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Noncovalently bound molecular complexes
beyond diatom–diatom systems: full-dimensional,
fully coupled quantum calculations of
rovibrational states

Peter M. Felker *a and Zlatko Bačić *bcd

The methodological advances made in recent years have significantly extended the range and

dimensionality of noncovalently bound, hydrogen-bonded and van der Waals, molecular complexes for

which full-dimensional and fully coupled quantum calculations of their rovibrational states are feasible. They

exploit the unexpected implication that the weak coupling between the inter- and intramolecular

rovibrational degrees of freedom (DOFs) of the complexes has for the ease of computing the high-energy

eigenstates of the latter. This is done very effectively by using contracted eigenstate bases to cover both

intra- and intermolecular DOFs. As a result, it is now possible to calculate rigorously all intramolecular

rovibrational fundamentals, together with the low-lying intermolecular rovibrational states, of complexes

involving two small molecules beyond diatomics, binary polyatomic molecule-large (rigid) molecule

complexes, and endohedral complexes of light polyatomic molecules confined inside (rigid) fullerene cages.

In this Perspective these advances are reviewed in considerable depth. The progress made thanks to them is

illustrated by a number of representative applications. Whenever possible, direct comparison is made with

the available infrared, far-infrared, and microwave spectroscopic data.

1 Introduction

Molecular complexes bound by noncovalent, hydrogen-bonded
(HB) and van der Waals (vdW), interactions have been the focus
of intense research activity by experimentalists and theorists
alike for decades, and the attention they receive continues
unabated. The main motivation driving this interest has been
the profound importance of the HB and vdW intermolecular
interactions. They are ubiquitous in nature and shape the
structural and dynamical properties of matter on all scales:
small molecular complexes, molecular clusters, macromolecules
of biological importance and their complexes, solid and liquid
condensed phases, and key biological structures such as cellular
membranes. For both theory and experiment, noncovalently
bound molecular complexes, dimers in particular, represent
most attractive targets for studying HB and vdW interactions
at the level of detail and accuracy that would be impossible for
more complex systems.

Noncovalently bound molecular complexes have two distinct
classes of vibrational modes. One of them is comprised of low-
frequency intermolecular vibrations which typically exhibit
strong anharmonicities and mode coupling, large-amplitude
motions, and extensive wave function delocalization. The latter
often involves two or more multiple equivalent and shallow
minima on the PES separated by low barriers and quantum
tunneling between them, giving rise to characteristic patterns
of tunneling splittings. In the other class are the high-frequency
intramolecular vibrations of the monomers in the complex.
Their frequencies are typically at least an order of magnitude
higher than those of the intermolecular vibrational modes.

Far-infrared (FIR) spectroscopy directly probes the inter-
molecular vibrations which, owing to their large-amplitude
character, are highly informative about extended portions of
the intermolecular PES of the molecular complex considered.
On the other hand, the infrared (IR) spectra reveal the fre-
quency shifts of the intramolecular vibrations from their gas-
phase values caused by the complex formation, thus providing
complementary information about the intermolecular interac-
tions. Also present in the IR spectra are combination bands
associated with the intermolecular vibrations originating
in excited intramolecular vibrational manifolds, containing
information about the coupling between the intra- and inter-
molecular vibrations.
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Clearly, the FIR and IR spectra of weakly bound complexes
encode a wealth of information regarding their intricate rovi-
brational dynamics dominated by nuclear quantum effects and
the underlying PESs on which it takes place. However, extracting
this information fully and reliably is not an easy task. The only
practical way of accomplishing this is to perform high-level
quantum calculations of the rovibrational eigenstates, and pos-
sibly spectra, of the complex, preferably in full dimensionality
and utilizing the best PES available. Direct comparison of the
theoretical results with the available spectroscopic data allows
the assessment of the accuracy of the (usually ab initio calcu-
lated) PES employed as well as its refinement if warranted, and
at the same time permits the assignment of the measured
spectra. Thus, theory and experiment are intertwined in a highly
symbiotic and fruitful relationship.

Carrying out this approach in practice hinges on having the
ability to compute accurately the rovibrational states of a
noncovalently bound complex for a given PES. This requires
dealing effectively with three major challenges. The first one is
the high dimensionality of the vibrational problem to be solved.
Assuming that all vibrational degrees of freedom (DOFs) are
considered explicitly, it is six-dimensional (6D) for complexes of
two diatomic molecules (e.g., HF dimer), 9D for diatom-triatom
complexes (e.g. HCl–H2O), and 12D for complexes of two
triatomic molecules (e.g., H2O dimer). The second challenge,
compounding the first, stems from the characteristics of the
vibrational modes, intermolecular in particular. As mentioned
previously, they exhibit large-amplitude motions, are strongly
anharmonic, and coupled among themselves and to the intra-
molecular monomer vibrations. For such systems, the only way
to obtain accurate rovibrational states (for the PES employed) is

by computing rigorously the eigenstates of the appropriate
full-dimensional Hamiltonian of the complex. The third chal-
lenge arises when one wants to calculate full-dimensional
rovibrational states of a complex not only for monomers in
their ground vibrational states but also when one or both
monomers are vibrationally excited. As discussed in more detail
below, this makes the calculations much more demanding
computationally.

In order to avoid the costly full-dimensional treatments, the
large majority of the calculations of the rovibrational levels of
noncovalently bound molecular dimers to date have relied on
the adiabatic, Born-Oppenheimer separation of their intra-
molecular and intermolecular vibrations. The basis for this
approximation is the large disparity in the frequencies of the
two sets of vibrations. In practice, this has most often meant
that the monomers are taken to be rigid, and only the coupled
intermolecular DOFs of the complex are taken into account.
Several reviews devoted primarily to the calculations of the
rovibrational states of noncovalently bound binary molecular
complexes assuming rigid monomers are available.1–5 A more
sophisticated vibrationally adiabatic treatment was developed
and implemented for (H2O)2,6 allowing the inclusion of the
monomer flexibility in an approximate manner when computing
the intermolecular vibrational eigenstates. The rigid-monomer
approach continues to be used widely, as illustrated by just a
small sample of recent papers dealing with the rovibrational
states of H2O/D2O–CO2,7 (NH3)2,8 H2O–HF,9,10 HCS+–H2,11 and
CH4–H2O.12,13

The rigid-monomer calculations are capable of delivering
results in respectable agreement with a range of experimental data
pertaining to the monomers in their ground vibrational states,
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Zlatko Bačić was born in Pula,
Croatia, in 1954. He received his
BS degree chemistry from the
University of Zagreb, Croatia, in
1977, and PhD in theoretical
chemistry from the University of
Utah, Salt Lake City, in 1981,
under the direction of Prof. Jack
Simons. He spent the next several
years as a research associate in the
MPI in Göttingen, Germany (with
R. Schinke), Hebrew University of
Jerusalem (with R. B. Gerber), The
University of Chicago (with J. C.

Light), and Los Alamos National Laboratory (with R. T. Pack). In
1988 he joined the Department of Chemistry at NYU as an Assistant
Professor, where he has remained and is currently a Professor. His
research has been focused on the rigorous quantum treatment of the
dynamics and spectroscopy of noncovalently bound molecular
complexes and light molecules inside nanocavities. He is an elected
Fellow of both the American Physical Society and the American
Association for the Advancement of Science.

Perspective PCCP

Pu
bl

is
he

d 
on

 0
4 

O
kt

ob
a 

20
22

. D
ow

nl
oa

de
d 

on
 0

1/
02

/2
02

6 
20

:4
2:

47
. 

View Article Online

https://doi.org/10.1039/d2cp04005k


This journal is © the Owner Societies 2022 Phys. Chem. Chem. Phys., 2022, 24, 24655–24676 |  24657

provided that the PES used is accurate. Nevertheless, already
the earliest fully coupled quantum bound-state calculations of
diatom–diatom complexes demonstrated that the intermolecular
vibrational states computed in 4D (rigid monomers) and 6D
(flexible monomers) differ by 1–2 cm�1 for (HF)2, (DF)2, and
HFDF,14,15 and by 2–5 cm�1 in the case of (HCl)2.15,16 Thus,
even when the monomers are in the ground vibrational state,
comparison with spectroscopic data and the assessment of
the quality of the dimer PES employed benefit from rigorous
full-dimensional quantum calculations, for flexible monomers,
treating the intra- and intermolecular DOFs of a dimer as fully
coupled.

The rigid-monomer approaches cannot address a number
of important, widely measured spectroscopic properties of
molecular dimers that involve vibrational excitation of one or
both monomers. Among them are intramolecular vibrational
frequencies and their shifts from the gas-phase monomer values
caused by the complexation, that are sensitive to the vibrationally
averaged structure of the dimer. In addition, the observed changes
in intermolecular frequencies and tunneling splittings upon
intramolecular vibrational excitations, reflect the coupling
between the two sets of DOFs. These features can be described
accurately only by rigorous quantum calculations in full dimen-
sionality that extend to excited vibrational states of flexible
monomers. The increase in dimensionality when going from
the rigid- to flexible-monomers is very significant, for example,
from 4D to 6D for (HF)2, from 5D to 9D for HCl–H2O, and
from 6D to 12D for (H2O)2. This makes such calculations
much more demanding computationally than those performed
assuming rigid monomers, even when the former are restricted
to monomers in the ground vibrational state. The reason for
this is the need to include additional basis functions covering
the intramolecular DOFs and, consequently, having to evaluate
higher-dimensional potential matrix elements and compute the
eigenstates of larger rovibrational Hamiltonian matrices.14–16

But extending full-dimensional quantum computations
of this kind to the case when one or both monomers are
vibrationally excited gives rise to an entirely new set of difficult
challenges. The reasons for this are twofold. One of them is
immediately apparent: accurate description of vibrationally
excited monomers in the dimer requires a basis for the intra-
molecular DOFs that is considerably larger than when they are
in the ground state, increasing greatly the dimension of the
overall problem. The second obstacle originates from the
already mentioned order-of-magnitude (or greater) difference
between the frequencies of the intramolecular and intermole-
cular vibrations in noncovalently bound molecular complexes.
A typical example is the HCl–H2O complex,17 whose frequencies
(calculated in 9D) of the symmetric and asymmetric stretch
fundamentals of H2O are 3650 and 3750 cm�1, respectively,
and 1596 cm�1 for its bending vibration; the HCl stretch
fundamental is at 2727 cm�1. In contrast, the frequencies of
the intermolecular vibrational fundamentals of HCl–H2O are
less than 150 cm�1.17

Consequently, there are hundreds, possibly thousands, of
very highly excited intermolecular vibrational states lying in the

intramolecular vibrational ground-state manifold having energies
below those of the intramolecular vibrational excitations con-
sidered. In other words, the density of the intermolecular states
at the energies of the intramolecular fundamentals and over-
tones is very high. Prior to our recent work reviewed in this
Perspective, for decades the prevailing view was that for weakly
bound molecular dimers, fully coupled quantum bound-state
calculations that encompass their intramolecular vibrational
fundamentals and overtones require converging either all inter-
molecular vibrational states below the energies of these intra-
molecular excitations, or at least a dense set of highly excited
intermolecular states energetically close to them. This task
seemed daunting, and as a result, until a just few years ago it
was undertaken only a handful of times, in two ways. In one of
them, employed in the earlier quantum 6D calculations of the
vibrational levels of the HF-stretch excited (HF)2

18,19 and the
HCl-stretch excited (HCl)2,20 a (contracted) intermolecular
basis was tailored to the fundamental (and overtone) intra-
molecular vibrational levels of interest by truncating it from
both above and below their respective energies. This left bands
of intermolecular basis functions, each centered on the parti-
cular intramolecular fundamental, in the belief that they must
be present in the final full-dimensional basis. The second
venue opened up recently, when it became possible, at great
computational effort, to compute directly the vibrational levels
of (HF)2 from the ground state up, with both HF monomers in
their ground vibrational states and also when one is vibration-
ally excited.21 A very large basis set of dimension 3 600 000 had
to be used for this purpose. Similar bottom-up 12D calculations
of the vibrational levels of (H2O)2 managed to reach the
manifold of the excited water bend vibrations.22 But, dimer
vibrational levels in the region of the water OH stretches were
not computed, citing the high density of states in this energy
range.22

It was evident that if full-dimensional quantum calculations
of the monomer fundamentals and overtones in molecular
dimers truly demand converging highly excited intermolecular
vibrational states in the ground-state manifold all the way
up to these intramolecular excitations, then extending them
to larger complexes beyond diatom–diatom systems would
remain prohibitively costly in most instances, for the foresee-
able future. Indeed, in about a quarter of a century since
the first such treatments of the HX-stretch excited (HX)2

(X = F, Cl),18–20 not a single theoretical study of noncovalently
bound molecular complexes with more than four atoms has
been reported in which all intramolecular monomer vibra-
tional fundamentals (stretch and bend), together with
low-energy intermolecular (ro)vibrational states, were com-
puted by means of rigorous full-dimensional quantum
calculations.

