
PSGs, sensors for various bioparameters are required, includ-
ing EEG.194–196 Due to the issue that PSGs would normally have
during the recordings, such as the recording must be in a
specialized laboratory and the complicated setup for different
biosensors such as ECG, EMG, and Electro-Oculogram (EOG),
tremendous efforts have been dedicated to simplifying the
sleep monitoring system with portable and wearable EEG
systems. The home-based portable and wearable EEGs have
gradually emerged in the consumer market, such as Muse S,
SleepScope, Neuroon, Dreem headband, SleepShepherd, etc.
Several validation studies have shown that portable and wear-
able EEG systems have a good agreement with PSGs.197,198

Here, we summarize the works in recent years that utilize
wearable EEG systems for sleep monitoring and disorder
detection, including sleep staging and sleep spindle detection.
In 2014, Imtiaz and Rodriguez-Villegas developed an algorithm
with a novel feature in sleep EEG to better discern rapid-eye-
movement phases from N1 and Wake stages. In their study,
they achieved a sensitivity of 83%, specificity of 89%, and
selectivity of 61% on a test database consisting of 2221 REM
epochs, realizing the automatic detection of REM stages with a
single-channel EEG.194 In addition, Koley and Dey successfully
demonstrated the monitoring of sleep from a single channel
ear-EEG.199 while Mikkelsen et al. showed that ear-EEG can
reliably measure brain activity for sources close to the ear with
the same signal-to-noise ratio as scalp.200 Stochholm, Mikkel-
sen, and Kidmose applied the same classifier as proposed in a
prior work199 to a single-channel sleep classifier, showing that
the performance of the single-channel ear-EEG and a single-
channel scalp-EEG have comparable performances.201 The
agreements with the expert manual scoring from each
system are 82% for the ear-EEG and 85.7% for the scalp-EEG.

Fig. 9 Some examples of the newest epilepsy monitoring devices. (a) The Epilogt miniature wearable EEG sensor uses an adhesive and conductive
hydrogel that serves as the interface between Epilog and the scalp when used below the hairline.191 (b) Four silver/silver chloride standard electrodes (in
orange) are placed behind the ears of the patient and connected to Sensor Dot, which is attached to the upper back via an adhesive (in blue). An enlarged
image of the SD is given in the circle.192 (c) The BrainLink EEG epileptic seizure monitoring system uses a headband to acquire bipolar signals from the dry
electrodes on FP1 and F7.193
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The ear-EEG they used was an earbud-based sensor,202 which
has a similar design as the earplug EEG device that mentioned
in Fig. 8(a). About similar time, many of the EEG-based
sleep monitoring was investigated based on similar
platforms,200,203–207 as shown in Fig. 10(a). Other body parts
like the ear that is not covered by the hair have drawn great
attention for the development of EEG-based sleep monitoring
systems. A great number of recent sleep studies are focused on
acquiring signals from forehead EEGs208–212 and behind-the-
ear EEGs.213–215 in Fig. 10(b) and (c), respectively.

The system-level progress has benefited from the blossom of
the ML algorithms, which boost the developments in the ASSC
approach, which would minimize the time requirement of
clinicians, increase the diagnostic precision in the classifica-
tion of sleep stages and improve the treatment for sleep
disorders.216 Here, we give a summary of the most recent and
popular classification algorithms in Table 4.

2.3.4 Psychiatry: mental health evaluation. Besides men-
tioned medical applications, EEG can also be used to detect
mild mental issues or major depressive disorder (MDD). EEG
signals have been widely used in the studies of antidepressant

responses as the relationship between the antidepressant
response and the EEG recording for prefrontal cortex activity
has drawn tremendous attention.217–219 However, detecting
depression with wearable EEGs has only recently emerged in
the field. Li et al. combined linear and nonlinear EEG features
to create a 99.1% accuracy classifier for EEG features.220 They
compared the performance of each electrode on the EEG head-
set to pave the way for the future single-channel wearable EEG
system for recording depressions. Cao et al. used a wearable
forehead EEG device (Mindo-4S Jellyfish, Eee Holter Technol-
ogy Co.) to study the responses to ketamine in patients with
treatment-resistant depression (TRD).35 The wearable device is
shown in Fig. 11(a). In this study, the authors successfully
concluded that the rapid antidepressant effects of mixed doses
of ketamine are associated with prefrontal EEG activities,
asymmetry, and cordance at baseline and early post-treatment
changes. They achieved 81.3% accuracy, 82.1% sensitivity, and
91.9% specificity in classifying responders and non-responders
with wearable EEG. Balconi, Fronda, and Crivelli used a wear-
able EEG system together with ECG to determine the effects of
mindfulness exercises on the levels of stress and anxiety of an

Table 3 Summary of single-channel epilepsy EEG classification

Ref. Dataset Classification/accuracy

Lu et al.8 Bonn University (five subsets denoted as Z, O, F, N and S) SVM: 99.00%
Wang et al.9 Bonn University (five subsets denoted as Z, O, F, N and S, each group 100 samples) RF: 96.7%
Siuly and Li7 Bonn University (five subsets denoted as Z, O, F, N and S, each group 100 samples) SVM: 99.96–100%

NB: 99.24%
KNN: 98.82%

San-Segundo et al.10 Bonn University (five subsets denoted as Z, O, F, N and S, each group 100 samples) NN: 95.6–99.8%
Note: they also test on another multichannel dataset

Zhang et al.11 Bonn University (five subsets denoted as Z, O, F, N and S, each group 100 samples) SVM: 80.43%
Note: the samples were grouped as A, B, C, D, E.

