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The present article overviews the current state-of-the-art and future prospects for the use of diatomaceous earth
(DE) in the continuously expanding sector of energy science and technology. An eco-friendly direct source of
silica and the production of silicon, diatomaceous earth possesses a desirable nano- to micro-structure that
offers inherent advantages for optimum performance in existing and new applications in electrochemistry,
catalysis, optoelectronics, and biomedical engineering. Silica, silicon and silicon-based materials have proven
useful for energy harvesting and storage applications. However, they often encounter setbacks to their
commercialization due to the limited capability for the production of materials possessing fascinating
microstructures to deliver optimum performance. Despite many current research trends focusing on the
means to create the required nano- to micro-structures, the high cost and complex, potentially
environmentally harmful chemical synthesis techniques remain a considerable challenge. The present review
examines the advances made using diatomaceous earth as a source of silica, silicon-based materials and
templates for energy related applications. The main synthesis routes aimed at preserving the highly desirable
naturally formed neat nanostructure of diatomaceous earth are assessed in this review that culminates with
the discussion of recently developed pathways to achieving the best properties. The trend analysis establishes
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1. Diatomaceous earth

Advances in scientific imaging have enabled researchers to
unveil the intricate structural details of nature's own hierar-
chically structured materials. The use of imaging techniques
based on light and electron beams have progressively revealed
the micro- to nano-structures of both natural and engineered
materials down to the atomic scale that could not be seen
previously. Indeed, the majority of naturally occurring materials
possess multi-scale, hierarchical organization that to date
remains an area of keen interest for researchers. One such
naturally occurring material is diatomaceous earth (DE), which

Yuliya Kan graduated Master's
degree in Material Science from
Tomsk Polytechnic University in
2018. Her thesis was focused on
the glass-ceramic interlayer of
the coating and alumina
ceramic composite for biomed-
ical applications. In the 2nd year
of her Master's degree, she
participated in the academic
exchange program at Technical
University in Dresden. At Skol-
tech she keeps working with the
hierarchical nanostructures for biomaterial application.

= g Anthony Andrews is an Associate
' e Professor in the Department of
Materials Engineering, in the
College of Engineering, Kwame
Nkrumah University of Science
and Technology, Kumasi -
Ghana. His research interest is
in materials synthesis and
development of ceramic-based
composites using both tradi-
tional and advanced processing
routes. His current research
activities include surface modi-
fication, corrosion, tribology, and ceramic processing. He has over
30 publications in reputable journals.

© 2021 The Author(s). Published by the Royal Society of Chemistry

View Article Online

RSC Advances

is formed following the build-up of amorphous silica cell walls
of dead diatoms in marine sediments.* Originally discovered by
a German peasant Peter Kasten in 1836,> diatomaceous earth,
also known as diatomite, has for some time now been mined in
close to thirty countries globally.® Presently, the leading
producer of diatomite is the United States, accounting for close
to 35% of the total world production.® DE is characterized by
unique properties such as high porosity, light weight, small
particle size and high surface area, chemical inertness and low
thermal conductivity® thus paving the way for numerous
applications. It normally has the appearance of a pale-colored
powder. The typical particle size range reported for DE is
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Fig.1 Classification system of diatom based sediments proposed by Zahajska et al.* The x-axis showing the weight percentage (wt%) of diatom/
biogenic SiO, contained in sediments and their corresponding transformations as a function of burial depth on the y-axis.

about 10-200 um.? Diatomite, regardless of the source, contains
SiO, as the main phase. Other phases present in DE are CaO,
MgO, Fe,03, and Al,O;. Lately, the number of literature reports
dedicated to DE has increased, but the fundamental require-
ment for the powder to be classed as DE remains unresolved,
creating significant inconsistency with the term Diatomaceous
Earth. However, in a study by Zahajska et al,* an approach to
resolving these issues has been presented. In the report, a clas-
sification of sediment containing diatoms into diatomite and
diatomaceous ooze is reported. This work was carried out to
address the inconsistency in the use of terms ‘diatomite’ and
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‘diatomaceous ooze’ in previous studies.>™* Fig. 1 illustrates the
classification system proposed by Zahajska et al.* to group the
powders into diatomite and diatomaceous ooze. From their
system, a powder is considered as diatomite when consolidated
siliceous/opaline sediment contains more than 80% diatom
SiO, by weight and porosity higher than 70%. It is worth noting
that while other forms of diatomite are available per the clas-
sification of Zahajska et al* it remains a difficult task to
distinguish between the diatomite precursors used in the
current literature. This is due to the lack of detail provided by
the authors regarding the precursors used. For this reason, the
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definition of diatomite given by Zahajska et al* cannot be
applied strictly in the discussion of the existing reports, so that
all reports related to diatom silica, diatomite, diatomaceous
earth, diatom frustules, diatom algae, diatom earth and bio-
silica diatomite will be included in the scope of this review
paper. It is however important that full details of precursors be
used in future to establish a clearer roadmap to advanced
technology use.

The use of diatomite dates as far back as 2000 years ago. It is
reported that the Greeks used diatomite in pottery and bricks.?
Conventionally, DE finds applications as filter aids, functional
additives, absorbents, natural insecticide, and materials for soil
improvement."* Recently, diatomite has attracted significant
attention in the scientific community. DE provides a unique way
to mimic nature by using it as both template and precursor for
materials with desirable nanostructures. Most of today's mate-
rials are expected to possess nano to micro-structures to meet
several functionalities of specific applications. Often, materials
exhibiting desirable properties at the macro-scale suffer
setbacks arising from chemical, thermal, electronic or
mechanical processes at the nano and micro-scale. One notable
example is the potential use of silicon as an anode material in
lithium-ion batteries. This area has been well studied,
continues to be studied and remains a potential game changer
in battery technology.>*° Silicon is known to have a theoretical
capacity an order of magnitude higher than graphite. Coupled
with the aforementioned advantages of silicon as a suitable
anode material, it is highly abundant and non-toxic. Neverthe-
less, silicon has not found commercial use as an anode material
due to the low cycling stability. Volume changes (up to about
300%) during lithiation have been reported to lead to internal
stresses, electrode pulverization, loss of electrical contact
between the active material and the current collector, all of
which eventually led to poor reversibility and rapid decline in
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capacity.”»” These setbacks are peculiar to bulk silicon,
particularly ball-milled Si obtained from bulk silicon. This is
because the structure of bulk silicon is unable to meet
a combination of functionalities required at the nanoscale. For
this reason, several attempts have focused on nanostructuring
silicon-based anodes to harness the full potential of silicon in
battery technology.*** This new approach to nanostructuring Si
based anodes has been reported to offer a better response to
volume changes from the surface to center as shown in Fig. 2.%
As shown in Fig. 2, the ball-milled Si particle disintegrates
during the lithiation process while the porous Si powder
accommodates the volume changes during lithiation. Another
observation of the same kind has been reported in the potential
use of bulk silicon as a thermoelectric material.*® Here also,
bulk silicon has not found huge applications due to the diffi-
culty in generating a temperature gap across it. As a semi-
conductor made up of covalent bonds, heat at one end is almost
entirely transferred to the other end by lattice vibrations.
Without a temperature gradient, it is difficult to generate
a significant voltage in thermoelectrics. Again, nano-
structuration of silicon has been studied as a way to resolve
issues related to its potential use in thermoelectric energy
generation.*® Another case is the use of bulk silicon, which is
widely used in photovoltaic applications. In spite of gaining
commercial attention, a number of drawbacks are still persis-
tent. Notable among these drawbacks is the high surface
reflectivity of bulk silicon based solar cells.>”~*° A lot of progress
has been made in this area, prompting a number of review
papers*®** on the improved surface reflectance of silicon based
solar cells with a nanostructured surface. All these reports point
to the importance and role of silicon nano-structuration in
energy related science. Most importantly, it reveals the potential
of siliceous materials with desirable nanostructures and for that
matter diatomaceous earth.

Fig. 2 Lithiation manners presented in ball-milled Si and porous Si nanoparticles. (a—d) Response pattern of ball-milled Si from the surface-to-
center during lithiation. (e—h) Response pattern of porous Si particle from the surface-to-center during lithiation.>
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The attention towards DE has produced a lot of interesting
results®*~** based on which a number of excellent reviews on the
application of diatomite in energy harvesting and storage have
been reported.>*®” Nevertheless, these excellent reviews do not
fully elaborate on the processing routes and their translation
into desired properties. Thanks to a recent review by Ragni
et al.>® a detailed description of some of the processes used in
synthesizing nanostructured materials from diatom microalgae
was presented. As DE continues to gain more attention in
energy applications, it is essential to provide a comprehensive
report of the major synthesis used in DE related studies for
energy application which is not fully addressed in the previous
reviews. This review seeks to expand and cover all the major
processing routes as far as diatomite in energy applications are

View Article Online
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concerned. Also, quite a lot of progress has been made in this
area since the publication of these reviews®**** and for that
matter we present a report of the current progress made with
biosilica diatomite for potential energy application while
focusing deeply on the main synthesis routes common to most
of the reports. Considering the fast progress in this area, we also
report on unexplored areas related to energy research.