But, a paper published in 201923 revealed that what was
perceived as the biggest obstacle really did not exist. The fully
coupled quantum 6D calculations reported in that study, of the
vibration-translation–rotation (VRT) eigenstates of H2, HD, and
D2 inside the clathrate hydrate cage,23 taken to be rigid,
resulted in a very surprising finding: the first excited (v = 1)
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intramolecular vibrational state of the caged H2 at E4100 cm�1

could be calculated accurately while having converged only a
modest number of low-frequency intermolecular TR states in
the v = 0 zero manifold up to at most 400–450 cm�1 above the
ground state, and none within several thousand wave numbers
of the H2 intramolecular fundamental at E4100 cm�1. The
density of TR states must be very high in this energy range, and
yet not including them in the calculations had no effect on the
accuracy with which this high-energy intramolecular excitation
was computed.23 This resulted in a large reduction of the
dimension of the basis set employed, transforming what would
be a formidable computation into one that was readily
tractable.23

The explanation put forth invoked extremely weak coupling
between the intramolecular v = 1 state of H2 and the highly
excited intermolecular TR states in the v = 0 zero manifold close
in energy.23 Formal theoretical explanation is still lacking.
However, the sharp disparity between the very smooth nodal
pattern of the v = 1 state, exhibiting a single node, and the
highly oscillatory, irregular nodal patterns of the highly excited
TR states is likely to play a key role in any theoretical model.

The broader implications of this finding were grasped
immediately. Noncovalently bound molecular dimers (and larger
clusters) also exhibit very weak coupling between the high-
frequency intramolecular modes and the low-frequency inter-
molecular vibrations. Therefore, as in the case of H2 in the
hydrate cage, it should be possible to calculate efficiently accu-
rate energies of their intramolecular vibrational excitations,
as well as the low-lying intermolecular vibrational states, by
means of full-dimensional, fully-coupled quantum bound-state
calculations, that would employ a modest-size basis for the
intermolecular DOFs covering only a small portion of the energy
range far below the fundamental and overtone excitations
of interest. Finally, extending such rigorous treatments to com-
plexes larger than diatom–diatom systems was within reach.
What remained was to develop a strategy that would best exploit
this new insight.

This was done shortly thereafter, by introducing a general
approach for high-dimensional, fully coupled quantum com-
putation of intra- and intermolecular (ro)vibrational excitations
of noncovalently bound binary molecular complexes.24

Its initial application was to (HF)2, for the monomers in
their ground and excited intramolecular vibrational states.
The subsequent publication25 provided a complete description
of this computational methodology extended to the (9D) rovib-
rational states of the triatom–diatom noncovalently bound
complexes. Its effectiveness was demonstrated by the fully
coupled 9D quantum bound-state J = 0, 1 calculations of
H2O–CO and D2O–CO complexes, encompassing all their intra-
molecular vibrational fundamentals (including H2O/D2O
stretch and bend modes) together with the low-energy inter-
molecular rovibrational states.25 This was the first such rigorous
treatment of a noncovalently bound molecular complex with
more than four atoms in its full dimensionality.

The key element of the computational scheme employed in
these calculations is the partitioning of the full rovibrational

Hamiltonian of the binary molecular complex into a rigid-
monomer intermolecular vibrational Hamiltonian, two intra-
molecular vibrational Hamiltonians – one for each monomer,
and a remainder term. The three reduced-dimension Hamilto-
nians are each diagonalized separately and small portions of
their low-energy eigenstates are included in a compact final
product contracted basis covering all internal, intra- and inter-
molecular, DOFs of the complex. The use of the contracted
eigenstate basis for the intermolecular vibrational DOFs is
novel and its importance can hardly be overstated. It makes it
easy to take advantage of the crucial weak-coupling insight
above, and select just a small number of lowest-energy inter-
molecular vibrational eigenstates for inclusion in the final
product contracted basis, in which the full (ro)vibrational
Hamiltonian of the dimer is diagonalized.24,25 It is this feature,
more than anything else, that is responsible for our ability to
compute rigorously, in full dimensionality, all intramolecular
vibrational fundamentals of noncovalently bound dimers
beyond those with four atoms.

The use of the eigenstates of intermediate reduced-
dimension Hamiltonians for the purpose of decreasing the size
of the final full-dimensional basis has a long history. The
sequential diagonalization-truncation scheme introduced by
Bačić and Light26–29 proved very successful in the applications
to a range of fluxional molecules and molecular complexes
such as LiCN/LiNC, HCN/HNC, (HF)2,14 (HCl)2,16 and others.
For polyatomic molecules such as acetylene, H2O2, CH4, and
CH5

+, Carter and Handy30 and Carrington and co-workers31–34

implemented similar ideas of dividing the internal coordinates
into two groups, stretch and bend in their case, and using the
eigenvectors of the two corresponding reduced-dimension
Hamiltonians in the final product contracted basis. Moreover,
they used different energy cutoffs for the two groups of the
contracted basis functions. Due to strong mode coupling in
these molecules, much stronger than in noncovalently bound
molecular complexes, high accuracy usually could not be
achieved by including just a small number of contracted basis
functions for one group of coordinates.

Monomer vibrational eigenstates have been used as the
contracted basis for the intramolecular vibrational DOFs of
noncovalently bound complexes.22,35 However, the basis for the
intermolecular DOFs was not contracted in these studies.
Going only ‘‘halfway’’ in contracting the final basis, and also
not taking advantage of the weak coupling between the intra- and
intermolecular DOFs, precluded the possibility of a straightforward
major reduction in the size of the intermolecular vibrational
basis. It also limited the range of the intramolecular vibrational
excitations of the molecular complexes amenable to rigorous
calculations.

Besides H2O/D2O–CO,25 in the past couple of years the
computational approach described above, that uses compact
contracted bases for both intra- and intermolecular DOFs, has
enabled full-dimensional (9D) and fully coupled quantum
treatments of several additional noncovalently bound triatom–
diatom complexes – HDO–CO,36 H2O–HCl17 and several H/D
isotopologues.37,38 These calculations have provided an
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unprecedented comprehensive description of their rovibrational
levels tructure, intramolecular vibrational frequencies and their
shifts from the isolated-monomer values, and the coupling
between the inter- and intramolecular DOFs. They have also
permitted unusually detailed comparison with the available
microwave, FIR, and IR spectroscopic data.

The vital importance of employing a contracted basis for
intermolecular vibrational DOFs, to exploit the weak-coupling
insight, is evident from the fact that prior to this series of
studies there were no papers in the literature reporting rigorous
full-dimensional quantum calculations of all intramolecular
vibrational fundamentals (and the overtones of some intra-
molecular modes) of noncovalently bound molecular com-
plexes having more than four atoms.

The methodology outlined above has proved to be remark-
ably versatile. In addition to the triatom–diatom complexes
already mentioned, it has been implemented successfully in
several studies of diverse highly challenging noncovalently
bound systems in excited intramolecular vibrational states:
rigorous 8D quantum calculations of the intramolecular stretch
fundamentals and frequency shifts of two H2 molecules in the
large clathrate hydrate cage,39 the fully coupled 9D quantum
treatment of the intra- and intermolecular vibrational levels
of H2O in (rigid) C60,40 and the fully coupled 9D quantum
calculations of flexible H2O/HDO intramolecular excitations
and intermolecular states of the benzene–H2O and benzene–
HDO complexes (for rigid benzene), together with their IR and
Raman spectra.41

This Perspective provides an in-depth survey of these
methodological advances and their applications to a variety of
challenging noncovalently bound binary molecular complexes.
They illustrate the wide range of applicability of this approach.
Whenever possible, direct comparison is made between the
theoretical results and spectroscopic measurements. The remainder
of this perspective is organized as follows. The methodology
for performing full-dimensional and fully coupled quantum
calculations of the (ro)vibrational states of three types of
noncovalenly bound molecular dimers is presented in Sections
2–4. While the overall computational approach is the same for
all three classes of complexes considered, each of them
requires the use of a distinct coordinate system, which lead
to different (ro)vibrational Hamiltonians. Thus, Sections 2–4
describe the bound-state methodologies tailored to binary
complexes of two small molecules beyond diatomics, polya-
tomic molecule-large molecule complexes, and endohedral
complexes of light polyatomic molecules in fullerene cages,
respectively. The large molecules and the fullerenes involved
are treated as rigid. Inclusion of endofullerenes in this review
may seem surprising. However, they possess the salient
features of the gas-phase complexes, such as weak interactions
between the monomers (the guest molecule and the host cavity)
and having both high-frequency intramolecular and low-
frequency intermolecular vibrational modes. Applications to
molecular complexes belonging to each of the three categories
above are discussed in Section 5. Finally, summary and pro-
spects are given in Section 6.

2 Theory: binary complexes of two
small molecules beyond diatomics

Here we follow the presentation in ref. 25, denoted hereafter
as paper I, in which this computational methodology was
applied to H2O/D2O–CO complexes. In fact, all of its applica-
tions so far have been to the water-containing triatom–diatom
complexes,17,25,36–38 the choices being dictated by the available
9D PESs. Therefore, for simplicity, in the following it will be
assumed that the triatomic moiety is water. Replacing it by
another triatomic molecule would require only minor modifi-
cations of the procedure.

2.1 Axis frames, coordinates and the rovibrational
Hamiltonian

The approach of Brocks et al.42 for a generic molecular dimer of
two small molecules was adapted to the treatment of this type
of noncovalently bound complexes comprised of a nonlinear
triatomic molecule and a diatomic molecule. Both molecules
are assumed to be flexible. The triatomic molecule (water) is
taken to be moiety A and the diatomic molecule (CO, HCl, etc.)
as moiety B. A suitable dimer-fixed (DF) frame is defined so as
to have its ẐD axis along the vector r0 pointing from the center
of mass (c.m.) of A to that of B. The Euler angles O � (a,b,0) fix
the orientation of the DF frame with respect to a space-fixed
frame (SF). The body-fixed frame of the water moiety (MFA),
centered at the c.m. of A, is defined by bisector-z Radau
embedding.35 The ẑA axis taken to be parallel to the bisector
of the Radau vectors R1 and R2 and pointing toward the O atom
of water. The ŷA axis is defined to be parallel to R1 � R2

(i.e., perpendicular to the water plane), and x̂A = ŷA � ẑA. The
orientation of the MFA frame relative to the DF frame is fixed by
the Euler angles oA � (aA,bA,gA). The intramolecular vibrational
coordinates of water are taken to be the three Radau
coordinates43–45 R1, R2 and Y and are collectively denoted as
qA. For the diatom-fixed MFB frame, centered at the c.m. of the
diatomic moiety, the ẑB axis is taken to be along the vector rB

connecting the two atoms, e.g., from the C nucleus to the O
nucleus in the case of CO. Its orientation with respect to the DF
frame is fixed by the two Euler angles oB � (aB,bB). The
diatomic vibrational coordinate, corresponding to the distance
between its two nuclei, is labeled as rB � |rB|.

With these definitions, the full (flexible-monomer) triatom–
diatom rovibrational Hamiltonian can be written as

Ĥ = T̂rot,int(r0,oA,oB,O) + T̂A(oA,qA) + T̂B(oB,rB) +
V(r0,oA,oB,qA,rB). (1)

The meaning of the terms in eqn (1) is as follows. T̂rot,inter-
(r0,oA,oB,O) is the rotation-intermolecular kinetic-energy (KE)
operator, the same as that given by eqn (2) of I, and is adapted
from results in ref. 42. The monomer-A KE operator TA(oA,qA) is
from ref. 35 and is the sum of a vibrational term T̂A

v (qA), a
rotational term T̂A

r (oA,qA), and a coriolis term T̂A
cor(oA,qA). These

are given, respectively, by eqn (4)–(6) of I. The monomer-B KE
operator T̂B(oB,rB) is the sum of a rotational term T̂B

r (oB,rB) and
a vibrational term T̂B

v (rB), which are respectively given by eqn (9)
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and (10) of paper I. V(r0,oA,oB,qA,rB) is the 9D PES of the
complex. (Note that V is a function of nine coordinates, not
ten, since it only depends on the difference between aA and aB.)

