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Predicting pharmaceutical crystal morphology
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The crystal morphology of active pharmaceutical ingredients is a key attribute for product design,

manufacturing and pharmacological performance. Currently, the morphology of pharmaceutical crystals is

designed and controlled through resource intensive screening methods, which rely on trial-and-error

approaches and experience. The demand for a more efficient and sustainable approach has driven research

into the development of 21st century predictive methods. In this work, we demonstrate how artificial

intelligence offers extraordinary potential for developing predictive, data-driven morphology models. Here,

machine learning algorithms were implemented to predict the morphology of crystalline products. Using

publicly available data, key limitations were identified, highlighting the lack of systematic experimental

detail. These issues were addressed through an in-house experimental screening campaign, which

leveraged robotics to increase throughput and overcome the challenges associated with the inherently

subjective morphology labelling. As a result, we show that data-driven models can predict crystal

morphology with an accuracy of up to 87.9%. These results are proof of the predictive power of artificial

intelligence for morphology prediction and pharmaceutical product design.

1 Introduction

Crystallization has been used as the primary purification
method during the production of Active Pharmaceutical
Ingredients (API); even so, predicting the morphology or
shape of the crystal product has been one of the biggest
challenges in pharmaceutical manufacturing. The
morphology of crystals is a critical attribute that significantly
affects both physical and chemical properties of
pharmaceutical products. Some examples include stability,
solubility and dissolution rate, all of which affect storage,
formulation/product design and the delivery mechanism to
the patient (pharmacological performance).1 Crystal
morphology also affects the downstream processing of the
drug;2 some examples include processes that require a
particular particle behaviour (e.g. morphology to maximize
filtration, particle flowability and tabletability).3

Many pharmaceuticals crystallize in morphologies that
inhibit the effective downstream processing of APIs. As such,
crystal engineering has focused on either targeting specific
interactions through solvent selection, including additives or
controlling experimental conditions in order to produce a
desirable crystal morphology.4 In these cases, the success
depends on the scientists' experience or extensive trial-and-
error protocols, which require time, human resources and
materials. Consequently, there is a clear opportunity for the
application of Artificial Intelligence (AI) for the identification
of patterns or the development of predictive models for
crystal morphology. Nonetheless, such methods are still in
the early adoption phases and show limited evidence in the
scientific literature. Contributing factors for this slow
adoption include: (i) the lack of systematically recorded, well-
curated databases, (ii) limited open access to proprietary
data, and (iii) a bias towards only reporting positive results.
Moreover, to achieve large throughput in product screening
for data collection, expensive and specialized automated
equipment must be used. Indeed, this expense in data
generation, often produced by industry, creates incentives to
limit the accessibility of data.

Previous work in crystal morphology prediction makes use
of computational methods outside the field of AI. For
instance, early methods calculated face energies to predict
growth rates in different directions. However, these methods
were only effective when considering an isolated API. This
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case is exceedingly rare in industrial crystallization scenarios
where solvents and additives are routinely a part of the
process. Employing these methods required reasonable
manual involvement as well as large computational costs.5

Many of these methods also assumed that morphology is the
result of favoured growth along particular faces, an
assumption which has had its accuracy questioned.6

Furthermore, strategies focusing on modelling the
thermodynamics or kinetics have been employed, often using
molecular simulations; however, due to the persisting
computational cost, most of this work focuses on single API
molecules or small systems and consequentially, it is not
suitable to completely replace contemporary extensive
screening approaches.7–9 At the time of writing, the authors
find no evidence of machine learning applied to the
prediction of API crystal morphology.

In this work, we present the prediction of crystal
morphology using AI methods. To predict the morphology of
crystallizing APIs, this work utilized the world's largest and
most complete publicly available crystallographic database,
the Cambridge Structural Database (CSD), which contains >1
million entries.10 Unfortunately, the data presented
limitations and therefore, an in-house systematic
experimental screening was carried out to address those
issues. This experimental data was then used to train a deep
learning model, offering better performance with only 99
data points. Although these results show great potential, we
identified that testing on small scale is not entirely
representative and as such, we present a labelling robot, of
our own design. Partnered with deep learning, this open-
source, accessible labelling platform will address the
challenges associated with the subjective nature of
morphology labelling, as well as allowing for faster sample
analysis. We hope that this will open the door to wider
screening efforts and hence greater data availability.