2. Nano-scale morphology of
diatomaceous earth
The structure of DE has been studied over the years using

state-of-the-art scientific equipment including Scanning/
Transmission Electron Microscopy (SEM and TEM),** Atomic

Fig. 3 Different shapes and structure of diatoms (a—f) SEM images of different marine diatoms (source: Lake Baikal, Arabian Sea, and Skolkovo

Pool) scale bar: 5 pm.”®
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Force Microscopy (AFM),*® X-ray Photoelectron Microscopy,*®
Fourier Transform Infrared Spectroscopy (FTIR)*” and Small
Angle X-ray Scattering (SAXS).®® Individual diatom frustules
within a diatomite powder are characterized by a silica cell
wall consisting of two overlapping thecae (epitheca as the
larger part and hypotheca, the smaller), each consisting of
a valve. These valves are separated by an accompanying series
of girdle bands.*® Frustules are characterized by a row of pores
known as interstriae. Between the interstriae are ribs, called
striae. The interstriae are mainly responsible for the uptake of
nutrients.® The frustules vary greatly, so there is no simple
summary of the morphology. In Fig. 3, the SEM images of
different diatoms collected from Lake Baikal, Arabian Sea and
Skolkovo Pool clearly show diatoms with different shapes and
structures.”” However, frustules have been traditionally clas-
sified into two groups namely; centric diatoms (Centrales) and
pennate diatoms (Pennales). The centric diatom frustules have
surface features arranged around a point while the pennate
frustules have major features at right angles to the striae. In
a classification by round and Crawford diatoms have been
classified into three groups.®® They are the centric diatoms
(Coscinodiscophyceae), pennate diatoms without a raphe
(Fragilariophyceae), and pennate diatoms with a raphe
(Bacillariophyceae).

State used

Application
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3. Classification of the role of DE

Diatomite plays different roles in experimental research. These
roles are classified under three main groups with regards to
energy related studies. These groups have been created based
on the state of diatomite in particular experimental works. The
three groups, namely, synthesis involving the use of raw DE, the
use of DE frustules as a sacrificial material (template), and DE
as a precursor for silicon-based materials are shown in Fig. 4.
The main motivation behind the use of DE is to preserve and
translate the nanoscale morphology of diatomite into new
functional materials, either as a precursor or template. This is
quite different for some studies that require the use of raw
diatomite as a supporting material to host the active material
especially in thermal energy storage applications. All the groups
have some reports using pre-treatments, mostly thermal and
mechanical. The prospect of the entire diatom macrocosm in
the energy industry is further showcased in an isolated report by
Chen et al.”* A rather unconventional approach with respect to
most reported DE based materials for energy applications saw
Chen et al.”* exploring the optical properties of a chlorophyll
extract from diatom algae for solar energy harvesting. Diatom
algae are known to be one of the most photosynthetic organ-
isms. It is reported to contribute about 40% of the aquatic
primary production using chlorophyll a [chl-a] component.

[ Main Synthesis Processes J
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Fig. 4 Schematic representation of the relationship between the state of DE, intended applications and main synthesis.
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Other important light absorption components found in dia-
toms are chlorophyll ¢ [chl-c] and fucoxanthin. In their work,
Chen et al” studied the anti-reflective property of diatom
extract obtained via a facile process where the diatom extract
contained chlorophyll a as the primary active component for
photon energy conversion suitable for blue to red photon
conversion. As expected, the diatom extract reduced the surface
reflectance of Si over the entire light spectrum (350-1100 nm)
up to 13%. Apart from its anti-reflective (AR) properties, the
extract showed strong photon down-conversion effect where the
blue light portion of light is converted to red. Both properties
were credited for the enhanced short circuit current and power
conversion efficiency (PCE) of the Si solar cell. Most importantly
Chen et al” confirmed the thermal stability of the diatom
extract up to 90 °C without changes in neither the optical
properties nor the color.

3.1 Raw DE for energy applications

Energy applications involving the use of raw diatomaceous
earth without further chemical synthesis, capable of dissolving
it or transforming it to silicon-based materials, have been
majorly associated with thermal energy storage (TES)’>*
although recent isolated applications in Li-ion** and Li-
sulphur® batteries and polymer solar cells®* have been reported
as presented in Fig. 4. Diatomaceous earth normally serves as
a supporting material and no form of templating or chemical
reduction is required. Rather, facile processes such as mixing
and impregnation are normally used to form a composite with
the active material. Even though DE is applied in its raw state,
pre-heat treatments such as vacuum drying, microwave heating,
and calcination are sometimes performed.***** Thermal energy
storage has long been seen as an eco-friendly approach to
sustainable energy for future energy demands.”* Using phase
change materials (PCMs), latent heat can be effectively used to
store thermal energy. Over the years of studies, modifications
with PCMs have been reported to result in substantial increase
in desired properties. Notable among these modifications is the
use of diatomaceous earth. DE assumes the role of a supporting
material in the modification of PCMs. It is known that the
higher the mass ratio of the PCM in DE, the greater the latent
heat of the composite PCM.°**> Thermal energy storage is
realized through three routes namely, sensible heat, latent heat,
thermochemical or a combination of these.”” Among the
possible thermal energy storage routes, latent heat storage is
known to be the most attractive due to its ability to provide
a higher energy storage density and to store heat at a constant
temperature corresponding to the phase transition temperature
of PCM. In latent heat storage, a storage material undergoes
a phase change from solid to liquid or liquid to gas or vice versa
upon the absorption or release of heat.”* PCMs are available in
three forms. They are organic, inorganic and eutectic PCMs.*”*
Recently, raw diatomite was studied as a potential negative
electrode for Li-ion batteries and a polysulfur absorbent for Li-S
batteries. In another isolated study,® raw DE was used in
a polymer solar cell to improve light trapping. In all these
reports,”>®* diatomite is used in its raw state without complex
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chemical reactions to dissolve, precipitate or reduce silica to
silicon-based compounds and does not involve templating.

3.2 DE as sacrificial material for energy applications

Inspired by the neat nanostructured patterns in diatom frus-
tules, newly engineered structured materials/composites have
been produced with similar patterns using diatom frustules as
templates.”*% Ever since Losic et al.** reported on the fabri-
cation of nanostructured gold using diatom frustule as
a template, a number of advances pertaining to the application
of this fabrication route for new engineered materials have been
reported®'* mostly for energy applications. Specifically, these
materials have been found useful for photovoltaics,*®” super-
capacitors®*** and photocatalysts®® which is shown in Fig. 4.
Apart from the dissolution process often executed at the end of
the synthesis protocol to dissolve DE, there is mostly no
chemical reaction involving DE prior to the dissolution process.
The main synthesis processes used are deposition techniques
and wet chemistry routes, however, some pre-treatments such
as vacuum drying and calcination are sometimes applied as
a means to free the pores of all impurities.

3.3 Precursor for silicon based materials for energy
applications

Pure elemental silicon, silicon oxide and other silicon-based
materials have found diverse applications in energy related
applications to date.'*** Bulk silicon is widely known for its
application in photovoltaics, existing as monocrystalline and
polycrystalline silicon based solar cells.’*® With the advent of
nanotechnology, nanostructured silicon-based materials have
paved the way for novel applications in batteries and thermo-
electrics.”**'* The desire for facile and cost-effective ways of
producing nanostructured silicon-based materials has led the
attention of the scientific community towards diatomite, as
a precursor for silicon-based materials. Diatomite happens to
be the only siliceous material exhibiting a neatly formed
nanoporous structure, at least to the best knowledge of the
authors. It must be noted that, while the primary focus is as
a silica precursor, DE eventually serves as a template for the
silicon-based materials formed. There appears to be a narrow
margin of difference between this category and the previous
section (4.2). Here, the chemistry of DE is altered through
chemical reduction reactions best known as displacement
reactions, discussed in subsequent sections, but no such
chemical reactions are reported for diatoms used as a template
(4.2). Interestingly, some studies have combined both
approaches and notable among them is a report by Le et al."** In
their work, DE initially served as a precursor for nanostructured
Si. The nanostructured Si possessing the framework of the
precursor DE, subsequently played the role of a template for
MnO,, therefore obtaining a nanocomposite for supercapacitor
applications. Potential energy applications involving the use of
diatomite as a precursor for silicon-based materials are mostly
batteries***>*%¢**** " photovoltaics,"> supercapacitors™® and
thermoelectrics®® as shown in Fig. 4. Widely reported materials

© 2021 The Author(s). Published by the Royal Society of Chemistry
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obtained from diatomite are mostly elemental Si, Si/SiO,, Si/
MgO, SiC, SiGe, and Mg,Si.