2.2 General procedure for computing the eigenstates of Ĥ

As outlined in the Introduction, Ĥ in eqn (1) is partitioned in
the following four terms.24,25 The first one is the (rigid-
monomer) intermolecular Hamiltonian, Ĥinter, defined as

Ĥinter(Q,O) � T̂rot,inter(Q,O) + T̂A
r (oA,qeq

A ) + T̂B
r (oB,req

B ) + Vinter(Q),
(2)

where qeq
A and req

B are the equilibrium values for the pertinent
monomer vibrational coordinates, Q � (r0,oA,oB) denotes the
intermolecular coordinates, and

Vinter(Q) � V(Q,qeq
A ,req

B ) � V(QN,qeq
A ,req

B ), (3)

with QN corresponding to a fixed set of intermolecular coordi-
nates with r0 set to a large value (thus representing noninteracting
monomers).

The second and third terms are the two isolated-monomer
Hamiltonians, ĤA

v and ĤB
v , in 3D and 1D, respectively,

defined as

ĤA
v (qA) = T̂A

v (qA) + VA(qA), (4)

where

VA(qA) � V(QN,qA,req
B ), (5)

and

ĤB
v (rB) = T̂B

v (rB) + VB(rB), (6)

where

VB(rB) � V(QN,qeq
A ,rB). (7)

The use of the above isolated-monomer 1D potential VB(rB)
in the definition of ĤB

v (rB) in eqn (8) is appropriate when the
monomers A and B are bound by weak vdW interactions, as in
the water–CO complex.25,36 However, this choice is not optimal
for HB complexes where inter-monomer interaction is stronger.
Therefore, in the case of the HCl–H2O complex and
isotopologues17,37,38 the 1D HCl dimer-adapted vibrational
Hamiltonian was defined as

ĤB
v (rB) = T̂B

v (rB) + VB
DA(rB). (8)

Here,

VB
DA(rB) � V(Q0,q0

A,rB). (9)

Q0 values correspond closely to the vibrationally averaged
geometry of the ground state of Ĥinter. Thus, ĤB

v represents
the vibrational Hamiltonian of HCl for the effective 1D
potential corresponding to the interaction of flexible HCl with
rigid H2O via a geometry that approximates that of the dimer
ground state. Since interaction is rather strong, the eigenstates
of the 1D dimer-adapted Hamiltonian are expected to provide a
more compact basis for the HCl stretching coordinate than the
vibrational eigenstates of the isolated HCl.

Finally, the fourth term in Ĥ is the difference DĤ � Ĥ �
Ĥinter � ĤA

v � ĤB
v , which is given by

DĤ(Q,O,qA,rB) = DT̂ + T̂A
cor + DV, (10)

where

DT̂ � T̂
A

r ðoA; qAÞ � T̂
A

r ðoA; q
eq
A Þ þ

ĵB
2

2mB

1

rB2
� 1

ðreqB Þ2

� �
; (11)

and

DV(Q,qA,rB) = V(Q,qA,rB) � Vinter(Q) � VA(qA) � VB(rB). (12)

The next step is to build up the product contracted 9D basis
in which to diagonalize Ĥ. We first compute the low-energy
eigenstates of Ĥinter, ĤA

v , and ĤB
v , which are designated as |k, Ji,

|vAi, and |vBi, respectively. The 9D basis states are then con-
structed as products of the form

|k, J,vA,vBi � |k, Ji|vAi|vBi. (13)

The dimension of this product contracted basis is equal to the
product of the numbers of eigenstates of each of these three
lower-dimension Hamiltonians that are included in it.

The only part of Ĥ that has nonzero off-diagonal matrix
elements in this basis is DĤ. It is the calculation of these matrix
elements that poses the principal computational challenge.

2.3 Calculation of Ĥinter eigenstates

2.3.1 Primitive basis. To solve for the eigenstates of Ĥinter

the following primitive basis is employed:46

|s, jA,kA,m, jB; JKi � |r0,si| jA,kA,mi| jB,K � mi| JKi.
(14)

Here, the | jA,kA,mi are symmetric-top eigenfunctions

j jA; kA;mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jA þ 1

8p2

r
D

jAð Þ
m;kA
ðoAÞ

h i�
; (15)

with the D
jAð Þ
m;kA

denoting Wigner rotation matrix elements and
jA = 0,. . .jmax

A . The

jjB;K �mi � YK�m
jB
ðoBÞ (16)

are spherical harmonics and jB = 0,. . .jmax
B . The

jJKi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

2

r
dJ
0;KðbÞ (17)

where d J
0,K is a ‘‘little-d’’ Wigner matrix element and J equals

either 0 or 1. Finally, the |r0,si, s = 1,. . .Ns are the functions
of a potential-optimized discrete variable representation
(PODVR)47,48 covering the r0 DOF. The |r0,si PODVR is con-
structed by solving the 1D Schrödinger equation

� 1

2m
@2c
@r02
þ Veffðr0Þc ¼ E0c (18)

in a sinc-DVR basis. The Veff(r0) in eqn (18) is Vinter(Q) mini-
mized with respect to all the Q except r0 at each one of the r0

sinc-DVR points. A certain number of lowest-energy eigenfunc-
tions from eqn (18) are then used to construct the PODVR.
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For the triatom–diatom complexes investigated so far,17,25,36–38

Ĥinter has been diagonalized in the basis of eqn (14) by using the
Chebyshev version49 of filter diagonalization.50 The successive
operation of Ĥinter on a random initial state vector that is required
by this algorithm is accomplished as follows. Operation with the
kinetic-energy portion of Ĥinter is effected by direct matrix-on-
vector multiplication, all the relevant matrix elements having been
computed prior to such multiplication. For operation with Vinter

the state vector is transformed to a (r0, cosbA, gA, cosbB, (aA � aB))
grid. That representation of the vector is then multiplied by the
value of Vinter at each grid point. Finally, the result is transformed
back to the basis representation. A more detailed description of
this procedure is given in I.

2.3.2 Symmetry considerations. Exploiting symmetry is
very valuable when considering high-dimensional quantum
systems (9D for triatom–diatom complexes), for at least two
reasons. First, it allows block diagonalization of the full Hamil-
tonian matrix into blocks corresponding to one of the irredu-
cible representations of the molecular symmetry group to
which the system belongs. The eigenstates of each block can
be calculated separately, thus greatly reducing the computa-
tional effort. Second, the eigenstates obtained in this way come
with symmetry labels, which are useful for many purposes.

As an example, complexes such as H2O/D2O–CO and
H2O/D2O–HCl belong to the molecular symmetry group
G4 = [E,E*,(12),(12)*], where E* is the inversion operation
and (12) permutes the H/D-nucleus coordinates of water.
Therefore, the matrix of Ĥinter (and Ĥ) can, in principle, be
block-diagonalized into four irreducible representations of G4.
Block-diagonalization of Ĥinter with respect to parity is straight-
forward. As detailed in I, it is accomplished by projecting out of
a random state vector that part which has either even or odd
parity. That parity-filtered vector is then used as the initial
state vector in the filter diagonalization procedure. Hence, the
complete diagonalization of Ĥinter involves two filter diagona-
lization runs, one for each parity. It should be noted that the
parity of an eigenstate of Ĥinter also determines the parity of
each of the 9D basis functions to which it contributes, since all
of the eigenstates of the intramolecular Hamiltonians ĤA

v and
ĤB

v are symmetric with respect to E*. Thus, parity block-
diagonalization of the matrix of Ĥ in the 9D basis is easily
accomplished.

One important consequence of the E* symmetry of the
dimers and the way in which the intermolecular basis functions
transform with respect to E* is that the matrix elements of
Ĥinter are all real, as proven in I. This property has been used to
enhance the efficiency of the calculations, by obviating the need
to work with complex-number amplitudes.

As noted above, Ĥinter and Ĥ of species like H2O/D2O–CO
and H2O/D2O–HCl are also invariant with respect to hydrogen-
nucleus interchange. This additional symmetry can be used to
further block-diagonalize the Ĥinter matrices. Full use of G4

symmetry was made in the 9D quantum calculations of the J = 1
intra- and intermolecular rovibrational states of HCl–H2O and
DCl–H2O complexes,38 because of the need to deal with con-
siderably larger 9D basis sets relative to those used previously.

Explicit incorporation of the hydrogen-exchange symmetry
into the 9D basis is somewhat more involved than making that
basis parity-adapted.38 The parity of the 9D basis function
|k, J,vA,vBi is entirely determined by that of the intermolecular
eigenstate |k, Ji. In contrast, the symmetry of the 9D basis
function with respect to the hydrogen exchange is determined
by the way in which both |k, Ji and |vAi transform under this
operation. The procedure by which this is handled is described
in ref. 38.

2.4 Diagonalization of ĤA
v and ĤB

v

The eigenstates of the two intramolecular vibrational Hamilto-
nians, ĤA

v [eqn (4)] and ĤB
v [eqn (8)], are rather easy to calculate

owing to their low-dimensionality, 3D and 1D, respectively for
the triatom–diatom systems studied thus far.17,25,36–38 The
following procedure has been employed for Ĥ A

v (see I). A 3D
product DVR basis consisting of two 1D PODVRs47,48 covering
the R1 and R2 Radau coordinates, typically consisting of eight
functions each, and a 1D PODVR covering the cosY Radau
coordinate and consisting of fifteen functions, has been utilized.
The matrix of ĤA

v in this basis was then diagonalized by Cheby-
shev filter diagonalization.49

The vibrational eigenstates of ĤB
v for the diatomic moiety

(CO, HCl) have been computed by direct diagonalization of the
matrix of that operator in a PODVR basis whose construction is
described in ref. 25 and 17.

2.5 Calculation of the eigenstates of Ĥ

As mentioned previously, when diagonalizing Ĥ, the main
challenge is posed by the calculation of the matrix elements
of DĤ in eqn (39) in the 9D |k, J,vA,vBi basis. This task is
facilitated by taking advantage of the fact that the matrix is
block diagonal in J and with respect to the parity of the basis
states. The rather lengthy procedure involved in the calculation
of DT̂, DV, and T̂A

cor is presented in I (it is similar similar to the F
matrix evaluation of Carrington31,51). Whenever possible, prof-
itable use is made of the hydrogen-exchange symmetry of the
dimer, that allows one to reduce the number of DĤ matrix-
element calculations by about a factor of two.17,25,37,38

2.6 Crucial advantage of using the intermolecular eigenstates
of Ĥinter in the product contracted 9D basis

It was stated already in Section 2.2 that the dimension of the
final product contracted basis in eqn (13) is equal to the
product of the numbers of eigenstates of each of these three
lower-dimension Hamiltonians that are included in it. As
emphasized in the Introduction, the main benefit of using
the eigenstates of Ĥinter as the contracted basis for the inter-
molecular DOFs is the ease with which one can capitalize on
the weak-coupling insight and include only a small number of
them, with the lowest energies, in the final basis. This reduces
drastically the final basis-set size, making it small enough to
allow direct diagonalization of the corresponding Ĥ-matrix
blocks, as illustrated by two examples below.

In the case of the J = 0,1 9D calculations of H2O–CO,25 the
numbers of such 5D intermolecular states, Ninter, corresponding
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to each of the parity/J blocks were as follows. Ninter = 60 for even/
0, 52 for odd/0, 90 for even/1, and 90 for odd/1. In all the blocks,
the 5D intermolecular eigenstates included in the 9D bases
extended to at most 230 cm�1 above the lowest-energy state of
the given parity. This is far below the intramolecular vibrational
fundamentals of H2O (1600–3750 cm�1) and CO (2147 cm�1).

In addition, 21 of the lowest-energy 3D intramolecular
eigenstates of ĤA

v (up to 9000 cm�1 in excitation energy) and
5 of the lowest-energy 1D vibrational eigenstates of ĤB

v (up to
the vibrational energy of 8300 cm�1) were employed in the final
9D basis.

This resulted in the modest sized final 9D product con-
tracted basis-sets for each of the four parity/J blocks of H2O–CO
of only 6300, 5460, 9450, and 9450 for even/0, odd/0, even/1,
and odd/1, respectively. These are sufficiently small to permit
direct diagonalization of the corresponding Ĥ-matrix blocks.

In the J = 0 9D calculations of HCl–H2O,17 the matrix of Ĥ in
the 9D basis is block diagonal in the two parity blocks. Conse-
quently, two different sets of basis states were constructed and
two different matrix diagonalizations were performed to obtain
the 9D eigenstates. The blocks differ in respect to the 5D Ĥinter

eigenstates, |ki, that were included. For the even-parity basis
states 90 lowest-energy |ki with even parity were included, up to
870 cm�1 above the Ĥinter ground state. For the odd-parity basis
states the 90 lowest-energy |ki of odd parity were included as
well, covering the energy range of about 930 cm�1 above the
ground state. For both parities these energies are low in
comparison with the intramolecular vibrational fundamentals
of H2O (1596–3650 cm�1) and HCl (2730 cm�1).

