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Native ambient mass spectrometry of intact
protein assemblies directly from Escherichia coli
colonies†

Yuying Du, Robin C. May and Helen J. Cooper *

Here, we demonstrate that by combining electroporation with native

ambient mass spectrometry, it is possible to detect intact non-

covalent protein complexes directly from bacterial colonies growing

on agar. Homodimers HdeA and HdeB were identified, together with

the 50 kDa Mn-bound superoxide dismutase homodimer, in addition

to some previously undetected monomeric proteins.

Liquid extraction surface analysis (LESA)1 mass spectrometry
(MS) is an ambient mass spectrometry technique which com-
bines liquid microjunction sampling with nano-electrospray
mass spectrometry, and is particularly suitable for the analysis
of intact proteins. LESA MS has been demonstrated for the
analysis of proteins for a range of substrates, including dried
blood spots,2 thin tissue sections3 and bacterial colonies grow-
ing on agar.4–6 Compared with matrix-assisted laser desorption
ionization time-of-flight (MALDI TOF) MS, which is recognized
as the gold standard for routine identification of a wide range
of microorganisms,7,8 LESA MS focuses on the identification of
intact bacterial proteins rather than spectral matching for
species identification. Other ambient MS approaches that have
been applied to bacteria, albeit for the analysis of small mole-
cules, include rapid evaporative ionization mass spectrometry
(REIMS),9 laser ablation electrospray ionization (LAESI),10,11

paperspray mass spectrometry12 and nanospray desorption
electrospray ionization (nano-DESI).13

In terms of protein identification, analysis can either be ‘‘top-
down’’, in which the intact protein ion is fragmented in the mass
spectrometer, or ‘‘bottom-up’’, in which proteolytic peptides are
subjected to MS analysis. The advantage of top-down MS is that
all information relating to primary sequence and post-
translational modifications are retained, unlike the bottom-up
approach where information relating to the presence of single

nucleotide polymorphisms or connectivity between post-
translational modifications may be lost. Our work to date on
LESA MS of bacteria has made use of denaturing LESA solvents
based on aqueous organic mixtures.5,14 The use of these has been
necessary to breach the cell wall. A limitation of this approach is
that any structural information is lost as the proteins are
unfolded. As protein structure and function are intricately linked,
there is a drive to develop analytical methods capable of obtain-
ing structural information, e.g., protein assembly stoichiometry,
protein-ligand binding, directly from the bacteria.

Another branch of MS, native mass spectrometry,15 allows the
analysis of tertiary and quaternary protein structure. Proteins are
electrosprayed from solutions designed to mimic native condi-
tions, and intra- and intermolecular non-covalent interactions
present in solution are maintained in the gas-phase. We have
demonstrated that native mass spectrometry may be coupled
with LESA MS and nano-DESI MS for the analysis of protein
assemblies and complexes directly from tissue.16,17 Native LESA
MS generally offers higher sensitivity but lower spatial resolution
for mass spectrometry imaging than nano-DESI MS due to the
larger sampling area. Sun and co-workers have demonstrated
native mass spectrometry of E. coli lysates by integrating size
exclusion chromatography and capillary zone electrophoresis.18

Huang and co-workers introduced an approach termed ‘‘in-cell’’
MS in which suspensions of bacteria are subjected to on-line
electroporation, releasing endogenous proteins for introduction
to the mass spectrometer.19 Electroporation is the process by
which cell membranes are made permeable, either reversibly or
irreversibly, through the application of an electric field,20–22 and
has found applications in both the delivery of exogenous mole-
cules into cells and the extraction of molecules from cells.23 For
the latter, it has been shown that higher molecular weight
molecules such as proteins present a greater challenge than
those with lower molecular weight.24 Nevertheless, complexes
of the protein calmodulin overexpressed in E. coli have been
observed by the in-cell MS approach.19

We recently designed and built an electroporation device for
integration with the LESA MS workflow.14 In that work, our aim
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was analysis of intact proteins in yeast colonies. Yeast had
proved resistant to LESA MS, even with the use of harsh
solvents, due to its rigid chitinous cell wall, but electroporation
resulted in rapid release of intact proteins. A feature of electro-
poration is that it is associated with minimal heating,22 which
led us to hypothesise that by combining electroporation with
native-like LESA solvents, it would be possible to perform native
ambient mass spectrometry, i.e., obtain structural information,
directly from living bacterial colonies.