4. Synthesis routes for energy
applications

The most crucial aspect of synthesis involving diatomite is the
ability to preserve the nanoscale structure and translate it into
the new material. For that matter, all efforts to preserve the
structure are vital in research. The processing routes used in
diatomite related studies are numerous,*® however, a number of
these processing routes are peculiar to energy related reports.
Herein, the major synthesis routes and their respective field of
application are addressed. While these synthesis routes are re-
ported as the primary process, the majority of these studies
involved pre-treatments of DE, thermal or mechanically driven.

4.1 Pre-treatments of diatomaceous earth

DE pre-processing techniques have become popular when
synthesizing DE-based energy materials. In most cases, these
treatments were thermally or mechanically motivated. Thermal
pre-treatment such as calcination,?%445:51,52,59,73,74,113
drying?***>952596172 and microwave heating®”*® have been widely
used. Mechanical milling has also been reported.*>*>'* Among
the two, thermal pre-treatments have received more attention in
energy related studies. Prior heat treatments are reported to
cause changes in the powder characteristics of DE including the
color, particle size, specific surface area, pore size and volume,
crystalline state and crystallite size.®*'* Diatomite is usually
dried in vacuum between 80-100 °C prior to further synthesis.
This is usually done to reduce the moisture content of the
powder."® In some isolated cases, microwave heating was
applied prior to further synthesis, and this affected the porous
structure to some extent,*”*® notably particle size increment and
an unclogged pore structure. To the best of our knowledge, no
further changes are reported for vacuum drying and microwave
heating of diatomite unlike other prior heat treatments. As far
as diatomite is concerned, calcination involves a controlled
high temperature (500-1200 °C) treatment under controlled
environment. Calcination of diatomite is mostly preceded by
vacuum drying. Unlike low vacuum drying and microwave
heating, calcination causes a wide range of changes in the
powder characteristics including color changes,"* phase
composition,*>***1¢ crystallite size'* and particle size.'**
Clearly, calcination has serious consequences on the powder
characteristics of diatomite, yet the selection of the right
precursor remains a concern for some intended applications. In
most reports, either a raw (dried powder) DE is used or
a calcined powder (dried and calcined), particularly reports in
battery, supercapacitor, and thermoelectric applica-
tions.?®*44%3999117 Choosing the right DE precursor for such
applications is quite a challenge as far as these reports are
concerned since either raw or calcined DE powders have
different consequences on the final properties. Thanks to some
reports where both raw diatomite (only dried) and calcined
diatomite (dried and calcined) are compared, we have some
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guidelines to help select the right DE precursor for specific
applications. These reports, especially in filtration,"** cement
production,™® thermal energy storage”** and photocatalyst'**
carried out a comparative study of the performance of both
calcined and uncalcined DE powders in a single work, providing
some insight into the right candidate for these applications.
This particular issue not given much attention was recently
raised by Korsunsky et al.,”** where the importance of choosing
the right DE precursor (calcined or raw), specifically for silica to
silicon-based materials synthesis was addressed. Raw diatomite
is amorphous while the calcined counterpart is crystalline
(cristobalite). Understanding their individual reaction kinetics
may be crucial for selecting the right precursor as well as
controllable synthesis parameters. Even though both calcined
and raw DE powders have successfully been reduced to silicon-
based materials, it is still unclear the ideal state of the DE
precursor for silicon-based material conversion.

Mechanical pre-treatments of DE normally involve high
energy ball milling. In some recent studies high energy ball
milling was performed on DE prior to the main synthesis
process.®***>'>% Like some thermal pre-treatments, ball-milled
DE normally shows significant changes in the particle size,
pore size and specific surface area. Powder characteristics such
as crystallinity, phase composition and color changes are not
affected by ball milling. Although ball milling of DE has not
received much attention like thermal processes, recent reports
show it is a crucial step for some intended applications. A study
by Blanco et al.®® reported the effects of ball milling of DE on the
electrochemical properties of the negative electrode produced.
In that work, the ball milled DE powder showed an increase in
specific surface area from 1.2 m> g~ * (pristine DE) to 17.3 m>
g '. Additionally, the mean particle size of the ball-milled DE
powder was significantly lower (470 nm) than the pristine DE
(17 pm). They also reported an increased presence of mesopores
in the ball-milled powder compared to the pristine powder.
Blanco et al® indicated that although the mesopores could
have been present in the pristine powder, they became acces-
sible after ball milling. The powder characteristics reported for
the ball-milled powder subsequently influenced the electro-
chemical performance of the DE-based negative electrode. As
evidenced in Fig. 5, the DE based negative electrode prepared
from the milled powder showed a higher capacity of
750 mA h ¢~ * (milled) than the pristine powder (550 mAh g™ ).
This was attributed to the shortening of the Li-ion diffusion
path and the increased surface area of the powders achieved
through particle size reduction. Ball milling offers a cheap and
simple way to alter the powder characteristics of DE for inten-
ded applications, especially in silicon-based anode materials.
The right combination of both mechanically and thermally
motivated pre-treatments may lead to a range of functionalities
for new materials.

4.2 Impregnation technology

The impregnation technology is a well-known manufacturing
process which has been widely used in the synthesis of nano-
catalyst, composite materials, foundry technology, energy

RSC Adv, 2021, 11, 31884-31922 | 31891


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1ra05810j

Open Access Article. Published on 28 Septemba 2021. Downloaded on 03/08/2024 23:37:06.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

View Article Online

Review

Activation cycles

a i= “ 031V C
” i =50 mAg a b 10 4, 045V
A 5 1200
= £ 05 14 2
=15 < I S < "
= 00 - —_—
g = — = %00 i
B0 Eoos 7 g A o
> w 7¢ 8 600
E 1* activation cycle %-1 0 Y il
z 57 activation cycle O 15 .l e o Pristine frustules lithiation
2 05 1 activationcycle & | 017w qutlne frustules 5 300 Pristine frustules delithiation
& 5 activation cycle D 2.0 L[| Milled frustules 2 Milled frustules lithiation
— w Milled frustules delithiation
00 Goav o
o 400 800 1200 0.0 05 g . 1.0 15 1 2 - 1 4 ]
Specific capacity [mAhg™] Potential (vs Li*/Li) [V] Cycle number
Post-activation cycles
100
i= -1 13t 50 t 5oth . 030V 800
dz.n i=100 mAg SUR 50" €10 501 4N\ o048V i Q
Liod — == < ]
= T 05 , = 90 £
z | > o _ S — 8
18 <‘ E 0.0 pe—— — E o g
3 = e = &
e \ w -0.5 = 400 B
£ 10\ = 8 E
- \ s o o =}
g \ p | Ll Pristine frustules g + Pristine frustules 70 8
Sos N\ > G 15 LN — Milled frustules Q 00 Milled frustules 2
o b z - 1 o1sv S =
o y =0 20 Y 2 60 =
00" To— 0.05V @ 0
0 200 400 600 800 0.0 05 1.0 15 0 20 40 60 80 100

Specific capacity [mAhg™]

Potential (vs Li*/Li) [V]

Cycle number
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materials and eco-efficient construction.’**** In advanced
composite manufacture, impregnation is used in making the
starting material, prepreg, which comprises the resin and
reinforcement. Recently, impregnation technology has become
a useful process for the synthesis of nanocatalyst.'** The
impregnation technology has been utilized in the protection of
wooden structures from destruction.’ Herein, the combusti-
bility of constructions made from wooden structures are
reduced by the impregnation of fire-retardant solutions. In the
impregnation technology, a solution (impregnant) is infused to
fill the invisible pores in a material. The impregnation tech-
nology comes in two forms: dry/incipient-wetness technology
and wet impregnation.”**"*" In dry/incipient-wetness tech-
nology, the volume of the impregnate matches exactly the pore
volume of the support while in wet impregnation, an excess
volume of impregnate is used.®*” The impregnation technology
has widely been used in the production of nanocomposite
phase change materials (nPCMs) based on diatomaceous earth
for TES. The principle behind this synthesis is identical to the
ones presented above. Diatomaceous earth, as a supporting
material in this area, offers the ability to load sufficient PCM
without leakage due to their attractive sorption ability.** Based
on accounts provided in existing reports on DE-based materials
prepared by impregnation technology, the wet impregnation
method was mostly used. Impregnation technology is further
categorized as direct or vacuum impregnation, both widely re-
ported in recent studies.