Each of these blocks was composed of the same set of H2O
and H35 Cl states: the 21 lowest-energy |vAi and the five lowest-
energy |vBi. Hence, both blocks consist of just 9450 states,
allowing their direct matrix diagonalization, as for H2O–CO above.

Thus, in the J = 0,1 9D quantum bound-state calculations of
both H2O–CO and HCl–H2O complexes it sufficed to include
only about 100 low-energy contracted intermolecular basis
functions in the final 9D product contracted basis of dimension
B10 000, and obtain converged all intramolecular vibrational
fundamentals together with low-lying intermolecular vibra-
tional eigenstates. A primitive, uncontracted intermolecular
basis would certainly be several orders of magnitude larger,
making such calculations prohibitively expensive and likely
impossible.

3 Theory: binary polyatomic
molecule-large molecule complexes

The coordinate system described in Section 2.1, with the ẐD axis
of the DF frame defined to be along the vector r0 connecting the
c.m. of one monomer to that of another, is tailored for non-
covalently bound complexes comprised of two small molecules,
both capable of undergoing extensive internal rotations. However,
this coordinate system, and the rovibrational Hamiltonian
associated with it, is not appropriate for weakly bound binary
complexes where one molecule is large and the other is small, and

as a result the intermolecular PES shows large anisotopy while the
motions of the large molecule are strongly hindered.

In order to address this problem, in ref. 41 quantum bound-
state methodology was formulated with molecule-large molecule
complexes in mind, specifically benzene–H2O and benzene–
HDO. It allows rigorous, fully coupled 9D quantum calculations
of the intramolecular vibrational excitations of a flexible small
molecule (H2O and HDO) weakly bound to a large molecule
(benzene) taken to be rigid, together with the low-energy
intermolecular vibrational states within each intramolecular
vibrational manifold. The method incorporates the general
approach of partitioning the vibrational Hamiltonian24,25 pre-
sented in Section 2.2. The DF frame of the complex is affixed to
the large molecule (benzene), building on the previous quantum
6D (rigid-monomer) treatment of the intermolecular vibrations
of benzene–H2O.52 This in turn is an extension of the earlier
quantum 3D calculations of the intermolecular level structure of
atom-large molecule vdW complexes53–55 (see also ref. 4 for a
general discussion of this topic).

The presentation here follows that in ref. 41. It refers to the
benzene–water (BW) dimer, but adapting the procedure to
other molecule-large molecule complexes (e.g., those involving
naphthalene or tetracene) would require relatively modest
adaptations.

3.1 Vibrational Hamiltonian of the dimer

The DF frame is defined such that its origin is at the c.m. of the
complex, its X̂ and Ŷ axes are parallel to the two principal axes
in the plane of benzene, respectively, and its Ẑ axis is X̂ � Ŷ,
perpendicular to the benzene plane. The classical nuclear KE of
this system can then be written as

T ¼ jpdj
2

2md
þ
X
i

jBi
� �2
2Ii
þ TWF; (19)

where md is the reduced mass of the complex, mwatermbenzene/
(mwater + mbenzene), pd is the momentum conjugate to d, the
vector going from the benzene c.m. to that of the water moiety,
the index i runs over the DF-axis directions, jB

i is the component
of the rotational angular momentum of the benzene measured
along the ith axis, Ii is the moment of inertia about the benzene
principal axis parallel to i, and TWF is the kinetic energy of the
water moiety due to the motion of its nuclei referred to a water-
fixed (WF) frame.

Starting with eqn (19) and proceeding along the lines of the
development in ref. 52, the quantum vibrational Hamiltonian
of the BW complex is obtained as

Ĥ ¼ �rd
2

2md
þ
X

i¼X̂;Ŷ ;Ẑ

L̂i
2ðdÞþðĵWi ðoÞÞ2þ2L̂iðdÞĵ

W

i ðoÞ
2Ii

" #

þ T̂WFðo;qÞþVtotðd;o;qÞ:

(20)

In the above equation, o � (f,y,w) stands for the Euler angles
that fix the orientation of the WF frame relative to the DF
frame, q denotes the vibrational coordinates of the water
moiety, rd

2 is the Laplacian associated with d, L̂i is the
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component, measured along the ith axis, of the orbital angular
momentum associated with the rotation of the c.m.s of the
benzene and water moieties about the dimer c.m., and ĵW

i is the
operator corresponding to the component of water’s angular
momentum measured along the ith DF axis. T̂WF(o,q) is the
operator associated with rotational–vibrational KE of water
monomer:35

T̂WF(o,q) = T̂WF
vr (o,q) + T̂WF

cor(o,q) + T̂WF
vib (q). (21)

Detailed expressions for T̂WF
vr , T̂WF

cor, and T̂WF
vib are given in ref. 41.

Finally, Vtot(d,o,q) is the 9D PES of the benzene–water dimer,
which we express as

Vtot(d,o,q) = VB–W(d,o,q) + VWF
intra(q), (22)

where VB–W is the 9D benzene–water interaction PES and VWF
intra

is the isolated water-monomer PES.

3.2 The procedure for calculating the eigenstates of Ĥ

The coupled inter- and intramolecular vibrational eigenstates
of Ĥ in eqn (20) are calculated following the general procedure
described in Section 2.2 for computing the rovibrational states
of noncovalently bound complexes.24,25 The difference is that in
this case only one of the two monomers, the small molecule
(water), is treated as flexible, while the other monomer, the
large molecule (benzene), is taken to be rigid.

Ĥ is partitioned into a reduced-dimension 6D (rigid-monomer)
intermolecular Hamiltonian Ĥinter, a reduced-dimension 3D intra-
molecular vibrational Hamiltonian Ĥintra of the flexible water
molecule, and a remainder term DĤ. From the low-energy eigen-
states of Ĥinter (denoted as |ki, with eigenenergies Einter

k ) and those
of Ĥintra, (denoted as |gi, with eigenenergies Eintra

g ) a contracted
product basis |k,gi � |ki|gi is built up, which is then used to
diagonalize the full 9D vibrational Hamiltonian.

Ĥinter is defined as

Ĥ inter � �
rd

2

2md
þ

X
i¼X;Y ;Z

L̂i
2ðdÞþðĵWi ðoÞÞ2þ2L̂iðdÞĵ

W

i ðoÞ
2Ii

þ T̂
WF

vr ðo;q0ÞþVinterðd;oÞ;

(23)

where

Vinter(d,o) � VB–W(d,o;q0), (24)

and q0 denotes vibrational coordinates of the rigid water moiety
fixed to constant values near to those characterizing the
minimum-energy geometry of water monomer.

Ĥintra is defined as

Ĥintra � T̂WF
vib (q) + Vadap(q), (25)

where the dimer-adapted 3D intramolecular potential, Vadap, is
the hydrogen-exchange-symmetrized version of

Vadap(q) � VWF
intra(q) + VB–W(d0,o0,q). (26)

Here, d0 and o0 are fixed values of d and o. These values are
chosen to correspond to those at, or near, the minimum of
VB–W when the Radau coordinates are fixed to (R1,0,R2,0,Y0).

As a result, Vadap includes some of the effects of the benzene–
water interaction on the water vibrational PES. This is similar in
spirit to the the 1D HCl dimer-adapted Hamiltonian for HCl–
H2O,17 defined in eqn (8) and (9).

Finally,

DĤ � DT̂WF
vr (o,q) + T̂WF

cor(o,q) + DV(d,o,q), (27)

where

DT̂WF
vr (o,q) � T̂WF

vr (o,q) � T̂WF
vr (o;q0), (28)

and

DV(d,o,q) � VB–W(d,o,q) � VB–W(d,o;q0) � VB–W(d0,o0,q).
(29)

In the 9D |k,gi basis the matrix elements of Ĥ are thus
given by

hk0; g0jĤjk; gi ¼ ðEinter
k þ Eintra

g Þdk0;kdg0;g

þ hk0; g0jðDT̂WF

vr þ T̂
WF

cor þ DVÞjk; gi:
(30)

3.3 Coordinates and kinetic-energy operators

The coordinates on which Ĥ depends are specified in the
following way. For the components of the intermolecular vector
d in eqn (20) the cylindrical coordinates (dZ,r,F) are used,
where dZ is the Cartesian component of d along the Ẑ axis,

r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dX2 þ dY2

p
, and (cosF,sinF) � (dX/r,dY/r), with dX and dY

the Cartesian components of d along the X̂ and Ŷ axes,
respectively. For the intra-water q the Radau coordinates
(R1,R2,Y)43–45 are employed. Radau bisector- z embedding is
used to define the WF frame,35 as described in Section 2.1.

The kinetic-energy portion of Ĥ in eqn (20), apart from T̂WF,
can now be written as52

�rd
2

2md
þ
X
i

L̂i
2ðdÞ
2Ii

" #
þ

X
i

ðĵWi ðoÞÞ2
2Ii

" #
þ

X
i

2L̂iðdÞĵ
W

i ðoÞ
2Ii

" #

¼ T̂1 þ T̂2 þ T̂3:

(31)

The expressions for T̂1, T̂2, T̂3, and T̂WF are given in Section IIC
of ref. 41.

3.4 Diagonalization of Ĥinter and Ĥintra

A ‘‘cylindrical-Wigner’’ basis52 chosen to represent the matrix
of Ĥinter consists of basis states of the form

|a,v,l,j,mj,ki = |dZ,ai|v,li|j,mj,ki. (32)

Here, the |dZ,ai, a = 1,. . .,Na, comprise a 1D Gauss-Hermite DVR
covering the dZ coordinate, the |v,li (|l| = 0,1,. . .,vmax and v =
|l|,|l| + 2,. . .,vmax), are eigenfunctions of a degenerate 2D
harmonic oscillator (HO) dependent on r and F, and the
| j,mj,ki ( j = 0,1,. . ., jmax, mj,k = �j, �j + 1,. . ., j) are symmetric-
top rotational eigenfunctions dependent on the o.

A very significant increase in computational efficiency in
respect to the diagonalization of Ĥinter and, more critically, in
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respect to the 9D diagonalization of Ĥ, can be achieved by
the symmetry factorization of the cylindrical-Wigner basis. The
matrix of Ĥinter was factorized into symmetry blocks associated
with the irreps of the G12 molecular symmetry group. This
choice made it possible to employ the same code to handle
both the H2O and HDO versions of single-sided BW complex.
Details of the symmetry-factorization procure can be found in
Section IID2 of ref. 41.

It should be pointed out that the same block diagonalization
due to symmetry that the above accomplishes for Ĥinter carries
over to the Ĥ matrix when constructed in the |k,gi representa-
tion. This is because Ĥ is invariant to the operations of G12, the
|gi are unaffected by those operations, and the |ki transform
like G12 irreps.

Ĥinter was diagonalized by means of the Chebyshev version49

of filter diagonalization,50 which involves successive applica-
tion of the operator on an initial, randomly generated state
function. This operation is straightforward for the kinetic-
energy portion of Ĥinter.

The operation with the potential term in eqn (23) [i.e.,
Vinter(d,o)] is slightly more involved. The state function is
transformed from the |a,v,l,j,mj,ki representation to the
quadrature-grid representation |a,rb,Fg,yq,fr,wsi. Next, each term
in the resulting grid expansion of the state function is multiplied
by the value of Vinter(d,o) at the associated grid point. Finally, the
result is back-transformed to the |a,v,l,j,mj,ki basis.

It can be readily shown that the matrix elements of Ĥinter in
the primitive basis are all real, even though the basis functions
themselves are complex.41 Consequently, if the expansion
coefficients in the primitive basis of the initial state function
in filter diagonalization are chosen to be real initially, the
analogous expansion coefficients of the state functions resulting
from successive operations of Ĥinter will remain real. Working
with real state vectors decreases the computational effort by
about a factor of two relative to working with complex ones, and
advantage was taken of that.

The eigenfunctions of Ĥintra were computed by a procedure
very similar to that outlined in Section 2.4. For a given species,
H2O or HDO, a primitive basis was used consisting of the
product of two tridiagonal-Morse DVRs48 covering the R1 and
R2 coordinates (|Z1i and |Z2i), and a potential-optimized DVR
(|Z3i) covering the Y coordinate. In the above bases, the matrix
elements of Vadap are diagonal, with each nonzero element
equal to that of the potential function evaluated at the relevant
3D quadrature point. Kinetic-energy (i.e., T̂WF

vib ) matrix elements
were evaluated as described in Section IID of ref. 40. The
intramolecular eigenvectors of Ĥintra were obtained by filter
diagonalization.