Three workflows were investigated (summarised in Fig. S1,
ESI†). In the first, a small volume (2 ml) of 200 mM ammonium
acetate was pipetted onto the bacterial colony, which was then
subjected to electroporation followed by LESA sampling. The
rationale behind addition of ammonium acetate was avoidance
of air breakdown during electroporation. In the second work-
flow, 2 ml of 200 mM ammonium acetate was deposited onto
the colony before LESA sampling, i.e., the electroporation step
was omitted. In the third, the bacterial colony was subjected to
LESA sampling only. The success rate, defined as the number of
sampling events that led to mass spectra containing peaks
corresponding to proteins in relation to the total number of
sampling events, was 77% for addition of solvent and electro-
poration, 14% for addition of solvent with no electroporation
and 31% for no solvent addition and no electroporation. See
Table S1, ESI.†

Initial mass spectrometry experiments were performed in
the mass range m/z 900–3000, with no source collision energy.
Fig. 1 shows a representative native LESA mass spectrum obtained
following electroporation of an E. coli K12 colony. Twenty-two
proteins were detected, of which eleven were identified by tandem
mass spectrometry (MS/MS). See Table S2, ESI† for a summary of
protein assignments. Full details are provided in Protein Identifi-
cation, ESI.† Eight of the proteins identified (HdeA, HdeB, CspE,
Acyl carrier protein, YibT, Hpr, PsiF and YgiW) were previously
undetected by LESA MS. Among those proteins, HdeA (monomer),
HdeB (monomer), CspE and Hpr have previously been identified
by MALDI top-down MS of cell lysates of various strains of
E. coli.25 HdeA, HdeB, YibT and YgiW were identified in a
bottom-up LC-MS proteomics study of outer membrane vesicles
obtained from a range of E. coli strains.26 Acyl carrier protein has
been identified in a bottom-up MALDI study.27

Subsequent experiments were performed in a higher mass
range (m/z 1500–4000) with 80% source fragmentation energy,
resulting in identification of two further proteins, including the
monomeric antigen 43 a chain (B49.8 kDa, see Fig. S2 and S3,
ESI†) which has not previously been detected by LESA MS,
although has been identified in bottom-up studies.28–30

In addition to monomeric proteins, three protein assemblies
were identified, corresponding to the homodimers HdeA, HdeB
and Mn-bound superoxide dismutase. HdeA and HdeB are acid
stress chaperones which restrict aggregation of denatured peri-
plasmic proteins in acidic environments.31 HdeA was detected as
both the monomer (B9.7 kDa, charge states 4+ to 6+) and
homodimer (B19.5 kDa, charge states 8+ to 9+) as indicated in
Fig. 1. Fig. 2 shows the identification of the intact homodimer.
Tandem mass spectrometry by higher energy collision dissociation
(HCD)32 of the 9+ precursor ions (m/z 2165.2) resulted in detection
of monomer subunits in charge states 5+ and 4+. The abundance
of the monomer subunits increases with HCD collision energy
(Fig. 2a). HCD of the 5+ monomer ions (32% normalised collision
energy, NCE) results in detection of sequence fragments allowing
the protein identity to be confirmed (Fig. 2b and c). The homo-
dimer of HdeA, along with the homodimer of Hpr (not observed
here) have previously been identified from E. coli lysates in native
proteomics experiments which coupled size exclusion chromato-
graphy with capillary zone electrophoresis MS.18

Fig. 1 Representative mass spectrum acquired by native LESA MS follow-
ing electroporation of E. coli K12 colony.

Fig. 2 Identification of the HdeA homodimer. (a) HCD MS/MS of 9+
precursor ions (m/z 2165.2 � 4) results in dissociation of dimer to
monomer (5+ and 4+ charge states). (b) HCD MS/MS of 5+ monomer
ions (m/z 1948.6). (c) Summary of sequence fragments observed.
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HdeB was detected as both the monomer (B9.1 kDa, charge
states 4+ to 6+) and homodimer (B18.1 kDa, charge states 8+ to
9+). Fig. 3 shows the identification of the homodimer. HCD of
the 8+ precursor ions (m/z 2266.6) results in the observation of
monomer subunits in charge states 5+, 4+ and 3+ (Fig. 3a). MS/
MS of the monomer was obtained for identification (Fig. 3b)
and sequence fragments are shown in Fig. 3c. The fragments
observed confirm the identity of the protein and suggest
the presence of a disulfide bond between Cys10 and Cys58.
Confirmation of the disulphide bond was obtained by electron
transfer dissociation with higher-energy collision dissociation
(EThcD)33,34 of the 5+ monomer ions (m/z 1813.5). See
Table S3, ESI.†

Superoxide dismutase was detected as a dimer (B49.8 kDa)
in which both subunits are bound to two Mn2+ ions. Fig. 4a
shows a full scan mass spectrum with the peak corresponding to
the 14+ charge state of the dimer indicated. The stoichiometry of
the complex was confirmed by MS/MS (HCD at 28% NCE) which
resulted in dissociation of the dimer to its monomeric subunits
in charge states 5+ and 9+ (Fig. 4b). Asymmetric partitioning of
the metal ions amongst the subunits was observed following
HCD. Further increase in HCD energy resulted in detection of
sequence fragments allowing the protein identity to be confirmed
(see ESI†).

In summary, we have demonstrated that by combining electro-
poration with native LESA MS, it is possible to detect and identify
intact protein assemblies up to 50 kDa directly from colonies of
E. coli growing on a solid substrate. The stoichiometry of the
protein assemblies and the identities of the proteins were con-
firmed by HCD MS. Although it was possible in some cases to
detect proteins in the absence of electroporation, this could not be
achieved reliably (success rate 14–31%).
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