2 Experimental

Fig. 1 shows a schematic depicting the steps used in this
work, aligning with the workflow used in conventional
machine learning studies. The key steps for the development
of data-driven models are:

1. Data collection; two data sources containing the
information of molecules and their crystal morphology were
used: (a) the Cambridge Structural Database, and (b) in-
house experimental data.

2. Molecular feature representation; two methods were
used to represent molecules: (a) chemical descriptors, and (b)
images of chemical structures.

3. Data pre-processing; the pre-processing step was
customized depending on the source of the data, the type of
molecular representation and the model used.

4. Model training; ResNet and random forest models were
used to correlate the molecular features to morphology. To
reduce the subjectivity of labelling crystal shapes, an
automated labelling robot was developed and used to assess
“human” labelling.

5. Evaluation; all models were assessed based on their
accuracy for predicting untested molecules. Please note,
further description of each step is shown in the following
subsections; while the data and code implementations have
been made available online (https://github.com/MRW-Code/
ai_robotics_morphology_prediction).

2.1. Data collection

2.1.1 Publicly available data from Cambridge Structural
Database (CSD). A search of the CSD was carried out to acquire
a dataset that could be used for training various machine
learning algorithms. The search criteria focused on attaining
only compounds where the final crystal morphology and the
crystallization solvent were recorded. Results were filtered
further by specifying that all components must be organic,
non-ionic and single molecule crystals without disorder. The
searching process was carried out using the CSD ConQuest
software and results exported using its functionality as a .SMI
file to get the unique Simplified Molecular Input Line Entry
System (SMILES) code, as well as a text file, which was then
parsed to extract the solvent name and morphology label.
Syntax correction was applied to give uniform strings, removing
issues such as capitalization, spacing and different
abbreviations of the same terms. Cases recording multiple
morphology labels (e.g. plate/block or needle/rod) were
removed to reduce uncertainty. For data points where multiple

Fig. 1 Workflow for the application of machine learning to predict crystal morphology.
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solvents were recorded, the entries were also removed despite
binary solvent mixtures being used in industrial crystallization.
This choice was necessary as no detail is recorded about the
ratio of the solvent mixtures. Minimum counts were used to
remove cases where the solvent or habit was considered too
unique to be useful in creating categories for classification. For
this, 100 and 1000 counts were selected as the minimum
number for solvents and morphologies, respectively. This data
mining resulted in a dataset containing 17 different solvents
(see Table 2) and 4 different morphology classes: block, needle,
plate and prism. It should be noted that these morphologies
are obtained from single crystal growth experiments and may
not be reflective of morphologies obtained in the bulk. The 4
morphologies captured by the minimum count of 1000
represents the vast majority of cases in the CSD. Closer
inspection of the labels on the x-axis of Fig. 2 shows that by
removing the syntax differences, the majority of commonly
occurring cases are accounted for in the 4 final classes.

2.1.2 In-house data generation: crystal synthesis. Cooling
crystallization was carried out for crystal synthesis, using
water as a model solvent. Due to the limitation of readily
available solubility data, it was assumed that crystallization
takes place as long as there is a sufficient difference between
the saturation temperature and the final cooling temperature.
Water was chosen as the solvent due to its relatively high
boiling point when compared to other common solvents,
allowing for a maximum temperature gradient during the
cooling process. Saturated solutions were obtained by
creating a slurry at 50 °C and left under constant mixing at
700 rpm for 30 min, before turning the mixing off and
allowing the remaining solid to settle. The saturated top was
removed and placed in a Cambridge Reactor Design Polar
Bear Plus crystallizer, which was used for mixing and
temperature control. The temperature was increased at 10 °C

min−1 to 55 °C. The solution was then left to dwell at 55 °C
for 30 min under constant mixing at 700 rpm to reach
thermal equilibrium. Extra heating beyond the saturation
temperature was necessary to ensure that all the solute was
fully dissolved. The solution was then cooled at 1 °C min−1