4.2.1 Direct impregnation. Quite a number of reports on
DE based nPCMs employed the impregnation technology
without vacuum, well known as the direct impregnation tech-
nology.”7>%¢%% This type of impregnation process appears to
provide a simple and low-cost set-up for synthesis unlike the

31892 | RSC Adv, 2021, 11, 31884-31922

vacuum-assisted type. In the direct impregnation process, the
PCM (impregnate) is mixed with the porous powder (supporting
material) at a specific melting temperature of the PCM, without
prior air suction. Konuklu et al.”> showed the effectiveness of
using the direct impregnation process to synthesize a DE based
nPCM, with paraffin as the PCM. They reported a maximum
paraffin absorption of 32%, obtained from a mixing ratio of
40 : 60 (paraffin : DE) as compared to other mixing ratios; 16%
for 20 : 80 and 24% for 30 : 70. Their nPCM with the highest
absorption showed very good thermal stability and successfully
passed the leakage test performed at 95 °C. This test is carried
out at high temperatures, especially in the vicinity of the PCMs
melting point, as a quality check to confirm the active materials
does not leak out. DE pre-treatments have received considerable
attention in the preparation of nPCMs.”>** As far as the
impregnation method is concerned, an improved sorption
ability of DE can accommodate for more PCM.*"** Xu et al.”*
studied the potential application of calcined DE as a supporting
material for a nPCM based on paraffin using a direct impreg-
nation method. In their work, they recorded an optimum
paraffin absorption of 47.44% obtained from a mixing ratio of
0.9:1.0 (paraffin:DE). As expected, the nPCM with the
optimum absorption capacity showed superior TES properties
compared to powders with different mixing ratios. In another
study showing the effects of pre-treatments on the absorption
capacity of DE, microwave heating was utilized.”® Konuklu
et al.,*® prepared nPCMs fabricated via the direct impregnation
method using microwave modified diatomite, using lauric acid
(LA). In that study, the microwave modification of diatomite led
to an increased absorption of the PCM on its surface and thus
showed an increase in the TES capacity as compared to nPCM
without microwave modification. They also reported an

© 2021 The Author(s). Published by the Royal Society of Chemistry
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PCM State of DE Optimum quantity of impregnant Type of impregnation Reference
Polyethylene glycol Raw 50 wt% Vacuum impregnation 43
GHL and GHM Raw 55 wt% Vacuum impregnation 81
Binary forms of Raw and calcined 36 wt% and 39 wt% Direct impregnation 73
(n-octadecane, paraffin
wax and liquid paraffin)
Paraffin Raw and calcined 47.37 wt% and 52.63 wt% Direct impregnation 74
Fatty acids Raw 40 wt% Fusion adsorption/ 78
direct impregnation
Hexadecane, Raw 80 wt% Vacuum impregnation 72
octadecane, and paraffin
Lauric-stearic acid Microwave modified n/a Vacuum impregnation 87
Lauric acid Microwave modified n/a Direct impregnation 88
Methyl stearate Dried at 120 °C for 24 hours 51.3 wt% Direct impregnation 86
Capric acid Raw diatomite 50 wt% Direct impregnation 132
Palmitic acid Dried at 120 °C for 8 hours 55 wt% Direct impregnation 134
Stearic-palmitic acid Dried at 105 °C for 1 hours 65.2 Wt% Vacuum impregnation 139
Capric-lauric acid Raw 53.6 wt% Vacuum impregnation 80

% GHL = galactitol hexa laurate; GHM = galactitol hexa myristate.

optimum microwave heating time of 1 minute, beyond which
TES properties deteriorated. To better predict the right DE
precursor for nPCMs, a number of studies focused on both
calcined and uncalcined DE powders.”>* Sun et al.”* prepared
nPCMs made from both raw and calcined opal using a direct
impregnation process. Here, nPCMs made from calcined opal
showed optimum absorption of the binary paraffin blends than
the raw opal sample. The highest absorption obtained were 39%
and 36% for the calcined and raw powders respectively. The
superior absorption (39%) of the calcined opal was attributed to
the increase in pore size and increased specific surface area
(61.56 to 84.79 m”> g~ '). The nPCM based on calcined opal
showed greater latent heat than the one based on the raw opal.
Other previous and recent reports that utilized the direct
impregnation method in the preparation of DE based nPCMs
are by Liu et al."*'* and Jia et al.,”** which are presented in
Table 1. It must be emphasized that in all these reports, the
interaction between the PCMs and the diatomite was confirmed
to be physical, without any chemical interaction from FTIR
measurements. The direct impregnation method is a facile,
cheap and eco-friendly route to commercially produce nPCMs
based on DE. Regardless of these attractive attributes, some
researchers use vacuum impregnation towards expecting
considerable improvements in the TES capacity of prepared
nPCMs. A study by Nomura et al.,”” however, alleged that
a trivial difference in the latent heat was obtained for both
direct and vacuum impregnation making the direct impregna-
tion method a cost-effective route to prepare DE based nPCMs.
Diatomaceous earth undergoes no chemical transformation
when subjected to an impregnation process, whether directly or
using vacuum. Away from thermal energy storage, Li et al.®
reported on the use of raw diatomite as a polysulfur absorbent
for lithium-sulfur batteries. In their work, the sulfur-diato-
mite-acetylene black composite was prepared via the direct
impregnation technology. The calculated adsorption capacity of

© 2021 The Author(s). Published by the Royal Society of Chemistry

diatomite was 6.14 x 10 * g g~ ', proving to be a better absor-
bent compared to acetylene black (5.31 x 10> g g ). Sche-
matically shown in their work and presented in Fig. 6,*
a diatomite-based sulfur electrode is seen to suppress the pol-
ysulfide diffusion significantly.

4.2.2 Vacuum impregnation. Although vacuum impregna-
tion comes with a complex set-up and relatively high cost, this
impregnation process has interesting applications."*>'¢ The
vacuum-assisted impregnation/vacuum impregnation could
allow for shorter synthesis time coupled with void-free systems
due to the absence of obstruction posed by impurities trapped
within the pores. Herein, air is sucked out of the porous powder
using a vacuum system prior to the loading process. Potentially,
the entire porosity of the supporting DE material could be
utilized to obtain optimum mass ratio of the PCMs for optimum
TES capacity. In a report by Karaman et al.,* a PEG/diatomite
composite PCM was prepared using vacuum impregnation.