3.5 Diagonalization of Ĥ

It was already mentioned in Section 3.4 that the matrix of Ĥ is
block diagonal in the |k,gi basis, with the different blocks
corresponding to the different irreps to which the various |ki
belong. In the case of benzene–H2O, for all irreps, we set Ninter = 40
and Nintra = 34. For benzene–HDO, Ninter = 40 and Nintra = 42 were
employed for all irreps. For this value of Ninter, the eigenvectors of

Ĥinter included in the final 9D basis extended up to at most
270 cm�1 above the ground state of Ĥinter, far below the intra-
molecular vibrational fundamentals of water. This resulted in the
very modest sizes of the 9D symmetry-factored bases employed,
Ninter � Nintra, equal to 1360 for each G12 irrep of the H2O complex
and 1680 for each one of the HDO complex. It should be pointed
out all of these bases are small enough to allow for direct
diagonalization.

Computationally, the most intensive step of diagonalizing
Ĥ, the computation of matrix elements of DT̂W

vr, T̂W
cor, and DV

[eqn (30)], is described in ref. 40.

4 Theory: light polyatomic molecules
inside fullerene cages

Rigorous 9D quantum treatment of the intramolecular vibra-
tional excitations of H2O inside the fullerene C60 coupled to the
low-energy intermolecular translation–rotation (TR) states was
presented in ref. 40. It represents the culmination of theoretical
studies over many years aimed at elucidating the quantum TR
dynamics of molecules of increasing complexity (H2,56 HF,57

H2O58) nanoconfined inside fullerenes. A comprehensive
review of these studies is available.59

The 9D quantum methodology described here is from
ref. 40.

4.1 Vibrational Hamiltonian of H2O@C60

A flexible H2O molecule encapsulated in an isolated and rigid
C60 with Ih symmetry is considered. The effects of symmetry
breaking57,60 on the intramolecular vibrational excitations are
not included at this point. This is because the dominant
contribution to this is likely to come from the dependence of
the quadrupole moment of H2O on the intramolecular coordi-
nates, which is not known.

For this case, the 9D vibrational Hamiltonian of H2O@C60

can be written as

ĤðR;o;qÞ¼�rR
2

2M
þ T̂vrðo;qÞþ T̂ corðo;qÞþ T̂vðqÞþVtotðR;o;qÞ;

(33)

where M is the mass of H2O. The nine coordinates on which
this operator depends fall into three groups. In the first are the
three associated with the position vector, R, of the water c.m.
measured with respect to a cage-fixed (CF) Cartesian axis
system (X̂,Ŷ,Ẑ) with origin at the center of the C60 cage. These
axes are chosen such that Ẑ is along a C5 symmetry axis of the
icosahedral cage, Ŷ is along one of the C2 symmetry axes, and
X̂ = Ŷ � Ẑ. For the components of R we work with the spherical
coordinates (R,b,a), with R� |R|, cosb � R̂�Ẑ, and (cos a,sin a)�
(R̂�X̂,R̂�Ŷ)/sin b. In the second group represented by o are the
three Euler angles (f,y,w) that fix the orientation of the water
moiety’s molecule-fixed (MF) axis system relative to the CF
frame. In the third group represented by q are the three vibrational
coordinates of the water moiety, for which the Radau coordinates
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(R1,R2,Y)43–45 were chosen. Radau bisector-z embedding35 is used
to define the water MF frame, as described in Section 2.1.

In eqn (33), going from left to right, the terms in Ĥ
correspond respectively to the KE of the c.m. translational
motion of the water, the vibration-rotation KE of the water
(T̂vr), the Coriolis contribution to the KE of the water (T̂cor), the
vibrational KE of the water (T̂v), and the 9D PES of flexible H2O
inside C60 (Vtot). The explicit forms of T̂vr, T̂cor, and T̂v, from ref.
35, are given by eqn (3)–(5) of ref. 40. Vtot is expressed as the
sum of a water–cage interaction term, VH2O–cage, and an
isolated-water term, Vintra:

Vtot(R,o,q) = VH2O–cage(R,o,q) + Vintra(q). (34)

4.2 Computing the eigenstates of Ĥ

The overall approach to calculating the coupled intramolecular
and TR eigenstates of Ĥ in eqn (33) is similar to that described
in Section 3.2 for binary molecule-large molecule complexes.41

This is natural, as in both cases the large molecule, benzene or
C60, is taken to be rigid, while the water molecule is treated as
flexible.

Following the well-established general procedure24,25 out-
lined already in Sections 2.2 and 3.2, Ĥ is partitioned into three
parts, in the following way. The first part is a 6D intermolecular
Hamiltonian Ĥinter, with the eigenfunctions |ki and eigenvalues
Einter
k . It is defined as

Ĥ interðR;o; q0Þ � �
rR

2

2M
þ T̂vrðo; q0Þ þ VinterðR;oÞ; (35)

where q0 � (R1,0,R2,0,Y0) are constants set to values of the water
vibrational coordinates close to those of the equilibrium geo-
metry of the monomer, and Vinter is defined as

Vinter(R,o) = VH2O–cage(R,o,q0). (36)

The second part is a 3D intramolecular Hamiltonian Ĥintra

(of the water molecule), with the eigenfunctions |gi and eigen-
values Eintra

g . It is defined as

Ĥintra(q) � T̂v(q) + Vadap(q), (37)

where Vadap is the C60-adapted 3D intramolecular potential
(akin to the dimer-adapted potential in Section 3.2). It is
defined as the proton-exchange-symmetrized version of

Vadap(q) � Vintra(q) + VH2O–cage(R0,o0,q). (38)

Here, R0 and o0 are fixed values of R and o. By choosing these
values to correspond to the minimum of VH2O–cage when the
Radau coordinates are fixed to (R1,0,R2,0,Y0), one obtains a 3D
H2O vibrational potential that includes some of the effects
(perhaps the bulk thereof) of the H2O–C60 interaction on the
vibrational PES of H2O.

From the above 6D and 3D reduced-dimension eigenfunc-
tions a 9D contracted product basis is constructed composed of
functions of the form |k,gi � |ki|gi and then used to diagona-
lize the full Ĥ.

This leaves a 9D remainder term DĤ. From eqn (33) and the
definitions of eqn (35) and (37), one has

DĤ(R,o,q) = DT̂vr(o,q) + DV(R,o,q) + T̂cor(o,q), (39)

where

DT̂vr(o,q) = T̂vr(o,q) � T̂vr(o;q0), (40)

and

DV(R,o,q) � VH2O–cage(R,o,q) � VH2O–cage(R,o;q0)

+ Vintra(q) � Vadap(q). (41)

In the |k,gi basis, the matrix elements of Ĥ are given by

hk0; g0jĤjk; gi ¼ ðEinter
k þ Eintra

g Þdk0;kdg0g þ hk0; g0jDĤjk; gi: (42)

When diagonalizing Ĥ, computing the matrix elements of DĤ
represents the main task.

4.3 Diagonalizing Ĥinter and Ĥintra

Ĥinter is diagonalized in a primitive basis composed of func-
tions of the form

|n,l,ml, j,mj,ki = |n,l,mli| j,mj,ki, (43)

where the |n,l,mli are normalized eigenfunctions of the isotropic
3D harmonic oscillator Hamiltonian61,62 and the | j,mj,ki are
symmetric-top rotational eigenfunctions.63 The latter are normal-
ized Wigner rotation matrix elements

j j;mj ; ki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2j þ 1

8p2

r
Dj

mjk
ðf; y; wÞ

h i�
: (44)

With the basis of eqn (43) and the particular choice made in
Section 4.1 for the CF axes, it is straightforward to take advantage
of the high symmetry of the system. In particular, rotation of the
water moiety by p2p/5 radians (p an integer) about Ẑ transforms
a - a + p2p/5 and f - f + p2p/5 while leaving Ĥinter (and Ĥ)
unchanged. Therefore, only those |n,l,ml,j,mj,ki states that have
the same symmetry with respect to such rotations can be coupled
by Ĥinter (or Ĥ). It is easy to see that such states must have the
same value of (ml + mj) mod 5. Hence, the intermolecular basis
can be factored into five different sets characterized by values of
(ml + mj) mod 5 = 0,�1 and�2. The 6D intermolecular problem is
then solved by diagonalizing separately the blocks of the Ĥinter

matrix corresponding to these different basis sets.
The same type of symmetry factorization is employed in

Section 4.4 to block diagonalize Ĥ in the |ki|gi basis. This is
possible because the |ki have well-defined symmetry with
respect to the p2p/5 Ẑ-axis rotations and Ĥ is invariant with
respect to them.

The other symmetry used to block diagonalize the Ĥinter

matrix (and that of Ĥ) further is parity, the symmetric or
antisymmetric transformation of states due to inversion of the
coordinates of the water particles though the CF origin. The
states of the intermolecular basis transform upon inversion,
Ê*, as

Ê�jn; l;ml ; j;mj ; ki ¼ ð�1Þmlþjþkjn; l;ml ; j;mj ;�ki: (45)

Rather than building parity directly into the primitive basis, we
chose to build it into the random initial intermolecular state
vector (by applying a parity projection operator) that is used in
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the iterative matrix-on-vector diagonalization routine. Additional
important details pertaining to the exploitation of symmetry in
calculating the eigenstates are given in Section IIC2 of ref. 40.
Ĥinter is diagonalized by using the Chebyshev version49 of filter
diagonalization.50 Details of this procedure, including the utili-
zation of the C5 symmetry about the Ẑ axis, can be found in
Section IIC2 of ref. 40.

The eigenstates of Ĥintra [eqn (37)] were calculated as
outlined in Section 3.4, utilizing a product basis of three
1D DVR functions covering each of the vibrational (Radau)
coordinates.40 Ĥintra was diagonalized by using the Chebyshev
version of filter diagonalization.

4.4 Diagonalization of Ĥ

Having computed the inter- and intramolecular eigenstates, the
symmetry-adapted 9D bases |k,gi, in which Ĥ is diagonalized,
are constructed by including the thirty-four lowest-energy intra-
molecular states, |gi, corresponding to DEintra r 11 300 cm�1,
and all intermolecular states, |ki, with the appropriate symme-
try having DEinter r 410 cm�1 (far below the intramolecular
vibrational fundametals of H2O). Appropriate symmetry refers
to the way in which the |ki transform with respect to (a) the
operations of Ih and (b) the specific C5 operations corres-
ponding to rotations about the Ẑ axis. Owing to the extensive
symmetry factorization, the final 9D symmetry-adapted basis-
set sizes are very small, ranging from 34 (Au) to 816 (Hg),
depending on the irrep, as shown in Table IV of ref. 40.

Moreover, since the 9D basis sets shown in this table include
Nintra = 34 intramolecular states |gi for all symmetry blocks, the
number of intermolecular states |ki (Ninter) in the 9D basis is
obtained by dividing the basis-set size for each symmetry block
in Table IV (ref. 40) by 34. One finds that Ninter ranges from 1 for
the Au irrep to 24 for the Hg irrep. It is these very small values of
Ninter, made possible by (a) the efficient exploitation of the weak
coupling between the intra- and intermolecular vibrational
DOFs and (b) symmetry factorization, that account for the
small sizes of the 9D basis sets.

The most demanding task in diagonalizing any of the
symmetry blocks of Ĥ in the 9D basis is to compute the matrix
elements of DĤ [eqn (39)], given by

hk0;g0jDĤjk;gi¼ hk0;g0jDTvrðo;qÞþDVðR;o;qÞþ T̂ corðo;qÞjk;gi:
(46)

The somewhat involved procedure for doing this is described in
Section IIE of ref. 40.

Given the small sizes of the 9D symmetry blocks of the Ĥ
matrix, their eigenstates are obtained by diagonalizing each of
them directly.

5 Applications
5.1 HCl–H2O complex and isotopologues

Mixed (HCl)n(H2O)m clusters have long been of interest to
experimentalists and theorists alike,64 owing to the role these
complexes play in atmospheric chemistry, ozone depletion in

particular. In addition, small HCl–water clusters provide a
microscopic view of the steps that ulimately result in the
dissociation of HCl in bulk water.64,65

The HCl–H2O binary complex, the smallest of (HCl)n(H2O)m

clusters, is of considerable significance in its own right. It has
been the subject of numerous high-resolution spectroscopic
studies, including microwave spectroscopy,66,67 ragout-jet
FTIR68,69 and infrared (IR) cavity ringdown spectroscopy70 in
the gas phase, and IR spectroscopy in liquid helium, as well as
in nanodroplets.71–75 The vibrational predissociation dynamics
of the HCl–H2O dimer following excitation of the HCl stretch
have been studied as well,76,77 leading to the first determina-
tion of the dimer dissociation energy D0 = 1334 � 10 cm�1.76

Theoretical studies of HCl–H2O dimer over the years78–82

have established that the equilibrium, minimum-energy struc-
ture has a near-linear hydrogen bond with HCl serving as the
proton donor to the O atom of water which is the proton
acceptor. This global minimum is non-planar, and one of its
two symmetrically equivalent pyramidal Cs structures is shown
in Fig. 1.