from 55 °C to 4 °C without mixing. The solution was then left
to dwell at 4 °C overnight to allow for crystal growth so that
sufficient crystal size was achieved for morphology labelling.
Finally, the remaining solvent was removed by filtering under
vacuum, and the crystals were taken for imaging using an
automated system (details of which are outlined in section
2.4). Examples of the images recorded can be seen in Fig. 6.
A user labelled the morphology based on the image recorded.
Where the label was uncertain due to factors such as crystal
size, further characterization using a light microscope was
carried out. Any crystals that were still uncertain were not
included in the final dataset. In the final experimental
dataset, morphology labels were assigned as either (i) blocks,
(ii) needles or (iii) plates. These labels were chosen based on
the resulting shapes of the crystal products.

2.2. Molecular feature generation and pre-processing

The representation of molecules and their properties in
digital format is key for the implementation of AI in
computational chemistry. In this work, the process of
representing molecules was approached using two methods:
(i) chemical descriptors and (ii) images of chemical
structures. Recent work assessed different molecular
representations for use in chemical applications focusing
specifically on tasks relevant to the field of solid form
engineering.11 This demonstrated that images of chemical
structures offer the best accuracy among the methods tested.
Despite this, the work is recent, and as such other chemical
applications beyond those presented have not been tested
using images as inputs. Hence, descriptors, which are
common molecular representations in data-driven solid form
modelling, are included as a baseline for comparison.

Using two methods of molecular representation also aids
in understanding the model's predictions and helps with
identifying limitations. Images and descriptors represent
different information. Descriptors correlate to specific,
numerical chemical properties, while images capture their
detail as pixels, paying no attention to the fact they are of a
molecule. By using both approaches, we test if images are
appropriate for morphology prediction. Furthermore, the
contribution of the API representation to the overall
prediction (see Fig. 4) can be tested by assessing if the
method of representation impacts performance. This is
important as the API is the most important input to a
morphology model.

Generating the molecular representations was carried out
by using SMILES to act as unique identifiers for molecules,
which were then converted into the final representations
outlined in sections 2.2.1 and 2.2.2. Converting SMILES to
chemical descriptors gives additional information in the form

Fig. 2 Number of data points for each morphology class mined from
the CSD before syntax correction and data cleaning was applied.
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of the chemical properties the descriptors represent. By
converting SMILES codes to images, pre-trained computer
vision architectures can be leveraged using a transfer
learning approach. In addition, images are more accessible
and readable to the average user compared to SMILES, which
take the form of text strings. This helps in understanding the
model's predictions as users can visualize molecular
structures. Moreover, images present explicit spatial
arrangements. Although these might be inferred from text
strings, explicit definition ensures that the network is
presented with this information.

2.2.1 Chemical descriptors. Descriptors were generated
from SMILES using the Mordred Python package, which was
chosen as it is open-source, computationally efficient, and
offers a large range of different molecular descriptors.12

Mordred calculates a maximum of 1825 descriptors for each
molecule. Any molecule which could not be converted into
descriptor form was removed. Furthermore, out of the 1825
possible descriptors, some individual descriptors failed to
calculate and therefore were removed. To represent multi-
component systems, descriptors were calculated with
cleaning steps applied independently for the solvent and the
API, and then concatenation was performed. In addition to
this concatenation approach, in some trials, a one-hot
encoding approach replaced the solvent descriptors with a
matrix of dimensions (D). This dimension can be calculated
as D = NS, where N is the number of API molecules and S =
17, which is the number of unique solvents.

2.2.2 Images of chemical structures. The RDKit (https://
github.com/rdkit/rdkit) cheminformatics Python package was
used to generate images from the SMILES codes. Images were
generated at 250 × 250 pixel size and concatenated (giving a
250 × 500 pixel image) when multi-component system
representation was needed. Images were augmented by first
applying rotations (6 × 30°), followed by reflection in the
horizontal, vertical and both axes. Augmentation methods
were applied exclusively to the training dataset. The results
shown in this work are based on image models with
augmentations applied. During development, image models
without augmentations were tested; however, the
performance was poor and therefore, not included. In this
work, it was evident that images offer far superior
performance when compared to descriptor models. Even so,
it is important to note that much of this performance gain
was only seen when augmentations were applied.