discharge |°

discharge

° Sulfur particle in
discharge process

° Sulfur particle

° Acetylene black particle

Diatomite

Lithium anode

ogo@e Polysulfides

Fig. 6 Polysulfide suppression behaviour schematically illustrated for
(a) sulfur electrode without DE (b) sulfur electrode with DE.®*
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Herein, they reported that air was initially evacuated from the
pores on the surface of the diatomite sample followed by
injection with the liquid PEG. In their work, they reported
a complete dispersion of PEG into diatomite pores. This, they
claim, provided mechanical stability to the composite, hence
preventing seepage of melted PEG until a threshold of about
50% PEG in diatomite. Additionally, there was no chemical
interaction between PEG and diatomite composite prepared
using vacuum impregnation as confirmed by FTIR analysis.
Physical forces including capillary and surface tension forces
were observed between the functional groups of PEG and diat-
omite, preventing leakage and retaining PEG molecules within
the diatomite pores. Sar1 et al.** reported on the use of vacuum
impregnation for the synthesis of galactitol hexa-myristate
(GHM)/diatomite and galactitol hexa laurate (GHL)/diatomite
nPCMs. In their work, they also reported that the porous
structure of the supporting material provided good mechanical
properties to the composite. The maximum mass percentage of
GHM and GHL confined in diatomite were 52 and 51 wt%
respectively. Sar1 et al.®* also attributed the leakage behavior of
the PCM to the capillary and surface tension forces addressed
earlier, made possible through vacuum impregnation. Like the
nPCM reported by Karaman et al.,** Sar1 et al.** also reported no
chemical interaction between the components of their nPCMs.
In both reports discussed above, raw (uncalcined) diatomite
and the impregnation process involved the use of vacuum.
Efforts to improve the sorption ability are crucial for enhanced
TES application of DE based nPCMs. Growing attention given to
pre-treatments especially microwave heating has received equal
consideration prior to the vacuum impregnation process.*””
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Microwave heating is known to provide a uniform and rapid
heating compared to traditional heating methods.”®”*** Li
et al.¥” recently reported an improvement in the loading capacity
of diatomite after microwave-acid treatment compared to raw
diatomite using the vacuum impregnation method. As reported,
a certain amount of DE was mixed with 8% HCI solution and
irradiated at 700 W for 5 minutes in a microwave oven. Subse-
quently, air was sucked from the pores using vacuum and
loaded with LA-SA composition (lauric acid-stearic acid). Prior
treatment of diatomite via the microwave-acid route led to the
removal of impurities which blocked the pores, hence signifi-
cantly improving loading capacity. Albeit clear evidence of the
role conditions such as vacuum, in enhancing the absorption
properties of DE, detailed information about the effects of all
the processing parameters like vacuum level, time and
temperature on the structure and absorption properties of DE
remains lacking. A study by Qian et al.**® investigated the effects
of immersion time and temperature variations on the absorp-
tion capacity of DE. Their work illustrated in Fig. 7 showed that
PEG absorption increased significantly within the first 60
minutes, but remained almost unaffected beyond 60 minutes. It
was also demonstrated that an increase in temperature to 90 °C
at immersion times (10 and 30 minutes) resulted in significant
increase in PEG absorption. But after 60 minutes, they observed
almost no further increase in PEG absorption with increasing
temperature, thus proposing the optimal conditions as 60
minutes immersion time and maximum temperature of 90 °C.
To fully appreciate the effects of vacuum on the immersion
process, they repeated the protocol without vacuum and found
that the nPCMs prepared via the vacuum impregnation process
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(a and b) Adsorption capacity of diatomite as a function of temperature and time (c and d) adsorption capacity of diatomite in vacuum and
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had a higher PEG ratio than the direct impregnation process.
Another work by Zong et al.,*** explored the effects of vacuum
level, soaking time, and temperature on the content of their
PCM (stearic acid) in DE. Like Qian et al.,"*® Zong et al.'* re-
ported a significant increase in the amount of PCM in DE with
increasing temperatures until 80 °C, where it begins to reduce.
Increasing temperature improved the viscosity of the PCM and
made it easy for it to occupy the internal pores of DE. The
downside however is that further increase in temperature
promotes the volatilization of the PCM, subsequently leading to
a dramatic drop in its content in the supporting material.
Another important parameter, immersion time, proved to be
very crucial for the impregnation technology. Similar to the
report by Qian et al.,"* Zong et al.'*® also observed a gradual
increase in the absorption capacity with increasing time till
a limiting time of 2 hours, beyond which no further changes
were observed. The inconsistency between the reported peak
times depends on a lot of other synthesis parameters such as,
the PCM used, the state of the DE powder and the presence of
vacuum or direct immersion. Regardless of these parameters,
allowing enough time has the likelihood of yielding optimum
PCM amount in the supporting material. Having identified the
optimal time and temperature, Zong et al. further analyzed the
effects of vacuum levels on the absorption capacity of DE in
their nPCM using the pre-established conditions. They
observed an increase in the absorption capacity when vacuum
level increase from 0.01 to 0.03 MPa. Beyond 0.03 MPa, the
absorption capacity remained unchanged. It is without doubt
that DE, as a supporting material is ideal for TES, as such
finding optimal parameters to synergistically improve the
impregnation of PCMs is of the highest demand. It must
however be noted that, these conditions may differ for different
systems, considering the different characteristics of various
PCMs. A number of recent studies reported successes in
preparing DE based nPCMs using the vacuum impregnation
method”>#****! as shown in Table 1.

4.3 Deposition and etching

As a highly porous 3D structure with unique properties, diato-
mite represents a promising carrier and template for synthe-
sizing various composite materials for energy storage
applications. However, diatomite's primary limitations are its
high resistivity and low conductivity, making it not favorable for
energy conversion and other applications. Therefore, in the last
decade, significant research has been devoted to functionaliz-
ing and modifying diatom silica by different materials to obtain
novel composite structures with more efficient optical and
electrical properties using several strategies such as chemical
vapor deposition, atomic layer deposition and some wet
chemistry approaches. Deposition techniques enable the
coating of diatomite with metal nanoparticles, semiconductors,
carbon, polymers, and other materials while preserving the 3D
micro- and nanostructure and porosity. In most cases,'*"'*
where the focus is placed on the newly structured products, the
active component of interest is deposited on diatomite and
subsequent acid washing (etching) is done to get rid of the DE.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Elsewhere,' acid washing (etching) is not utilized since they
mostly focus on preparing DE based nanocomposites.

One material that is widely used for the decoration of diat-
omite is graphene. Despite the excellent physical, mechanical,
optical and electronic properties of graphene and the achieve-
ments in advancing its use as a supercapacitor electrode and
electrocatalyst, there is still a need to improve capacitive
performance and electrocatalytic efficiency.'®* This improve-
ment can be achieved through hybridization with, for example,
porous diatomite and transition metal oxides such as manga-
nese dioxides MnO,, due to their non-toxicity, low fabrication
cost, good catalytic activity, abundant availability and high
specific capacitance.'” A small-methane-flow chemical vapor
deposition process was used by Chen et al.'® for growth of
hierarchical biomorphic graphene (HBG) on diatomite. A pre-
cleaned diatomite powder was held under a mixed gas flow of
H,/Ar and methane to support the growth of the graphene layer
whose thickness can be changed by varying the concentration of
methane gas. Diatomite template was removed by immersing it
in a hydrofluoric acid (HF) (molar ratio of HF : H,O : EtOH
(ethanol) is 6.7 : 27.8 : 5.1) at room temperature. Afterwards,
the graphene powder was obtained by freeze-drying at - 90 °C
and reduced pressure. This new approach utilizes diatomite as
the growth template so that the derived HBG sample is highly
crystallized, retains the porous structure of diatomite and
contains fewer impurities. Flexible graphene films made by
adding graphene powder to an ethanol/terpineol solution con-
taining ethyl cellulose (EC) had much higher conductivity and
good bending resistance compared to reduced graphene oxide
and liquid-phase layered graphene, which opens the way for
applications in flexible transparent electrodes, polymer
composites, conductive inks, and printed electronics.

In a recent study by Le et al.,'** natural diatomite was used as
the bio-template for the chemical vapor deposition (CVD)
growth of 3D graphene structure subsequently doped with
nitrogen and deposited on MnO, nanosheets. The prepared
bifunctional material can be used as a high-performance
supercapacitor and oxygen reduction reaction catalyst. The
CVD method consisted of several stages: placing diatomite into
an Al,O; boat and a CVD system, reducing the pressure, heating
to 1050 °C, and annealing in an Ar gas flow at a pressure of 26.5
kPa. The growth of graphene started with the introduction of H,
and CH, into the system. The next step was etching the diato-
mite template by mixing the resulting composite with a KOH
solution in an autoclave at 80 °C for 16 h. After etching, 3D
graphene was doped with nitrogen (3D N-G) using a hydro-
thermal reaction to improve the electrochemical properties of
the obtained porous graphene structure. Finally, N-doped gra-
phene was mixed with KMnO, and ultrasonically treated to
obtain a MnO, decorated (3D N-G) labelled as N-doped 3D
graphene@MnO,. Four different N-doped 3D graphene@MnO,
hybrid systems were obtained depending on how long the
mixture was autoclaved (1, 3, 5, 7 h). SEM and TEM images
illustrated that graphene retained the diatomite's porous
structure and morphology after removing the template. More-
over, hierarchical channels and pores that penetrate through
the graphene walls can facilitate contact between the electrode
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and the electrolyte and improve ion/electron transfer so that
redox reaction can occur at high current density without the loss
of capacitance. Uniformly deposited MnO, nanosheets, the size
and density of which are directly dependent on the reaction
time, improved the electrochemical characteristics. N-doped
graphene@MnO, has proven to be an effective electrocatalyst
in the oxygen reduction (ORR) reaction due to the more active
surface area and accelerated O, diffusion and electron transfer.
The results obtained in this article clearly show that such hybrid
structures are very promising for use in ORR catalysts and
supercapacitor electrodes.

Another recently published study'” found that manganese
oxide deposited onto carbon nanotubes (CNTs)/graphene/
diatomite substrate exhibits high specific capacitance, good
rate capability, and excellent cyclic stability and therefore has
great potential for energy storage applications. In this work,
graphene was deposited on diatomite through the CVD process.
At the same time, the carbon nanotube seeds were uniformly
grown by bimetal seeds deposition and subsequent CVD on the
surface of the prepared graphene/diatomite. In the final stage,
MnO, nanosheets were attached to the surface of the CNTs/
graphene structure via a one-pot hydrothermal method. The
preparation process of the MnO,@CNTs/G/diatomite
composite is illustrated in Fig. 8. An interconnected
network of CNTs with a diameter of around 10-50 nm and 3D
porous graphene facilitates the electron transfer rate and
increases active surface area whereas uniformly encapsulated
porous MnO, nanosheets provide the infiltration of electrolyte
and decreased ion diffusion path. The authors also investigated
the asymmetric supercapacitor (ACS) based on MnO,@CNTs/G/
diatomite and microwave exfoliated graphite oxide (a-MEGO) as
positive and negative electrodes. The ACS capacitor revealed
high energy density (64.4 W h kg™ " at a power density of 451.5 W
kg™ ") and power density of 19.8 kW kg™ " (at an energy density of
6.7 W h kg™).