Mancini and Bowman83 developed the ab initio based 9D
PES of this complex, constructed by means of a permutationally
invariant fit to over 44 000 CCSD(T)-F12b/aug-cc-pVTZ config-
urations and energies, with the overall root-mean-square error
(RMSE) of 24 cm�1. Hereafter, this PES is referred to as PES-
2013. Quantum diffusion Monte Carlo (DMC) calculations
performed on this PES83 gave for the dimer’s dissociation
energy (D0) the value of 1348 � 3 cm�1, in good agreement
with the experimental result.76 The vibrationally averaged
ground-state geometry of HCl–H2O was also characterized.

Until recently, no rigorous, high-dimensional quantum cal-
culations of excited intra- and intermolecular vibrational states
of the HCl–H2O dimer were reported. This motivated the
theoretical study presented in ref. 17, that had two objectives.
The first one was to report a new full-dimensional (9D) PES for
this dimer, denoted hereafter as PES-2021. The methodology
utilized in its construction is similar to that utilized to generate
the 9D PES for the H2O–CO interaction.84 The HCl–H2O PES-
2021 is based on circa 43 000 data points computed at the level
of CCSD(T)-F12a/aug-cc-pVTZ with the basis-set-superposition-
error (BSSE) correction. The ab initio points are fit using the
ultraflexible permutation invariant polynomial-neural network
(PIP-NN) approach,85–87 with the RMSE of only 10.1 cm�1.

Fig. 1 Equilibrium geometry of the HCl–H2O complex (distances in Å and
angles in deg.), on the ab initio calculated PES-2021 (ref. 17). a presents the
angle between H–O (H in HCl) vector and C2 axis of H2O. H, Cl, and O
atoms are depicted as white, green, and red, respectively.
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The second objective of this paper was to present the results
of the first fully coupled 9D quantum calculations of the intra-
and intermolecular vibrational states of the HCl–H2O dimer.
PES-2021 and the bound-state methodology described in
Section 2 were employed. The 9D calculations yielded the three
intramolecular vibrational fundamentals of the H2O moiety
and the stretch fundamental of the HCl subunit, as well as
their frequency shifts from the gas-phase monomer values,
together with the low-energy intermolecular vibrational states
of the complex within each intramolecular vibrational mani-
fold. These and other theoretical results were compared with
the available experimental data.

The binding energy D0 of the complex calculated in 9D on
PES-2021 is 1334.63 cm�1 (and 1336.66 cm�1 in 5D), which
agrees extremely well with the experimental D0 value of 1334 �
10 cm�1.76 Thus, for this quantity, PES-2021 yields better
agreement with experiment than the PES by Mancini and
Bowman,83 for which DMC calculations gave D0 = 1348 �
3 cm�1. Since the global minimum of PES-2021 is at
�1878.2 cm�1, the 9D ZPE of the HCl–H2O dimer is 543.6 cm�1.

The effective, vibrationally averaged ground-state geometry
of the HCl–H2O complex has been the subject of considerable
attention.66,67,83 The PES of the complex has two symmetrically
equivalent global minima, one of which is depicted in Fig. 1,
corresponding to a nonplanar, pyramidal equilibrium geometry
with Cs symmetry. These two minima are separated by a barrier
with the height of only 49 cm�1. This suggests the possibility of
the ground-state wave function delocalization over the double-
well minimum of the complex, which would result in an
effective C2v geometry. In fact, the DMC calculations on PES-
2013 did show the hydrogen atoms of the H2O moiety as
delocalized across the two global minima, resulting in a vibra-
tionally averaged planar C2v geometry.83

However, the calculations on PES-2021 arrived at a different
conclusion.17 There, the degree of nonplanarity of H2O moiety
is described by bA, the water polar angle between the C2 axis of
H2O and the vector r0 connecting the c.m. of H2O to that of HCl.
To within a small fraction of a degree, bA is the complement of
the angle a in Fig. 1. For any eigenstate of HCl–H2O, the
expectation value of bA, hbAi, is calculated as hbAi = cos�1hcosbAi,
where hcosbAi is the expectation value of cosbA for a given state.

In the ground state of the complex, hbAi = 33.801, which
implies that on PES-2021 the vibrationally averaged ground-
state geometry of the HCl–H2O complex is distinctly nonplanar.
Moreover, the calculated hbAi of 33.801 agrees remarkably well
with the experimentally determined value of 34.71 for this out-
of-plane bend angle (denoted f).67

The intermolecular vibrational states calculated in this study
are assigned to the fundamentals, first and second overtones,
and combinations of the following three intermolecular modes:
(1) the inversion mode, ninversion, at 85.00 cm�1 (9D), which
corresponds to the large-amplitude motion (rotation) of the H2O
moiety about the x̂A axis (its a principal axis). (2) The intermole-
cular stretch mode, nstretch, at 132 cm�1 (9D). (3) The water rock
mode, nrock, at 146 cm�1 (9D), corresponding to the rotation of the
H2O moiety about the out-of-plane ŷA axis (its c principal axis).

These assignments, for this complex and others, are made in
part by inspecting contour plots of the reduced probability
densities (RPDs) associated with the water-c.m.-to–HCl-c.m.
vector r0 for each in suitably chosen coordinates. For example,
Fig. 2 shows such plots for the ground state and three members
of the inversion-mode progression: ninversion, 2ninversion, and
3ninversion. Clear nodal patterns make it easy to count the
number of quanta in the inversion mode. The contour plot of
the RPD of the ground state, in the top left panel of Fig. 2
exhibits two prominent symmetrically placed maxima of the
same magnitude, associated with the two equivalent nonplanar
vibrationally averaged ground-state geometries of HCl–H2O
having hbAi = 33.801.

A complementary way of making the assignments is by
inspecting how the expectation values, and the corresponding
root-mean-square amplitudes, of judiciously chosen coordi-
nates vary from one state to another. These quantities tend to
be sensitive indicators of the excitation, or lack thereof, of
certain vibrational modes. Less essential, but also helpful, for
the assignments are the quantities which we refer to as the
basis-state norm (BSN). They measure the contribution of the
dominant product inter/intra-basis state to the given full-
dimensional eigenstate. A BSN value close to 1 means that
the eigenstate is highly ‘‘pure’’, i.e., dominated by a single inter/
intra-basis state.

The large-amplitude water inversion mode stands out for its
strong negative anharmonicity. In the inversion mode progres-
sion, the states ninversion, 2ninversion, and 3ninversion have energies
of 85.0, 217.29, and 382.04 cm�1, respectively. Clearly, the
energy differences between the neighboring inversion states
grow with the increasing number of quanta. The other inter-
molecular modes show weak positive anharmonicity.

Concerning the the intramolecular vibrational frequency
shifts of the monomers in the HCl–H2O complex, the HCl
stretch frequency shift (redshift) from the 9D calculations

Fig. 2 Contour plots of the reduced probability densities, as a function of
the coordinates x and y defined in the text, of the ground state of HCl–H2O
(top left) and the following inversion states: (top right) ninversion, (bottom
left) 2ninversion, and (bottom right) 3ninversion. Reproduced from ref. 17 with
permission from the PCCP Owner Societies.
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(Dn9D), �157.9 cm�1, is rather large due to hydrogen bonding
with H2O, and agrees very well with the measured HCl stretch
redshift in the complex of �161.9 cm�1.68,70 In contrast, the 9D
frequency shifts (Dn9D) of the H2O vibrational modes are small.
The water stretches n1 and n3 exhibit redshifts of �5.50 and
�2.61 cm�1, respectively. The water bend n2 and its overtone
2n2 are blueshifted by +3.43 and 9.58 cm�1, respectively. The
small magnitude of the frequency shifts of the vibrational
modes of H2O in comparison to the large redshift of the HCl
stretch is readily understood. In the dimer, the O atom of H2O
is the proton acceptor, and the two H atoms are free, not
involved in the hydrogen bonding with HCl. Consequently,
the H2O vibrations are only weakly perturbed by HCl, resulting
in their small frequency shifts.

Unfortunately, experimental data are lacking for comparison
with the above theoretical results for the H2O vibrational
frequency shifts. The O–H stretching vibrations of HCl–H2O
fall in the highly congested spectral region, where they overlap
with the vibrations of pure water clusters.69 This makes their
reliable assignment very difficult and precludes definitive
comparison with theory.

The quantum 9D calculations in ref. 17 also reveal the
appreciable effects that the excitation of different intra-
molecular modes has on the intermolecular vibrational states
of HCl–H2O. The large-amplitude inversion mode ninversion is
the most sensitive, as the excitation of any of the intra-
molecular modes changes its energy relative to that in the
ground intramolecular vibrational state by 6–16 cm�1. Not
surprisingly, the intermolecular vibrational modes of (primarily)
the H2O moiety couple most strongly to the intramolecular
nHCl mode. Its excitation causes the largest changes in the
energies of the intermolecular vibrational modes: the ninversion

energy decreases by 16.3 cm�1, that of nstretch increases 5.6 cm�1,
and the energy of the nrock mode increases by 18.5 cm�1.

In ref. 37, the full-dimensional and fully coupled quantum
calculations of the inter- and intramolecular vibrational states
performed previously for HCl–H2O (HH)17 were extended to
three additional isotopologues of the hydrogen chloride–water
complex: DCl–H2O (DH), HCl–D2O (HD), and DCl–D2O (DD).
Their purpose was to elucidate the isotopologue variations of a
range of bound-state properties of the hydrogen chloride–water
complex, and compare them to those of the HH complex.
The results largely mirror those obtained for the HH complex.17

But, the energies of ninversion and nrock, which primarily involve
the motions of the water moiety, are particularly sensitive to the
deuteration of H2O, much more so than the nstretch. This results in
the reversal of the energy ordering of the nrock and nstretch funda-
mentals in the HD and DD complexes, relative to that in the
HH and DH complexes. The DCl stretch frequency shift (redshift)
computed in 9D for the DD complex,�114.91 cm�1, is in excellent
agreement with the corresponding experimental value of
�115.20 cm�1.70

In the same paper,37 J = 1 rovibrational states of the four
isotopologues were computed in the rigid-monomer approxi-
mation, allowing the calculation of the principal rotational
constants of the complexes for a given vibrational state. For all

isotopologues, calculated and measured67 values of the ground-
state B and C rotational constants differ by about 1%, well within
the uncertainty introduced by taking the monomers to be rigid
in the analysis of the experimental data.

Fully coupled 9D quantum calculations of the J = 1 intra- and
intermolecular rovibrationals states of HCl–H2O and DCl–H2O
were reported in ref. 38, complementing the previous J = 0 9D
calculations.17,37 They revealed significant variations of the
energy differences between the K = 1 and K = 0 eigenstates
with the intermolecular rovibrational states, for which a quali-
tative explanation was given.

5.2 H2O–CO, D2O–CO, and HDO–CO complexes

The interactions of water with other molecules are of great
fundamental and practical significance. This has motivated
spectroscopic and theoretical studies of numerous binary
water-containing complexes. H2O–CO, and its isotopologues,
figures prominently among them, since both constituent species are
abundant in the atmosphere and of utmost importance. Water
and CO are encountered, in weakly bound complexes and
as collision partners, in a variety environments, including
Earth’s atmosphere, as the products of combustion reactions,
in the interstellar medium, as well as in the coma of
comets and in protoplanetary disks.88–90 Due to its ubiquity,
the water–CO complex has been in the focus of numerous high-
resolution spectroscopic investigations, including microwave
spectroscopy,91,92 and IR spectroscopy in the regions of the C–O
stretch,93 the O–H stretch,94 the D2O bend,95 and the H2O
bend.89 The most recent IR spectroscopic measurements96 have
probed the C–O stretch regions of H2O–CO, D2O–CO, and
HOD–CO, and the O–D stretch regions of D2O–CO, HOD–CO,
and DOH–CO.