2.3. Model training and evaluation

The model applied to the datasets in this work was
dependent on the choice of molecular representation. When
using images to represent molecules, ResNet neural models
were used, and when using chemical descriptors, random
forests were applied. ResNet models were chosen as a result
of previous evidence of image-based deep learning models
used in chemical applications and wider image recognition
tasks.11,13 These models were trained and evaluated using

stratified cross-validation, from which the mean accuracy was
recorded across the splits. The batch size was 256 for the
CSD dataset and 8 for the in-house experimental dataset. A
learning rate decay was used during the training process to
ensure convergence. The models were trained for a maximum
of 50 epochs with early stopping to prevent overfitting.
Random forest classifiers were chosen due to evidence in the
literature of them providing the best accuracy scores for
predictions on chemical tasks.14 The models followed the
same cross-validation strategy as used in the image models,
and contained 100 estimators. The same ResNet and random
forest models were used in both the CSD and in-house
sections of this work. The sections were trained and
evaluated on their corresponding datasets only; there was no
combination of datasets in any section.

2.4. High throughput imaging robot design

A high throughput automated labelling system (see Fig. 3)
was created by modifying a Creality Ender 5 3D printer. The
design removed the original printer head and replaced it with
a Jiusion digital USB microscope such that the microscope
could move in the X, Y and Z directions. The magnification
can be manually adjusted with a scroll wheel in the range of
40–1000×. The system used an Arduino Mega 2560
microcontroller with a Computerized Numerical Control
(CNC) shield for communication and control of the stepper
motors of the 3D printer. The open-source GBRL library was
used with the microcontroller to be able to control the
automated machine using standard low-level g-code
commands. A graphical user interface was developed using
Python language to allow the user to configure a range of
parameters to systematically move the microscope, capturing
images from the samples for labelling. These parameters
include: motor step size, velocity, initial and end positions,
number of locations for data collection, number of trails for
data collection and object label. The configuration of these
parameters makes the high throughput system capable of

Fig. 3 Automated robotics platform for rapid sample imaging and
morphology labelling using deep learning.
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working in different experimental setups. The source code
for the automated labelling system robot has been made
available online (https://github.com/inte-R-action/hiTrosBot).

To remove the subjective nature of morphology labelling,
a deep learning model was implemented to systematically
classify the morphology of the samples offline. Please note
that at this stage, the classification was limited to blocks,
needles and plates, as these were the only morphologies
obtained experimentally. The authors note that there is
potential to move beyond these classes if a larger-scale
screening could be carried out to provide a more diverse
training dataset. The ResNet neural model was trained to
classify morphology based on user-labelled data.

3 Results and discussion

Crystal morphology is a product of 4 factors: API, solvent,
synthesis method, and additives. Therefore, in order to
predict morphology (in an ideal scenario), a machine
learning model must receive information about each of these
factors to make an informed prediction (see Fig. 4). It is
important to notice that additives are outside the scope of
this work.

In this work, the contribution of these key morphology
factors was systematically controlled to assess their influence
to the overall predictive performance of the model. Table 1
shows three case studies used to explore the contributions of
these factors. Note that in all cases, the contribution of the
API to morphology was not controlled, as this reflects the
deployment of the model towards untested APIs. For the
CSD-based case studies, the lack of readily available synthesis
detail in the database used, suggests that the model must
implicitly assume that these factors will not drastically
impact performance. With this assumption in place, the
“multiple model” case study evaluates how accurate the
model is, based on the information associated with the API
only. The “one model” approach assesses if there is any
performance improvement from integrating both API and
solvent details. Finally, to address the assumption made in
the CSD cases, the “in-house” case study explores the
importance of the crystallization method.