The studies mentioned above have shown that diatomite can
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be used as a template for the fabrication of three-dimensional
newly structured/hybrid materials with
and

improved photo-

catalytic electrochemical  performances through

CVD
| growth

MnO:@CNTs/G/diatomite CNTs/G/diatomite

Fig. 8 lllustration of the MnO2@CNTs/G/diatomite composite
fabrication.**®
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a deposition process often followed by etching of the template.
Deposition techniques, although reliable come with a lot of
complexities and high cost, raising a lot of concerns about
potential commercialization. As mentioned earlier, depositing
new materials on diatom silica can equally be achieved via facile
wet chemistry routes which are discussed in the subsequent
section.

4.4 Wet chemistry synthesis

For energy storage applications, the large surface area and
highly porous network structure of diatomite provides the
opportunity to maximize electrochemical reactions. Earlier
sections have confirmed the prohibitively high synthesis cost
and the ‘ungreen’ nature of some processing techniques as
a major limitation to the commercialization of processes that
offer alternate materials for energy storage applications. Wet
chemistry synthesis shows high potential in enhancing the
usability of diatomite for energy applications with the hydro-
thermal method receiving quite an attention in the past years.
Hydrothermal synthesis is a process that produces single crys-
tals that depend on the solubility of minerals in hot aqueous
medium under high pressure.**®

Jiang et al.*** dissolved purified diatomite and other inor-
ganic compounds in an aqueous solution under magnetic stir-
ring and later utilized Teflon-lined stainless steel autoclave at
a 180 °C for 24 hours to achieve the hot medium-high pressure
step of the hydrothermal synthesis after which subsequent
washing was carried out. Through this approach, the inner and
outer surfaces of diatomite were successfully decorated with n-
Fe,O; to form 3D porous structure that enhanced the specific
capacitance of n-Fe,O; nanospheres/diatomite composites.
Similarly, Jing et al.*** used the hydrothermal synthesis to form
a Ni-Co LDH@diatomite composite which exhibited capaci-
tance retention of 94.2% after the 5000-cycle test at a current
density of 2 A g '. Yang et al,' employed diatomite as
a template in the preparation of a MoS,/amorphous carbon
composite for supercapacitor applications. After the hydro-
thermal synthesis, the diatomite was removed by using a 40%
HF solution for 12 hours. The retention of the diatomite
structure after the HF soaking ensured a unique microstructure
of the MoS,/amorphous carbon composite which is shown in
Fig. 9.1 This led to improved electrochemical properties with
93.2% capacitance retention after 1000 cycles. Li et al.*** used
a two-step hydrothermal synthesis followed by an in situ poly-
merization route to form a D@FeOOH®@PPy complex which
showed enhanced electrochemical performance and potential
for electrode material for energy storage.

Li et al.*® studied the MnO, nanostructures replicated from
diatoms using a simple hydrothermal process for applications
in high-performance capacitors. Their study showed that MnO,
diatom replicas exhibit high specific capacitance, good cycla-
bility and rate capability, which depend on the diatoms' shape.
Guo et al> demonstrated a new and facile approach for the
fabrication of supercapacitors based on hollow diatom silica
structures coated with TiO, nanospheres and MnO, meso-
porous nanosheets (diatomite@TiO,@MnO,). The fabrication
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route of the complex composite included three steps: purifica-
tion of diatomite to obtain hollow silica microshells, the
deposition of the TiO, nanospheres layer by hydrolysis, and
metathetic reaction using TiF, precursor, followed by deposi-
tion of the MnO, nanosheets using hydrothermal decomposi-
tion of KMnOy,. It was shown that the diatomite@TiO,@MnO,
electrode exhibits larger specific capacitance, better rate capa-
bility, lower resistance, as well as long cyclic stability, and a high
coulombic efficiency in comparison with literature data on
MnO, capacitors. This is because the deposition of TiO, on
porous diatomite represents the appropriate highly aligned
substrate with open-pore channels for improved electronic
transport of MnO,, thus increasing the specific surface area and
enhancing the electrical conductivity of diatomite. At the same
time, MnO, ensures a high surface for contact with ions in the

electrolyte.
Diatom coated nanocomposite materials have been widely
studied for potential applications as photo-

catalysts,*®5398120.146-149 Among the many materials reported,
diatomite coated with nanosized semiconducting TiO, particles
has been extensively used as a photocatalyst. In the study by Jia
et al.,"** TiO, was deposited onto the diatomite by employing
layer-by-layer (LbL) assembly method, which is based on the
electrostatic interactions between oppositely charged surfaces.
The pre-calcined diatomite was firstly immersed into a colloidal
solution of TiO,, followed by filtration and rinsing with distilled
water and then the immersion of the derived product in phytic
acid, which served as a molecular binder which was subse-
quently removed by thermal treatment at 400 °C. The obtained
results demonstrated the uniform distribution of TiO, nano-
crystals with a size of ca. 5-10 nm. The surface area and volume
of mesopores increased with an increasing amount of the
deposited TiO, which strongly depends on the number of
deposition cycles. The TiO,-diatomite hybrid structure
prepared by the LbL method represents promising candidature
of such a route for photocatalytic applications.

He et al.** used HCl-treated diatom cells as a template to
obtain TiO,-coated SiO, photocatalyst. In this study, titania-
coated diatom frustules were prepared by immersing cleaned
frustules in a vessel containing 5% titanium tetraisopropoxide
(TTIP) in isopropanol for 24 h with subsequent calcination
treatment at 773 K in air to remove residual organic parts. X-ray
fluorescence (XRF) measurements confirmed the preservation
of SiO, and carbon contained in diatom cells which was self-
doped into this structure upon treatment with the calculated
molar ratio of Ti, Si, and C 8:1:4. According to the FTIR
spectra, diatom-templated TiO, consists of matrix-isolated TiO,
layers on silica frustules' surface while TEM images revealed the
fine hierarchical structure of such a composite, where the
diameter of a titania nanoparticle was approximately 10 nm.
Due to biomorphic hierarchical structures, TiO, coating, and
carbon doping, a higher absorbance in the visible region and an
improved photocatalytic efficiency was obtained for the photo-
degradation of rhodamine B under visible-light irradiation in
comparison with the commercial Degussa P25 TiO,.

Another approach for preparing TiO,/diatomite composites
for photocatalytic applications is demonstrated by Wang et al.**®
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TiO, was immobilized on diatomite by adding dropwise tetra-
butyl titanate (TBOT) as a precursor into the diatomite
suspension under stirring. The subsequent addition of ethanol-
water solution led to the hydrolysis of the TBOT at a moderate
rate followed by stirring for 12 h, oven drying at 105 °C and
calcination at 450-950 °C for two hours in the air. XRD results
showed an increase in crystallite size and content of the rutile
phase with the increase in calcination temperature. TiO,
nanoparticles with an average size in the region of 15-30 nm
were uniformly distributed on the diatomite surface. TiO,/
diatomite composites with a 90/10 mixing ratio of anatase/rutile
phase, calcined at 750 °C for two hours, showed the best results
of the photocatalytic degradation of Rhodamine B under UV-
light. The photoactivity of the catalyst is mostly affected by
calcination temperature but also depends on the crystalline size
and anatase/rutile ratio.

The photocatalytic performance of TiO,-functionalized
diatom samples for indoor air purification was evaluated by
Ouwehand and colleagues.™® Acid-treated and calcined diatom
frustules were added to the dissolved titanium(v) oxysulfate-
sulfuric acid hydrate, and the mixture was stirred and heated
until all the liquid evaporated followed by calcination in air at
500, 550, 600, and 650 °C for 3 or 6 h using different precursor
ratios. XRD analysis showed that the only crystalline phase
present in the calcined samples is anatase with no rutile phase
observed at calcination temperatures of 550-650 °C. It was also
demonstrated that the silica substrate limited the nanoparticle
growth and effectively thermally stabilized the TiO,. The sample
with 18.2 wt% titania loading, calcined at 550 °C for three hours
showed 2.5 times higher catalytic activity in the decomposition
of gaseous acetaldehyde in comparison with the P25 TiO, due to
a smaller particle size of the active anatase phase and a stabili-
zation of the titania particles on the silica surface. Titania-
functionalized samples showed promising results in realistic
conditions for the purification of indoor air as well.

The Cu,0-ZnO/diatomite composite was also reported as
a potential photocatalyst in the treatment of red water from TNT
manufacturing.”® The sulfuric acid-treated diatomite was
added to the mixture of zinc chloride solution with different
concentrations (0.05 M, 0.1 M, 0.2 M, and 0.3 M), 1 M sodium
potassium tartrate, and 5% (w/v) polyvinyl pyrrolidone. Zinc
oxide was deposited on the diatomite surface upon heating of
this mixture to 95 °C. The next step was immobilization of
cuprous oxide by adding 0.5 M copper sulfate and 1 M reductant
glucose, stirring, and heating with subsequent drying of the
precipitates. According to the results, the photocatalytic
performance of such composites depends on the concentration
of zinc oxide. The optimal optical properties and photocatalytic
activity were achieved in the sample with the molar ratios of
ZnO versus Cu,O 4 : 2.5 since the degradation rate of red water
was 72.8% after illumination by visible light for 4 h.