From these studies, it emerged that the equilibrium struc-
ture of the water–CO complex is planar, with the heavy atoms
arranged in a roughly collinear configuration and a hydrogen
bond between the water moiety and the C atom of the CO; the
CO bond axis is almost parallel to the intermolecular axis
connecting the centers of mass of the two monomers. In
addition, there is a local minimum in which the O atom of
CO points towards the hydrogen atoms of the water molecule.
All observed spectroscopic transitions are doubled, indicating
the large-amplitude tunneling motion of the water molecule
within the complex that exchanges the free and the bound
hydrogen atoms in the intermolecular bond. This gives rise to two
tunneling states with different symmetry along the tunneling
coordinate, the spatially symmetric state A and the spatially
antisymmetric B state. Both H2O and D2O have two identical
particles, H with the nuclear spin 1/2 (a fermion) and D with
with the nuclear spin 1 (a boson), respectively. The Pauli
principle requires that the total molecular wave function, i.e.,
its spatial and nuclear-spin components, must be antisym-
metric with respect to the exchange of the two fermionic H
nuclei of H2O, and symmetric with respect to the exchange of
the two bosonic D nuclei of D2O. This requirement leads to a
particular entanglement of the spin and spatial quantum
states. In the case of H2O–CO, the symmetric tunneling state
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A correlates with para-H2O (total nuclear spin I = 0, antisym-
metric spin function) while the antisymmetric B state correlates
with ortho-H2O (total nuclear spin I = 1, symmetric spin function).
Since D nuclei are bosons, the situation is reversed for D2O–CO,
and its A state correlates with ortho-D2O (total nuclear spin I = 0,2,
symmetric spin functions) and B with para-D2O (total nuclear spin
I = 1, antisymmetric spin function). Excitation of certain intra-
molecular modes in H2O–CO93 and D2O–CO95 was found to affect
measurably the magnitudes of the tunneling splittings, relative
to those in the ground vibrational state of the complexes. The
tunneling splittings are also known to depend strongly on the
quantum numbers K = 0 and 1.96

Complete description of the multidimensional and strongly
coupled intra- and intermolecular rovibrational dynamics,
including tunneling, of water–CO complexes requires a full-
dimensional and fully coupled quantum treatment. A prerequi-
site for this is an accurate 9D PES, which was not available
until recently. Various 5D and 6D PESs were developed, starting
from ab initio calculations followed by morphing to achieve
improved agreement with experiment.89 These PESs were used
in the quantum 5D calculations of the intermolecular rovibra-
tional levels. The latest 5D (rigid monomer) intermolecular PES
for H2O–CO computed at a higher level of ab initio theory by
Kalugina et al.90 was utilized in J = 0,1 bound-state and
scattering calculations. The same 5D PES was employed by
Barclay et al.96 in the quantum bound-state calculations of
the J = 0–2 rovibrational levels of H2O–CO and D2O–CO. None
of these calculations could include the coupling between the
inter- and intramolecular vibrations.

The situation changed with the publication of the first full-
dimensional (9D) PES for the H2O + CO system by Liu and Li,97

hereafter referred to as the LL PES. This PES is based on
B102 000 points calculated at the level of an explicitly corre-
lated coupled-cluster method with single, double, and pertur-
bative triple excitations with the augumented correlation-
consistent polarized triple zeta basis set (CCSD(T)-F12a/AVTZ),
using the permutation invariant polynomial-neural network
(PIP-NN) method.

Combined with the methodology in Section 2, the LL
PES was utilized for the 9D quantum J = 0,1 rovibrational
bound-state calculations of H2O–CO and D2O–CO in ref. 25,
that covered the intramolecular rovibrational excitations of the
monomers, together with the low-energy intermolecular rovi-
brational states of the complexes within each intramolecular
vibrational manifold.

For H2O–CO and D2O–CO in their ground states, the 9D
computed K = 1 hydrogen-exchange tunneling splittings, �0.228
and �0.016 cm�1, respectively, are significantly smaller by mag-
nitude than those obtained for K = 0 (0.727 and 0.027 cm�1,
respectively), consistent with the 5D rigid-monomer results in
the literature (for a different PES).96 However, the actual
magnitudes of the tunneling splittings from 9D and 5D
(rigid-monomer) calculations differ appreciably. Although the
individual K = 0 and K = 1 splittings cannot be measured
directly, the sums of their absolute values are measurable, with
the experimental values of 1.1130 and 0.0676 cm�1 for H2O–CO

and D2O–CO, respectively.92 The 9D calculated sums of K = 0
and K = 1 splittings are 0.955 and 0.043 cm�1, meaning that
they are smaller than the measured values by about 14% for
H2O–CO and 36% for D2O–CO.

The K = 0 tunneling splittings were computed in 9D also for
the intramolecular vibrational fundamentals of the monomers
in H2O–CO and D2O–CO. The results showed that they are
sensitive to the intramolecular vibrational excitation. Thus, for
H2O–CO, excitation of any of the intramolecular fundamentals
of H2O decreases the magnitude of the tunneling splitting
relative to that in the ground state, by up to 23% for the
n1 mode.

The 9D calculations allowed a detailed analysis of the
frequency shifts (Dn9D) of the intramolecular vibrational modes
of the two complexes. In H2O–CO, the H2O bend mode n2

(and its overtone) and the CO stretch are blueshifted, by about
4 and 11 cm�1, respectively, relative to the values calculated for
the isolated monomers. The corresponding experimental
values are 3.889 and 10.3 cm�1,93,96 respectively. For D2O–CO,
the blueshifts calculated for the n2 the CO stretch modes are
about 3.5 and 12.4 cm�1, respectively, similar to the corres-
ponding blueshifts computed for H2O–CO. The agreements
with the experimental results, about 2.295 and 11 cm�1,96

respectively, is very good.
Unlike the n2 and nCO modes, the 9D computed water

stretching modes n1 and n3 are redshifted in both H2O–CO
and D2O–CO, the n1 mode much more in magnitude than the n3

mode, �17 and �3 cm�1, respectively, for H2O–CO. This agrees
qualitatively with the available experimental redshifts for these
modes,94,96 but the quantitative agreement is not as good as for
the water bend mode and the CO stretch. Given that the
calculations are rigorous and highly converged, these discre-
pancies must reflect certain deficiencies of the water–CO PES.

In ref. 36 the 9D quantum calculations of the J = 0,1
rovibrational states were extended to the HDO–CO complex,
using the same methodology of Section 2. Unlike the two
isotopically symmetric isotopologues, H2O–CO and D2O–CO,
the isotopically asymmetric HDO–CO does not exhibit
hydrogen-interchange tunneling, since the H and D atoms are
distinguishable.

While quenching the tunneling splitting, the presence of the
distinguishable H and D atoms gives rise to two isomers, the
D-bonded HOD–CO and the H-bonded DOH–CO. Their origin is
entirely quantum mechanical, as the two (symmetrically
equivalent) minima on the PES of the complex associated with
each of the isomers have identical well depths. Based on the
relative intensities of the spectra of these two isomers, the
energy difference between their ground states was estimated93

to be 12.4 � 2.5 cm�1.
The 9D calculations revealed that the eigenstates of the

D-bonded and H-bonded isomers, designated as D and H
respectively, can be readily distinguished in two ways, based
on the expectation values of the distances of the D and H atoms
of HDO to the C atom of CO, and by inspecting the contour
plots of the RPDs of the eigenstates. The latter show that almost
all excited intermolecular vibrational states of HDO–CO up to
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about DE = 160 cm�1 are completely localized in either the
D-bonded or H-bonded potential minimum, allowing their
unambiguous assignment as D or H isomers.

This is evident from Fig. 3. Its left column displays
the contour plots of the RPDs of the four lowest-energy
J = 0 D states, while the RPDs of the corresponding H states
are in the right column.

The coordinate that differs the most for the two isomers is
the Euler angle gA of HDO, which refers to the rotation about
the water ẑA axis (Section 2.1). The D-bonded isomer has
gA values near 01, while for the H-bonded isomer gA values are
near 1801. For this reason gA is on the horizontal axis of the
panels in Fig. 3. On the vertical axis is bA, the Euler angle
between the ẑA axis of the water molecule and the inter-
monomer vector connecting the c.m. of A to that of B. Its values
are similar for the two isomers.

Concerning the two isomer-mixed low-energy exceptions
evident in Fig. 3, the states in question are at nearly the same
energy relative to the D ground state. From the 9D quantum
calculations, the ground-state energy of the H-bonded isomer is
30.6 cm�1 higher than that of the D-bonded isomer. The main
contribution to the energy difference comes from the potential

energy. In the ground state of the D-bonded isomer, the
expectation value of the potential energy is about 22 cm�1

smaller than that for the ground state of the H-bonded isomer,
corresponding to about 70% of the total energy difference. The
experimental estimate93 of the energy gap between the two
isomers is 12.4 � 2.5 cm�1. Therefore, experiment and theory
agree, although not perfectly, about the small energy separation
between the two isomers.

The D- and H-bonded isomers exhibit the same trends in the
calculated frequency shifts of the intramolecular vibrational
modes. They also agree qualitatively with what was observed in
the calculations regarding the frequency shifts for H2O–CO and
D2O–CO25 discussed previously. In both isomers, the HDO
bend mode n2 and the CO stretch nCO are blueshifted relative
to the values calculated for the isolated monomers, that for the
CO stretch being appreciably larger than the blueshifts of the
HDO bend fundamental. In contrast, the HDO stretching
modes nOD and nOH of both isomers are redshifted. As expected,
the nOD redshift is much larger in the D-bonded isomer than in
the H-bonded isomer. Conversely, the nOH redshift is much
larger in the H-bonded isomer than in the D-bonded isomer.

The redshifts calculated for the nCO mode of the D- and
H-bonded isomers are 12.0 and 11.6 cm�1, respectively. They
compare well with the corresponding experimental values96 of
11.2 and 10.5 cm�1, respectively. Comparison with experiment
is possible also for the nOD mode of the two isomers. The
calculated redshifts are�12.0 (D) and�0.8 cm�1 (H), respectively,
while the respective measured values are �14.2 and +1.8 cm�1.96

Experimental frequency shifts are not available for the other
modes HDO–CO.

5.3 Benzene–H2O and benzene–HDO complexes

Numerous spectroscopic studies have been directed at ben-
zene–H2O and benzene–HDO complexes.98–104 A major impetus
for them was the realization that benzene–H2O and benzene–
HDO are highly nonrigid, which emerged first from the matrix
isolation study.105 Their fluxional character was characterized
more precisely by the subsequent microwave98,99 and IR
spectra.101,103 The picture that emerged from these studies
has the vibrationally averaged position of the c.m. of the water
molecule on the C6 axis of benzene, with both hydrogens
oriented preferentially towards the ring, in the p hydrogen-
bonding configurations. The water molecule undergoes multi-
ple intermolecular large-amplitude motions (LAMs) already in
the ground vibrational state, in particular the internal rotation
about the sixfold axis, and the facile in-plane torsional
(or rocking) motion that exchanges its two H atoms, in such a
way that, on the vibrationally averaged basis, the complex
retains the sixfold symmetry of the benzene ring. In benzene–
HDO, HDO preferentially forms the p hydrogen bond via the D
atom.102,105

The low-energy intermolecular levels also give rise to a
number of transitions in the OH stretch region of the IR
spectrum, that in the absence of the LAMs would be negligibly
weak.101,103 The features arising from the LAMs are present
in the Raman spectra of benzene–H2O as well, as four

Fig. 3 Contour plots of the reduced probability densities (RPDs), as a
function of the Euler angles gA and bA, of the four lowest-energy J = 0
intermolecular vibrational states of the D-bonded (D) and H-bonded (H)
isomers of HDO–CO, from 5D calculations. The energies shown are
relative to those of J = 0 D/H ground states. The two topmost panels
display the RPDs of the D and H ground states, peaking at, and localized
around, gA = 01 and gA = 1801, respectively. The next three panels show the
RDPs of the first three excited D and H intermolecular states. The D state at
81.92 cm�1 and the H state at 50.50 cm�1 are delocalized over both
minima as a result of accidental near-degeneracy. For additional discus-
sion, see the text. Reprinted with permission from ref. 36. Copyright 2022
American Chemical Society.
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prominent intermolecular bands in the low-energy region
below 60 cm�1.100

Concerning theoretical treatments, three 6D (rigid-monomer)
quantum calculations of the LAMs of benzene–H2O were
reported.52,106,107 One of them was a ground-state diffusion
Monte Carlo simulation.107 In the quantum 6D approach of
Linse,106 the intermolecular vibrational levels of rigid H2O were
calculated inside the external potential of benzene molecule, but
assuming that benzene is infinitely heavy, thereby leaving out a
great deal of angular momentum coupling present in the
complex. Only the quantum 6D calculation of the intermolecular
vibrational states of benzene–H2O by Kim et al.52 was dynami-
cally rigorous.

A quantitative treatment of the vibrational level structure of
benzene–H2O/HDO capable of accounting for the combination
bands prominent in the measured IR and Raman spectra as well
as the OH-stretch vibrational frequency shifts can be achieved
only by fully coupled 9D quantum bound-state calculations for
flexible H2O and rigid benzene, extending to the energies of the
H2O vibrational fundamentals and overtones.