3.1. CSD data

The CSD contains information on APIs, solvents used for
crystallization and the morphology of the crystal, but fails to
provide synthesis detail which can be readily extracted for
every entry. Despite this, the CSD remains the most complete
crystallographic database available and so it is important to
assess how accurate models trained on this data can be. For
such assessment, the data was organized using two different
approaches, as shown in Fig. 5.

(1) The “multiple model” approach focused on developing
a unique model for every solvent, thereby removing the effect
of differing solvents. As a result, only the physicochemical
properties of the API are taken into account when
differentiating between data points. Although this model has
a significantly larger associated computational cost (requiring
the training of 17 different models); this approach reduces
the degree of input variability as only the API changes.

(2) A “one model” approach was taken to assess if the
explicit and/or implicit concatenation of properties allow for
a better prediction. Doing so determines if the additional
information improves the predictive power of the model, or if
the extra information causes confusion, thus lowering
accuracy. From a deployment perspective, the “one model”
approach allows for the inclusion of a new solvent or
processing condition, significantly reducing time and
resource requirements for screening unknown materials.

3.1.1 Multiple model approach: what is the effect of the
API?. To assess the influence of the APIs' physicochemical

Fig. 4 Ideal model design, showing all the inputs which are proven
through experimental literature to have an effect on crystal
morphology. Additives are included for completeness, but in this work
they have not been used.

Fig. 5 Modelling approaches for systems that need two inputs to
make their prediction. “Multiple model” (A) trains a new model for
every individual solvent. “One model” (B) takes multiple inputs to a
single trained model.

Table 1 Systematic variation of the factors which effect crystal
morphology in each trial. The degree of control is represented as: kept
constant (✗), allowed to change (✓) and have no information present (—)

Case study Dataset API Solvent Synthesis method

Multiple model CSD ✓ ✗ —
One model CSD ✓ ✓ —
In-house Experimental ✓ ✗ ✗
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properties on crystal morphology, a 1-model-per-solvent
approach was taken and entitled “multiple model”. In other
words, individual models were generated to predict the
morphology produced by each solvent. Table 2 shows the
accuracy of each predictive model. The results show that
descriptor models offer a small improvement in comparison
to random chance (0.25), with accuracy scores that ranged
from 0.334 to 0.481. On the other hand, the image models
performed better than descriptors, with accuracy scores that
ranged between 0.553 and 0.852. It can be seen that solvents
with a large number of data points (e.g. ethanol with 8910
samples) displayed a reduced accuracy, while those solvents
with a reduced number of data points (e.g. heptane with 113
samples) showed enhanced predictive capabilities. Machine
learning tasks have a tendency to enhance their predictive
capabilities when subject to larger datasets for training.
Nonetheless, the results displayed in Table 2 contradict this,
suggesting that the quality of the data must be responsible.

Although crystal morphology is the result of the
physicochemical properties of the API and solvent/additive
interactions, the choice of the synthetic method and
experimental conditions contribute to a large extent to crystal
growth and morphology (see Fig. 4). This “multiple model”
approach only compares examples with the same solvent;
therefore, the variance in predictive performance across the
different models must be the result of any variation in the
crystallization method, which is not accounted for in this
case. Moreover, by considering the number of data points
alone, it appears that solvents with a large number of data
points solubilize a wider range of APIs, while solvents with
poor API solubilization power present only a small number of
data points. Therefore, we hypothesize that when the API
presents a solubility restriction in an “unconventional”
solvent, the crystallization method is limited to temperature-

driven methods, such as cooling crystallization, in order to
create sufficiently saturated solutions.15 In these situations,
the experimental conditions are more likely to be more
consistent to allow the “poorly soluble API–solvent” system to
crystallize. This more systematic methodology is a key factor
for better accuracy scores.

3.1.2 One model: will API + solvent information improve
the performance?. The features of both the API and the
solvent were considered in a single model to assess if the
explicit concatenation of properties allows for a better
prediction. This system requires two components as inputs.
Therefore, as shown in Table 3, different approaches were
implemented to join the information of the API and solvent:
(i) concatenate, which treats the solvent information as a
continuous variable; (ii) one-hot encode, which treats it as a
categorical variable; and (iii) exclude, removes the solvent
detail altogether, acting as a baseline for better comparison.