Fang et al™' investigated a highly efficient solar vapor
generator obtained by the deposition of Ag nanoparticles on
diatomite using a chemical plating process. Diatomite treated
with a mixture of concentrated H,SO,, and H,0, was added into
a 2.3 wt% SnCl,. After stirring and rinsing with distilled water,
the sample was mixed with silver-ammonia solution and
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C,4H,06KNa-4H,O0 to finish the chemical plating process. Ag/
diatomite composite combined with a filter paper, an air-laid
paper, and a polystyrene foam showed excellent vapor genera-
tion performance under one-sun illumination at room
temperature due to the synergy of the localized surface plasmon
resonance (LSPR) effect of Ag nanoparticles and the confine-
ment effect in porous micrometer sized diatomite.

Wet chemistry syntheses are efficient ways to structure new
materials and prepare hybrid products using diatomite as the
base component. These wet chemistry processes end up
depositing a material on diatomite just like the deposition
method discussed earlier. These techniques have shown that
the processes efficiently yield positive outcomes. Also, they are
quite straightforward and environmentally friendly. Future
works that may consider these techniques could focus on pro-
cessing parameters such temperature and time on the overall
properties. Note here that the DE samples used in these works
were in purified form.

4.5 Displacement reactions

The quest to produce nanostructured materials has witnessed
a number of new synthesis techniques.”"** Among the many
interesting techniques, metallothermic reduction reaction
(MRR), a type of displacement reaction has gained a lot of
attention. A mini review by Xing et al. provides a historical view
of the process and highlights current trends using this tech-
nique.” This displacement reaction type employs highly reac-
tive metals to produce a wide range of products from stable
compounds such as oxides, sulfides and halides."*"%' Materials
obtained from MRR are metals, alloys and composites.'””
Typical reactive elements used in MRR are lithium, sodium,
magnesium, aluminum and intermetallics like Mg,Si for the
reduction of oxides and sulfides.’*®**%* Aside MRR, a number of
reduction methods are known to the scientific community.
Most popular among them are the carbothermal process and
the electrolytic process.®*'% It is through one of these routes
(carbothermal process) that the metallurgical grade of silicon is
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produced. This technique involves the use of a carbon source
where reaction temperatures can go as high as 2200 °C.***
Although useful for commercial production of high purity
silicon, the carbothermal process is not highly regarded as the
best approach to achieve silicon nanostructuration. This high
temperature process poses a huge concern for silicon-based
materials with nano-scale morphology. At high temperatures,
particles may agglomerate and pores may disappear. For these
reasons, MRR is highly touted as an appropriate route to reduce
diatomite to nanostructured silicon-based materials for energy
applications. In recent times, a number of different modifica-
tions to this technique have been reported, giving rise to
a conventional and non-conventional MRR.

4.5.1 Conventional MRR. Ever since Sandhage et al.’® re-
ported on the use of Mg vapor to reduce diatom frustules to
porous silicon, several groups have also reported on the
synthesis of silicon nanostructures such as nanocrystals,'*

nanoporous films,*” porous silicon' and 1D nano-
structures'**'’® from the same metallothermic reduction reac-
tion. Most of these publications have focused on

magnesiothermic reduction reaction, often referred to as MRR.
Apart from magnesiothermic reduction reaction, other poten-
tially interesting processes are aluminothermic reduction
reaction and silicothermic reduction reactions.”*”® Metal-
lothermic reduction reactions, based on the reductant, offer
a rather lower synthesis temperature to producing new mate-
rials and high purity products. The criteria for selecting
a particular processing route when it comes to diatomite are
always influenced by the ability to preserve the morphology.
This definitely makes MRR a better candidate over carbo-
thermal reduction. Even though MRR is suitable, a number of
factors are crucial for effective control of the morphology. In an
excellent review by Entwistle et al,'® the parameters which
affect the size and structure of the silicon-based material were
addressed, although very little attention was given to pre-
treatments such as calcination and ball-milling. In their
review, the following reaction conditions were reviewed;

4HCl(aq) .
S Filtration Si)
ZMgCIz(aq, —
e — | Sig+2Mg0y 2H:0

Pre-treatment Reaction Conditions

« Stoichiometry
« Reactor sealed/open

« Temperature + ramp rate
« Reactiontime

« Combining samples
mixing/grinding

« Thermal moderator
distribution

« Atmosphere, inert/vacuum
« Alternative routes

Post-Reaction

« MgO and Mg,Si removal
« SiO; remaining

Product Quality
« Crystallinity
+ Porosity

« Morphology

Fig. 10 Flowchart of the magnesiothermic reduction reaction and the key design parameters at specific stages.*#°
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reaction temperature, reaction time, crystallite size, ramping
rate, reaction ratio, powder mixing and heat scavengers. The
summary of their study is presented in Fig. 10 (ref. 180) and
shows the critical reaction conditions at various stages of the
synthesis process. Lately, a new trend in MRR'®** used purposely
for structural control has caught the attention of many.'®*'%
Albeit MRR being suitable over the conventional carbothermal
reduction process, structural control is not a guarantee. The
amount of heat released in this highly exothermic reaction
raises the temperature of the system to temperatures signifi-
cantly higher than the actual experimental temperature. This
poses another concern which was recently tackled through the
use of inorganic salts. The pioneering work of Batchelor et al.***
revealed the role of salt as a thermal moderator in the highly
exothermic reduction reaction using magnesium vapor.
Following this great lead, a number of works centered on diat-
omite made use of inorganic salts to complement the already
favored MRR process.**"'>'#71% I a]] these reports, the reduc-
tant used was magnesium. The ready availability, low cost, low
toxicity and low melting temperature make magnesium the
most preferred reductant among the lot. On the contrary,
a recent study by Lai et al.'”® showed huge structural changes
and damage to morphology with the use of Mg even though it
proved to be an effective reducing agent below its melting point.
Aluminum, however, was an effective reducing agent at its
melting point or above and offered a better structural and
morphological control as compared to Mg. The improved
structural control was attributed to the presence of alumina,
which enhances the mechanical properties of the product
silicon. It was also reported that calcium was an ineffective
reducing agent for silica. Due to this, Lai et al.'”® suggested
a reducing mixture of 70% Mg and 30% Al which could offer the
least amount of morphological damage and present a lower
temperature than that required when using Mg or Al individu-
ally. This recommendation coupled with thermal moderators in
the form of inorganic salts could help address the challenges
faced with MRR. MRR is well-known in diatomite nanotech-
nology as a means to obtain pure elemental silicon or other
silicon-based materials. Applications where MRR was selected
as the synthesis route include both energy harvesting and
storage technologies. These are battery anodes, thermoelectric
generators, nano-Si coating on Si based solar cells and design of
electrodes for supercapacitors. In a study by Shen et al.,'*® Si was
synthesized from diatomite using the MRR route. A porous Si
powder with pore size identical to that of the precursor diato-
mite powder was obtained after magnesiothermically reducing
the precursor powder at 650 °C for 6 hours as shown in eqn (1).
The centric diatom frustule described in their work as
a sunflower was damaged after the MRR and subsequent HCI
washing while the powder particle size decreased from 25 pm to
10 pm for both precursor diatomite and obtained porous silicon
respectively. Also, an increase in the surface area of the diatom-
based silicon (96 m*® g~ ') and original DE with surface area of 6
m?® g7', a requirement for most energy applications was re-
ported. In addition to the native nanopores inherent to the
precursor diatomite, mesopores were found in the porous
silicon powder. This, they attributed to the formation of MgO
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and the subsequent washing with HCIl varied significantly.
Albeit the sunflower shape of the frustule not being preserved,
the porous structure remained almost the same, suggesting
MRR as an efficient approach to retain the porous structure of
DE. To obtain pure silicon after the MRR, HCl is frequently used
to dissolve MgO and further rinsing with deionized water. In
quite a number of works,?¢**>'¥>1% HF was used following HCl
washing to dissolve all unreacted silica as a way to obtain pure
Si. In the work of Shen et al.'*® only HCI was reported, sug-
gesting an eco-friendlier approach but also accounting for the
traces of unreacted silica in the porous silicon powder as
detected by Raman spectroscopy. However, in a later work,'®”
the possibility to fully reduce diatomite to silicon was demon-
strated. The protocol used was almost the same with the
exception of an adequate powder mixing made possible through
ball milling. The powders prior to the MRR process were ball
milled at 350 rpm for 5 hours to decrease the particle size of
diatomite and obtain a homogenous mixture. This additional
step may have provided more reaction sites, promoting full
reduction of diatomite to silicon. The high purity silicon ob-
tained possessed a high specific surface area (131 m> g ')
compared to the as-purchased diatomite (1 m* g™ %) due to the
small particles size (less than 2 pm) and porous structure (10-70
nm). In a similar work by Wang et al.,** a porous silicon powder
was obtained after magnesiothermically reducing a purified
diatomite powder. This diatomite powder was purified prior to
the MRR process. Apart from the purification process, the
protocol was almost the same as reported by Shen et al.**® Aside
the retained mesopores and macropores retained from the
diatomite powder in the product silicon powder, there was an
increase in micropores after the MRR process. The use of an
inorganic salt for scavenging excess heat produced from the
MRR of diatomite was reported by Luo et al.'® In their work, the
use of NaCl resulted in a product silicon with cylindrical
architectural features retained from the precursor diatomite.
This particular trend has been reported in a number of
studies,*®"'>183155 guggesting an effective way to control the
overall temperature in the MRR. This high purity silicon had
a rough surface occupied with ultrafine Si particles (~10 nm).
In a more recent work by Zhang et al.,* a Si/SiO, composite was
synthesized via MRR. Here, the effect of the reaction time
during MRR on the phase composition of the reaction product
was explored. Reduced reaction time is reported to lead to
optimal ratio between the formed silicon and DE based silica.
Most importantly, aside from the possibility to create a Si/SiO,
composite, Zhang et al.*® report that increasing reduction time
had significant effects on the specific surface area of the
diatomite-silicon sample (D-Si). The specific surface area
increased from 78 (D-Si-2 h) to 14 8 m”> g~ * (D-Si-6 h) when the
reaction time was increased from 2 to 6 hours which could be
attributed to the removal of organic moieties and a subsequent
creation of mesopores during the reduction reaction. On the
other hand, a decline in the specific surface area was observed
after further increase in reaction time to 10 hours. D-Si samples
reduced for 10 hours had a specific surface area of 85 m* g~ .
This decline was attributed to an increase in the crystalline
silicon domain and a possible collapse/widening of the pores
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after a prolonged reduction. D-Si-6 h (diatomite-silicon-reaction
time of 6 h) sample showed an optimal ratio of crystalline Si
domains embedded within the amorphous SiO, matrix. All the
D-Si samples synthesized in their work showed small (=10 nm)
and large pores (=30 nm), signifying a hierarchical structure.
The D-Si-6 anode showed almost the same morphology as the
precursor diatomite which had the potential to enhance elec-
trolyte diffusion inside the bulk electrode and as well limiting
the volume changes in Si during charge/discharge cycles.
Interestingly, as the Si domains provide lithium storage
capacity, the amorphous SiO, matrix provides stability. This
synthesis approach by Zhang et al.* offers greater control of the
outcome of MRR, leading to the development of other poten-
tially applicable anode composites. Not only has conventional
MRR dominated the scientific headlines, it has also led to the
introduction of other facile synthesis routes, also referred to as
non-conventional MRR.