The methodology for such a rigorous quantum treatment
was presented in ref. 41; it is described in Section 4. In the
absence of an ab initio calculated 9D PES of the benzene–water
dimer, the PES employed in these calculations was constructed
by combining the atom–atom pairwise-additive benzene–water
interaction potential from Karlström et al.108 with the 3D PES
for the isolated, gas-phase water molecule from Mizus et al.109

The 9D quantum bound state calculations and the simulations
of the IR and Raman spectra (the latter using the methodology
also introduced in ref. 41) have revealed numerous interesting
facets of the highly quantum behavior of the H2O and HDO
complexes. Thus, plots of the probability density functions show
that in the ground intermolecular state of the H2O complex, both
H atoms of water interact equivalently with the benzene, as
deduced experimentally.98,105 For the HDO complex, the same
plots show that only the D nucleus is localized close to the
benzene plane while the H atom is further away, in accord with
the experimental observations.102,105

Based on the 9D quantum calculations, the stretching
modes of H2O (n1 and n3) and HDO (nOD and nOH) are red-
shifted, while the H2O/HDO bend fundamentals (n2) and over-
tones (2n2) are blueshifted, relative to the ones calculated for
the respective isolated monomers. For the n1 and n3 modes of
H2O and the nOH mode of HDO, the prediction of their redshift
agrees with the experimental results,103 but the redshift
magnitudes are roughly a factor of two smaller than the
corresponding experimental values. In addition, calculations
provide rich data about the effects that the excitation of various
intramolecular modes of H2O and HDO has on the LAM low-
frequency intermolecular states of the two dimers.

The comparison between theory and experiment is the most
complete when contrasting the simulated and measured IR103

and Raman100 spectra of the dimers. The dominant bands in
the computed IR spectra of the H2O complex in the OH-stretch
region, shown in Fig. 4, are in excellent agreement with the
experimental results and analysis of Pribble et al.,103 regarding

the relative band positions and band assignments. On the other
hand, a number of smaller-intensity bands cannot be assigned
with confidence to particular features in the spectra, reflecting
the limitations in the accuracy of the PES.

In the case of the HDO complex, while the IR spectrum
computed in the region of the OH stretch does not match
quantitatively with the measured spectrum,103 it agrees with it
in a number of important features, allowing its tentative inter-
pretation after making some reasonable assumptions about the
energies of a couple of intermolecular modes.41

Further, more quantitative theoretical treatment must await
the development of an accurate ab initio 9D PES. Once at
hand, the bound-state and spectroscopic calculations on it
utilizing the methods in ref. 41 will allow a definitive inter-
pretation of the wealth of the IR and Raman spectroscopic data
available for the benzene–H2O and benzene–HDO complexes.

5.4 Flexible H2O molecule in C60

H2O@C60 is a fascinating endohedral complex where a polar
molecule, H2O, is encapsulated inside a highly symmetric,
nonpolar interior of C60, as depicted in Fig. 5. It belongs to
the family of light-molecule endofullerenes (LMEFs), that have
molecules such as H2, HF, and CH4, characterized by small
masses and large rotational constants, encapsulated inside the
cages of C60, C70 and other fullerenes.59,110 These inclusion
compounds have all been synthesized111–114 utilizing the
approach known as molecular surgery.115–117

Fig. 4 Calculated infrared spectra in the region of the OH stretching funda-
mentals of benzene–H2O. Top: Initial state is the ortho ground state. Bottom:
Initial state is the para ground state. In both spectra red bars signify parallel
bands and blue bars signify perpendicular bands. For more information see
ref. 41. Reproduced from ref. 41, with the permission of AIP Publishing.
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The spectroscopy and dynamics of guest molecules in
H2O@C60 and other LMEFs are dominated by nuclear quantum
effects (NQEs),59,110,118 especially for the low temperatures
(typically ranging from 1.5 K to about 30 K) at which the
spectroscopic measurements are usually carried out. The NQEs
arise from a combination of quantization of the translational c.m.
DOFs of the encapsulated molecules due to their confinement
and widely spaced quantized rotational states of the light
molecules. In addition, in the case of H2O as outlined in
Section 5.2, satisfying the Pauli principle gives rise to two nuclear
spin isomers, para and ortho, having total nuclear spins I = 0
and 1, respectively. The rotational states of H2O are conventionally
labelled with the asymmetric top quantum numbers jkaka

; for para-
H2O, ka + kc has even parity, while for ortho-H2O, ka + kc has odd
parity.119

Quantized rotational dynamics of H2O@C60 have been probed
by NMR spectroscopy.120–125 But the most comprehensive infor-
mation about the TR eigenstates of H2O@C60 has emerged from
the low-temperature inelastic neutron scattering (INS)
spectra,120,126 that exhibit numerous peaks corresponding to the
transitions out the ground states of para- and ortho-H2O to a
broad range of excited TR states of these two nuclear spin
isomers.

These experimental studies have motivated a number of
theoretical investigations of the quantum TR dynamics and
spectroscopy of H2O@C60. The TR eigenstates of para- and
ortho-H2O in an (isolated) C60 cage with Ih symmetry were
determined means of fully coupled quantum 6D calculations,
treating both H2O and C60 as rigid.58 They allowed tentative
assignments of a number of transitions observed in the experi-
mental INS spectra of H2O@C60

126 that were not assigned
previously. These calculations58 also showed that the TR level
structure of H2O@C60 exhibits all of the key qualitative features
identified previously for H2@C60.56,59,118,127

The encapsulation of H2O in C60 is expected to shift signifi-
cantly the frequencies of the H2O intramolecular vibrations
away from those of the isolated molecule in the gas phase.
Earlier IR spectroscopic measurements of the intramolecular

stretch fundamentals of H2
128 and HF113 in C60 found them to

be redshifted by �98.8 and �170.5 cm�1, respectively.
A rigorous approach to the intramolecular vibrational

excitations of H2O, and their frequency shifts, coupled to the
intermolecular TR motions, requires fully coupled 9D quantum
bound-state calculations for flexible H2O and rigid C60 that
include the H2O vibrational fundamentals and overtones.
The earlier quantum treatments of the TR dynamics of
H2O@C60

57,58,60,129,130 could not achieve this, either because
H2O was treated as rigid,57,58,60,130 or because the calculations
were restricted to H2O in the ground intramolecular vibrational
state.129

This was accomplished in ref. 40, which reported the first
fully coupled 9D quantum calculations of the intramolecular
vibrational frequencies of a flexible H2O molecule in (rigid) C60,
together with the intermolecular TR states within each intra-
molecular vibrational manifold considered. The calculations
utilized the methodology described in Section 4.

While the quantum bound-state methodology was available,
no ab initio-calculated 9D PES for H2O inside C60 existed
(not even in 6D, for rigid H2O). Therefore, the 9D PES employed
in these calculations was obtained by combining in an ad hoc
fashion the high-accuracy 3D PES for the isolated H2O
molecule109 with the intermolecular PES represented by
pairwise-additive atom–atom interactions between H2O and
C60 parametrized by Aluru and co-workers.131

The 9D calculations showed that the four lowest-energy
intramolecular vibrational levels of H2O in C60, corresponding
to the fundamental (n2) and the overtone (2n2) of the water
bend, as well as the fundamentals of the n1 and n3 stretching
modes, are blueshifted relative to those of the gas-phase H2O.
The two stretching fundamentals, n1 and n3, are blueshifted
significantly, by E24 cm�1. The blueshifts of the bend funda-
mental (n2) and overtone (2n2) are much smaller, 2.19 and
3.38 cm�1, respectively.40

This was consistent with the results of the earlier, less
rigorous treatments,131–133 which also predicted blueshifts of
the intramolecular vibrational modes of H2O in C60. However,
whether the intramolecular excitations are blue- or redshifted
depends on a subtle balance between the attractive and repul-
sive interactions of the guest molecule with the C60 cage. It was
far from certain that the 9D PES employed and the earlier
lower-level treatments can capture the competing effects accu-
rately enough to yield reliable values. What was lacking at that
time were the spectroscopic measurements of the frequency
shifts for comparison with theory, which would settle this issue.

This crucial experimental information was finally provided
in the IR spectroscopic study of H2O@C60 published about a
year later.134 It showed that the stretching mode frequencies
are redshifted by about 2.4% (�84 and �96 cm�1) relative to
those of free H2O, while the frequencies of the bending mode
fundamental and overtone are redshifted by 1.6% (�26 cm�1)
and 1.5% (�46 cm�1), respectively.

Clearly, these experimental data contradict the theoretical
predictions of the blueshifted vibrational modes H2O in C60.
Since the 9D calculated vibrational levels of H2O@C60 are highly

Fig. 5 Schematic depiction of the molecular structure of H2O@C60.
Reproduced from ref. 40, with the permission of AIP Publishing.
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converged, the discrepancy with experiment can be caused only by
the shortcomings of the improvised 9D PES used in the quantum
calculations. This underscores the urgent need for a high-quality
ab initio 9D PES for this system, currently nonexistent. Once it is
available, together with the two other essential, already existing
components, the 9D quantum bound-state methodology40 and
the IR spectroscopic data,134 it will enable a rigorous first-
principles description of the water vibrations and TR motions
inside C60.

6 Summary and prospects

The theoretical advances made over the past several years
discussed in this Perspective have significantly enlarged the
range of noncovalently bound, hydrogen-bonded and van der
Waals, binary molecular complexes for which it is possible to
perform full-dimensional and fully coupled quantum calculations
of their inter- and intramolecular rovibrational states. They all
incorporate (1) the surprising realization23,24 that intra-
molecular vibrational excitations of these complexes can be
calculated acurately by including in the final basis only a small
number of low-lying intermolecular eigenstates with energies
far below those of the intramolecular vibrational states of
interest, and (2) the use of the eigenstates of reduced-
dimension Hamiltonians as compact contracted bases for all,
intramolecular and intermolecular, vibrational DOFs of the
complexes.24,25

Amenable to this rigorous treatment are binary complexes of
small molecules beyond diatomics, those involving small poly-
atomic and large molecules (the latter treated as rigid), and
endohedral complexes of light polyatomic molecules inside
fullerene cavities. Such calculations can yield all intramolecular
rovibrational fundamentals (and some overtones), and fre-
quency shifts, of the complexes, together with their low-lying
intermolecular rovibrational states in each intramolecular
vibrational manifold. They provide a comprehensive descrip-
tion of their rovibrational level structure, including the tunnel-
ing splittings when they are present and their dependence on
the inter- and intramolecular excitations, the couplings
between the intra- and intermolecular modes, and vibrationally
averaged geometries. This enables direct comparison with, and
the interpretation of, an unusually wide range of IR, FIR, and
microwave spectroscopic data, allowing for an exceptionally
thorough assessment of the quality of the PES involved.

In the domain of dimers of small molecules, the general
approach presented in this Perspective has so far been applied
to triatom–diatom complexes. But it is clear that the same
approach can be readily extended to triatom-triatom com-
plexes, e.g., the water dimer, including all their intramolecular,
stretch and bend, fundamentals. With additional effort, and
the availability of the relevant full-dimensional PESs, one can
envision its applications to even higher-dimensional bimole-
cular systems such as the NH3 dimer and possibly the formic
acid dimer.

There is no reason to stop at dimers. Noncovalently bound
molecular trimers are amenable to the same rigorous treatment,
and the insight of weak coupling between the intra- and inter-
molecular DOFs is valid for them as well, ready to be exploited.
In fact, the 9D quantum (rigid-monomer) calculations of the
intermolecular vibrational states of the HF trimer have been
completed in our group. The next step are rigorous 12D quan-
tum calculations with full coupling between the inter- and
intramolecular DOFs. Another obvious target is the HCl trimer.
The ultimate goal in this direction is the H2O trimer, initially for
rigid monomers (12D) and later for flexible monomers (21D) if
possible.

The methodology for the vibrational states of weakly bound
molecule-large molecule complexes described here, so far
implemented on benzene–H2O/HDO, is applicable to a wide
range of combinations of other small and large molecules,
provided that the necessary accurate PESs exist or can be
calculated. With minor modifications, the same approach can
be used to compute the intramolecular vibrational excitations
of molecules physisorbed on solid surfaces, coupled to their
low-frequency in-plane and out-of-plane vibrational modes
(frustrated translations and rotations).

Further methodological advances, combining novel algorithms,
fresh physical insights, and access to ever more powerful computa-
tional resources, in close interaction with experiments, will
undoubtedly continue to push the boundaries of our quantitative
understanding of noncovalently bound molecular complexes.
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16 Y. Qiu and Z. Bačić, J. Chem. Phys., 1997, 106, 2158.
17 Y. Liu, J. Li, P. M. Felker and Z. Bačić, Phys. Chem. Chem.
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