Table 3 shows the different model accuracy scores. Here,
image models show no statistically significant difference
between models trained including or excluding solvent detail,
with accuracy scores of 0.586 and 0.591 respectively.
Descriptor models show that the inclusion of the solvent
information through concatenation hinders the model's
predictive capability, reducing the accuracy score from 0.433
without, to 0.355 with solvent information. The
concatenation method explicitly integrates the solvent
features, resulting in up to 1825 dimensions for each
component. Such high dimensional space cannot be
adequately covered with 17 solvents; an explanation of why
concatenating descriptors leads to the lowest model accuracy.
To overcome the high number of dimensions, one-hot
encoding was implemented, where the solvent is treated as a
categorical feature rather than a continuous one.16 This
approach creates inputs with fewer dimensions when
compared to the concatenation of chemical descriptors.
Table 3 shows that the one-hot encode approach improved
the accuracy of the model to 0.431, when compared to 0.355
using concatenation. One-hot encoding allows for a more
simplistic decision-making process when the random forest
algorithm performs its recursive splitting. When working
with categorical features, the splitting process reflects the
same scenario outlined in the “multiple models approach”.
Considering a single decision tree in the random forest, the
data is split into subsets based on the solvent categories in
much the same way as it was deliberately engineered in the
“multiple model”. The resemblance between the decision

Table 3 Classification accuracy for morphology prediction using
descriptors with differing approaches to join the features representing
the API and solvent molecules

Input type Join method Model accuracy

Descriptors Concatenate 0.355
One-hot encode 0.431
Exclude 0.433

Images Concatenate 0.586
Exclude 0.591

Table 2 Classification accuracy for morphology prediction using models
trained only on examples with the same solvent recorded. Results are
presented in descending order based on a per-solvent dataset size from
the CSD

Solvent
Dataset
size

Descriptor
accuracy

Image
accuracy

Ethanol 8910 0.467 0.553
Methanol 3313 0.426 0.569
Ethyl acetate 1960 0.463 0.622
Acetone 1328 0.481 0.684
Hexane 1441 0.399 0.703
Acetonitrile 1011 0.420 0.696
Diethyl ether 961 0.380 0.678
Toluene 693 0.365 0.764
Benzene 367 0.450 0.812
Pentane 302 0.334 0.846
Tetrahydrofuran 263 0.434 0.838
Water 240 0.358 0.717
Dimethylsulfoxide 197 0.473 0.802
Isopropanol 152 0.368 0.852
Dimethylformamide 151 0.431 0.808
Cyclohexane 126 0.351 0.842
Heptane 113 0.381 0.824
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making processes is confirmed through comparison of the
accuracy scores of the “one model” approach with the mean
across all of the “multiple model” tests, which were 0.433
and 0.411 respectively. These results suggest that
representing the solvent detail through concatenation is not
a useful approach, as both the “exclude” approach
(completely ignoring solvent information) and the “one-hot
encode” approach outperform concatenation.

The results from Tables 2 and 3 demonstrate that the CSD
database has limitations to develop data-driven models.
These limitations could include: (i) the lack of systematic
data – not all crystals were synthesized in the same manner
with the same conditions; and (ii) poor morphology labelling
practices – crystal morphology is labelled subjectively by the
authors contributing to populate the CSD database.
Furthermore, the CSD-based models presented have shown
that including the physicochemical properties of the solvents
has no effect on the final crystal shape. However, the
literature demonstrates that in fact, the nature of the solvents
are key to predict the crystal morphology.17,18 Indeed, the
models seem to lack some level of detail needed to effectively
classify the data. This missing information is the lack of
experimental details. The crystallization method is a critical
aspect of controlling the morphology of crystals.19,20

Unfortunately, at the time of writing, there is no open-source
database that systematically complies the crystallization
method and the attributes of the crystals produced. The CSD
contains more than 1 million entries without predefined
classes for synthesis conditions. Therefore, the only method
available to capture the experimental details is to manually
record the contents of each associated publication – a
procedure deemed to be highly impractical.