4.5.2 Non-conventional MRR. A number
conventional MRR have been reported.’*®'** In a study by Wu
et al.,'®® SiO, was produced via the magnesio-mechanochemical
reduction reaction of diatomite. The partial reduction by
magnesium was induced by high powder milling which led to
a highly porous SiO, powder after HCI purification. Wu et al.*®*
demonstrated the possibility to use mechanical milling to
promote MRR in the presence of magnesium termed as
Magnesio-Mechanochemical Reduction process (MMR). Unlike
the aforementioned displacement reactions which require
somewhat high reaction temperatures (650-900 °C), this
approach did not require an external heat source. As compared
to the majority of the previously reported MRR routes, the MMR
process reported by Wu et al.*®® offers the easiest, cheapest and
simplest synthesis route to produce silicon-based anode mate-
rials from diatomite. The resulting diatomite-based anode
(MMRD_Si indicating magnesio-milling reduced diatomite_Si)
exhibited desirable powder characteristics for optimum
batteries, markedly an enlarged Brunauer-Emmett-Teller (BET)
surface area (from 25 m” g~ for the DE to 134 m> g ' for
MMRD_Si) and a simultaneous increase in pore volume in the
likewise manner (0.02 cm® g™ to 0.10 cm?® g~ *). The MMRD_Si
anode, identical to the SiO,/Si network reported by Zhang®
consisted of SiO, nanodomains with highly crystalline Si
domains in the ratio 51.4%, 48.6% respectively. Such a system,
otherwise known as SiO,, has been identified as a better
candidate than pure silicon. The highly desired silicon oxide
(SiO,) is best described as nano-sized clusters of SiO, and Si
with suboxide-type interface** and reportedly show the smallest
volume changes (160%) in comparison with SiO, and Si** upon
lithiation. The derived MMRD_Si anode without C-coating,
showed excellent cycling stability up to 2000 cycles with
a capacity retention of 71.3% after cycling at 4 A g~ '. Wu et al.*®®
attributed the exceptional electrochemical performance of the
anode to factors including the presence of both nano-sized Si
domains and retained SiO, at the nanoscale and the intrinsic
porous structure, all of which contribute synergistically to the
properties of MMRD_Si anode. Another type of a non-
conventional reduction process was demonstrated by Liang
et al.'® Described as deep reduction and partial oxidation, this

of non-
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process relies on the use of excess Mg which favors the forma-
tion of otherwise unwanted by-product (Mg,Si) as the main
product as depicted in the reaction in eqn (2), with by-product
MgO and unreacted Mg. The product Mg,Si is further
oxidized, yielding both Si and MgO is shown in eqn (3). This
synthesis route ensures a full reduction of the starting silica
powder and thus requires no HF purification to wash unreacted
DE. This could potentially increase the silicon yield. Aside from
the yield, a silicon product with nanostructure identical to the
parent DE was formed. A major concern for this approach is the
in situ oxidation of silicon produced from Mg,Si. According to
Liang et al'® via a controlled annealing temperature, no
significant formation of SiO, was observed. Even though the
oxidation rate of Si by O, at the partial oxidation process is slow,
a thin layer of SiO, was formed around the product silicon.

Mg + SiO, — Si + MgO (1)
4Mg + SiO, — Mg,Si + MgO + unreacted Mg (2)
Mg,Si + O, + Mg — Si + MgO (3)

Even though the conventional and non-conventional MRR
appear somewhat less expensive to use and eco-friendly
compared to other complex synthesis routes, they still have
not reached a full scale commercialization due to issues such as
yield and less control over outcome of synthesis. Diatomite has
seen extensive research involving displacement reactions
because it is the most suitable, cheapest and eco-friendliest
precursor for silicon-based materials with nanoscale morphol-
ogies. Undoubtedly, displacement reactions lead to a wide
range of possibilities and significant modifications in this area
could potentially bridge the gap between current state of prog-
ress and commercialization. Tuning the parameters of MRR has
also shown incredible results. Crucial among the list of tunable
parameters are the reaction time and molar ratio as reported by
Liang"® and Zhang et al.*® Further studies of these approaches
could lead to a more controllable synthesis process.

Although synthesis processes delivered interesting DE-based
materials that led to significant breakthroughs in their respec-
tive areas of application, a number of challenges remain that
require further attention and improvement. The advantages
and disadvantages of these synthesis processes are summarized
in Table 2.

5. Energy storage applications

The potential application of diatomite in the energy industry
covers a broad spectrum of energy storage systems. Here,
a summary of previous and current progress made with the use
of diatomite in energy storage systems are briefly discussed.

5.1 Thermal energy storage (TES)

Following the thorough review of processing techniques to
preserve the highly porous and desirable structure of DE, this
section provides up-to-date review of literature that incorpo-
rates DE as a supporting material for PCMs. In earlier sections,
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Table 2 Merits and Demerits of the main synthesis processes

View Article Online

Review

Main synthesis process

Merits

Demerits

Impregnation technology

Deposition and etching

Wet chemistry synthesis

Displacement reactions

1. Eco-friendly, low cost and facile synthesis

2. Purely physical interaction between
precursors maintains a high purity PCM

3. Suitable for a wide range of PCMs

1. Less time required for large scale production
2. Uniform and homogeneous coatings of new
material produced

3. High purity DE-templated materials produced
after etching

1. Fast and facile approach to immobilizing new
materials on DE

2. No complex set-up required for synthesis

3. Relatively low synthesis temperatures

1. Relatively lower synthesis temperature as
compared to carbothermal reduction of SiO,

2. A wide range of products and composites
possible; Si, Si/SiO,, Mg,Si, Si/Mg,Si and MgO
when Mg is the reductant

3. Reductant such as Mg and Al are cheap and

1. Requires unclogged and undamaged frustules
2. Extra vacuum system may be required to
achieve maximum encapsulation

1. Requires a complex set-up and expertise
2. Could require high synthesis temperatures

3. High cost of synthesis
4. U