Wen and Zhang32 Bonn University (five subsets denoted as Z, O, F, N and S, each group 100 samples) KNN: 97.3–98.0% (KNN)
DT: 89.7–96.0% (DT)
NN: 90.0–97.6% (NN)
NB: 82.3–96.7%

Note: the samples were grouped as A, B, C,D, E.
Buettner, Frick, and Rieg33 Bonn University (five subsets denoted as Z, O, F, N and S, each group 100 samples) RF: 99.0%

Fig. 10 (a) Based on similar ideas, several works have been developing different types of in-ear EEG-based sleep sensors. This in-ear EEG was first
developed by Mikkelsen et al. in 2015.200 (b) A forehead EEG-based sleep sensor.212 (c) A set of subjects wearing the recently developed flex-printed
around-the-ear electrode array. The figure on the right was the gold standard PSG measurement setup.214

Review Journal of Materials Chemistry B

Pu
bl

is
he

d 
on

 0
9 

Ju
ni

 2
02

2.
 D

ow
nl

oa
de

d 
on

 1
7/

11
/2

02
4 

00
:5

0:
39

. 
View Article Online

https://doi.org/10.1039/d2tb00618a


7274 |  J. Mater. Chem. B, 2022, 10, 7260–7280 This journal is © The Royal Society of Chemistry 2022

individual.221 The authors concluded that the use of wearable
EEG reduced perceived stress and anxiety. Hwang et al. used
wearable EEG systems to monitor workers’ emotional states
during the construction tasks.34 The study has a bipolar emo-
tional model, consisting of valence and arousal to indicate the
emotional state from displeasure to pleasure and from relaxa-
tion to excitement, respectively. As Fig. 11(b) and (c) showed,
the workers wore the EEG headset under all work conditions,

and the results demonstrated the applicability of a wearable
EEG sensor for monitoring workers’ mental states.

3. Conclusions and perspectives

Currently, the clinical EEG electrodes are still wet-electrode-
based to achieve high-quality recording of EEG signals. How-
ever, to maintain prolonged monitoring with wearable EEG

Table 4 Summary of single-channel ASSC based on EEG using different classifiers

Ref. Dataset Sleep stages Channel Classification/accuracy

Tsinalis et al.2 Sleep PSG 20 healthy subjects 20 hour
recording per subject

Wake (W), REM (R), non-R
stages 1–4 (N1, N2, N3),
Movement

Fpz Cz CNN: 82%

Yücelbas- et al.6 17 758 epochs of 28 subjects (21 healthy
subjects and 7) obstructive sleep apnea
(OSA) patients

Wake (W), non-rapid eye
movement (NREM) and
rapid eye movement (REM)

Single channel RF: 78.08%
ANN: 70.53%
DT: 58.74%
NB: 57.31%

da Silveira, Kozakevicius,
and Rodrigues4

Sleep-EDF database two-night sleep ana-
lysis of 10 male and 10 female subjects

All five possible sleep stage
arrangements (2–6 state)

Pz-Oz RF: 90.5–97.3%

Sharma, Pachori, and
Upadhyay3

Sleep-EDF database eight objects (four
healthy, four unhealthy)

All five possible sleep stage
arrangements (2–6 state)

Pz-Oz 2 and 6 class state:
RF: 98.02% and 89.74%
DT: 96.67% and 85.85%
KNN: 95.91% and 83.56%
NB: 89.01% and 71.8%

Qureshi and
Vanichayobon5

25 subjects, 21 males and 4 females W/S1/S2/S3/S4/REM C4-A1 RF: 97.73%
SVM: 93.28%

Zhu, Li, and Wen1 Sleep-EDF database 8 subjects AWA, S1, S2, S3, S4, REM Pz-Oz SVM:
AWA-REM 96.1%
AWA-REM 96.7%
S1-REM 75.5%
(S1–S2)-SWS 90.6%
S1–S2 89.2%
S3–S4 77.0%

Fig. 11 (a) The wearable forehead EEG device for identifying ketamine responses in treatment-resistant depression.35 (b) A image of a construction
worker wearing a wireless EEG sensor for emotional state measuring.34 (c) The emotional state monitoring results in different work conditions for on-site
and off-site workers after the different amount of working hours: valence and arousal.34
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devices, the impedance, adhesion, stability and biocompatibil-
ity are all considered as very important figures of merits. In this
review, an emerging type of biopotential electrodes based on
hydrogels is discussed. The tunability of hydrogels allows the
possibility for the replacement of clinically used Ag/AgCl wet
electrodes. With more and more advancements in hydrogel-
based electrodes, the hydrogel-based electrodes can be made
more versatile according the clinical needs. Here, besides the
advancement in the electrodes materials, we also report several
different types of EEG electrode systems used for several
important medical applications. Majority of these systems are
still using standard wet or dry electrodes, but these applications
would benefit from the development of advanced wearable
hydrogel-based EEG electrodes. Although the challenges of
applying hydrogel electrodes to clinical settings still remains,
the promising future of the hydrogel-based electrode is undeni-
able. With the continuous development of the important para-
meters for hydrogel electrodes technology (including
impedance, adhesion, stability and biocompatibility), we
believe that hydrogel electrodes based wearable EEG systems
will be widely utilized for continuous, long-term EEG monitor-
ing and diagnostics of disease at home.
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