Although the CSD requests synthesis details when
structures are submitted, the database showed many
incomplete entries or passages of text that were too unique
for grouping into categories. Since crystallization is a
complex process, the authors suggest that, to develop
accurate data-driven models, it is critical to include a series
of categorical synthesis details. Examples of categories may
include crystallization method (evaporative, cooling, anti-
solvent, neat/liquid assisted grinding), temperatures, rate of
cooling/heating, saturation point and/or number of
temperature cycles. Indeed, at present, the lack of
experimental detail is identified as the major limiting factor
for the development of data-driven models used for crystal
morphology prediction.

3.2. In-house morphology data generation for AI

A systematic in-house experimental protocol was
implemented to address the limitations shown in the CSD
case studies. In these experiments, both solvent and
experimental conditions (as far as was practically possible)
were kept constant in order to remove their influence on the
crystal shape. As a result, the only factor which impacts the
accuracy of the model is the API. Fig. 6 shows some examples

of the crystal shapes experimentally obtained: plate, block
and needle-shaped crystals. The crystal morphologies of all
99 samples were compiled into a dataset and used to develop
a data-driven model. The model was evaluated with both
5-fold and 10-fold cross-validation. Using both these cross
validations strategies enabled comparison with the previous
models (10-fold), and increased the number of samples in
the validation set, thus obtaining a more representative
evaluation metric (5-fold). In both cross-validation methods,
5 independent trials were undertaken, and thus the final
metrics represent the mean of these. This ensures that any
difference in performance is statistically significant.

Training a model using the systematic experimental
dataset coupled with images as inputs provided a significant
performance increase, reaching accuracy scores of 0.879 and
0.839 for each of the cross validation strategies (see Table 4).
This enhancement can be appreciated when compared
against the “one model” accuracy score. If we consider only
water, the CSD dataset displayed an accuracy of 0.717 (see
Table 2), while the in-house dataset achieved 0.879 (Table 4)
– both with the same cross fold strategy. The difference in
these two tests, was that the CSD has no details on the
synthesis methodology undertaken; while the in-house
ensured that all parameters were kept constant. The
difference in results highlights that when all the information
is systematic, it is possible to generate data-driven models
with high accuracy.

The increase in performance is significant considering
that only 99 data points were available; in contrast to the
CSD, which contained 240 data points for water. The mean
classification accuracy scores in Table 4, of 0.879 and 0.839,
respectively for 10-fold and 5-fold cross-validation,
demonstrates that despite the reduced number of training
examples, maintaining systematic experimental conditions is
critical for accurate morphology prediction. In light of this, it
can be concluded that there are no limitations associated
with distinguishing the molecular features of the APIs. In
fact, when all other information is systematically presented

Table 4 Performance metrics of the 10-fold and 5-fold cross validation
strategies on the “in house” experimental dataset

Input type

Model accuracy

10-Fold 5-Fold

Descriptors 0.407 0.390
Images 0.879 0.839

Fig. 6 Example images from each class in the experimental dataset,
taken using the USB microscope on the screening robot. The images
show examples of plates (left), blocks (centre) and needles (right).
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(or held constant as in this case), the performance metrics
are the best.

Table 4 shows that the method used to distinguish the
molecular features of the APIs is essential when developing
data-driven models. It can be appreciated that images
displayed much higher accuracy scores than chemical
descriptors across all case studies. This performance
difference is a result of images' improved ability to
distinguish molecular features as highlighted across wider
chemical applications.11 Indeed, by leveraging the
information provided by 99 data points, this work
demonstrates the advantages of transfer learning for solid-
state applications, an area where big data is (at present)
exceedingly scarce. Transfer learning offers improved
performance on small data applications by carrying
experience from training in other tasks. Here, we used the
annual ImageNet Large Scale Visual Recognition Challenge.21

Although the systematic experimental protocol enabled
the training of models with outstanding predictive
capabilities, there are further improvements to be made.
First, as a consequence of the limited size of the dataset, a
single incorrect prediction corresponded to a 0.1 accuracy
score drop. Closer inspection of the cross-validation metrics
shows that in every case the model made no more than two
mistakes when predicting morphology using 10-fold cross-
validation. Even so, a significantly larger dataset should be
compiled, as currently, individual mislabels produce a
significant reduction in the model's accuracy score. Second,
this work demonstrated the predictive power of this approach
using water as the only solvent. Therefore, future work
should focus on incorporating other solvents, both pure and
mixed. A large screening campaign is important for
integrating commonly used solvents, such as ethanol, that
make up a large proportion of the crystallization records in
the CSD. Certainly, the main limitation in training a
complete morphology prediction model is gathering a
sufficiently large training dataset that captures all
combinations of API, solvent and methodology. An alternative
to experimental screening methods is to focus on data
mining strategies to extract the synthesis details from the
associated publications in the CSD.

3.3. Automated morphology labelling

Assuming data availability is no longer an issue, there remains
one final challenge in the prediction of crystal morphology.
Morphology labelling is an inherently subjective process and as
such, there is error introduced during the characterization of
the crystal shape. This error is difficult to account for in the
model when utilizing supervised learning approaches, as it
presents a one-to-many relationship, which is impossible to
model. Therefore, an objective and reproducible system of
assigning morphology labels in training must be implemented
to avoid additional sources of error.

To address reproducible morphology labelling, we
developed an automated labelling system, where an image

recognition model labels the samples in a reproducible
manner. Fig. 7 shows the confusion matrix attained by the
automated labelling unit. The deep learning labelling method
showed identical labels to those manually assigned. These
results suggest that AI has the potential to be an effective way
of ensuring reproducible morphology labelling of samples, as
well as dramatically reducing the time and human resources
used for capturing and labelling images. Even so, it is
important to consider that only 99 images were used in this
dataset, and therefore it is essential to expand this work to
cover more crystal types. Particular attention must be placed
on data points where distinguishing classes is difficult; for
instance rods and needles. As this method is limited by data
availability, without further testing, we cannot conclude that
potential overlapping classes will match the morphology
assigned by a human.

Manual labelling is essential to train the classifier in the
first instance, and since the model reflects human opinion, it
will display some bias. To remove this issue, it is important
to define characteristics of each morphology label, which can
be quantified such as sphericity or aspect ratio. Defining
such rules reduces uncertainty in training data, and aids in
creating accurate labels.

Finally, the authors suggest that recording images of
crystal shape should form part of the data entry process in
the CSD. This task would need considerable considerations
regarding the imaging methods, so that there was a degree of
consistency between images. The use of low-cost, automated
platforms such as the one outlined in this work could be a
suitable solution for systematic image generation.

Fig. 7 Confusion matrix of morphology labels assigned by the
labelling robot using a deep learning model trained on the “in house”
experimental dataset.
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4 Conclusion

In this work, we present the use of transfer learning and open-
source robotics to improve the state-of-the-art in applying
artificial intelligence for the prediction of crystal morphology.
It was demonstrated that despite a vast, extensive collection of
literature data, there are limitations in accessing specific
experimental details, which leads to poor performance. By
screening in controlled conditions, it was shown that the
accuracy of morphology prediction increased up to 87.9%,
demonstrating that experimental details are key in high-
performing models. This work also reinforces the conclusion
that using images of chemical structures as molecular
representations leads to better model accuracy, as a result of
wider augmentation strategies, more representative coverage of
high dimensional feature space and transfer learning. This
conclusion supports the rise of graph and image-based models
in the literature, which are increasingly outperforming
descriptor-based machine learning methods. An automated
deep learning system for reproducible morphology labelling is
presented, in the hope this will address the remaining
limitations arising from subjective labelling. This work acts as
a baseline study in the hope that with higher throughput
screening capability, more accurate morphology prediction can
be achieved. This intelligent approach will reduce the
timescales of drug development and lead to a more sustainable
and efficient manufacturing approach.

Data and code availability

The source code and experimental data for this project is
available at (https://github.com/MRW-Code/ai_robotics_
morphology_prediction). The code required for using the
automated labelling system is available at (https://github.
com/inte-R-action/hiTrosBot).
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