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gas sensing using a single-walled
carbon nanotube field-effect transistor-based logic
inverter†

Salomé Forel, ‡§* Leandro Sacco, ‡{* Alice Castan, k Ileana Florea
and Costel Sorin Cojocaru
Single-walled carbon nanotubes (SWCNTs) are promising candidates

for gas sensing applications, providing an efficient solution to the

device miniaturization challenge and allowing low power consump-

tion. SWCNT gas sensors are mainly based on field-effect transistors

(SWCNT-FETs) where the modification of the current flowing through

the nanotube is used for gas detection. A major limitation of these

SWCNT-FETs lies in the difficulty to measure their transfer curves,

since the flowing current typically varies between 10�12 and 10�3 A.

Thus, voluminous and energy consuming systems are necessary,

severely limiting the miniaturization and low energy consumption.

Here, we propose an inverter device that combines two SWCNT-FETs

which brings a concrete solution to these limitations and simplifies

data processing. In this innovative sensing configuration, the gas

detection is based on the variation of an electric potential in the volt

range instead of a current intensity variation in the microampere

range. In this study, the proof of concept is performed using NO2 gas

but can be easily extended to a wide range of gases.
Introduction

Reliable, effective and sensitive detection of toxic or pollutant
gases is a key point to provide appropriate responses to envi-
ronmental and health issues. One of the major challenges for
the sensor industry is the production of miniaturized, highly
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sensitive and low-cost devices with fast responses operating at
room temperature.1 Currently, the most commonly used
portable gas sensors are based on semiconducting metal
oxides.2,3 One of the major drawbacks with this sensor tech-
nology is its operating temperature, usually higher than 200 �C
which leads to a high power consumption.4,5 During the last
decades, novel materials such as conductive polymers,6,7 2D
layered transition metal dichalcogenides,8 metal nano-
particles,9 graphene10 and carbon nanotubes11 have been used
to improve the key gures of gas sensors such as response,
selectivity, stability, detection limit, and response/recovery
times. Due to their remarkable electronic and mechanical
properties, combined with their extreme sensitivity to their
surrounding environment, single-walled carbon nanotubes
(SWCNTs) represent a very promising alternative for the devel-
opment of new sensors.12–19 Usually, these gas sensors are in the
form of SWCNT-FET devices and are based on gas exposure-
triggered modications of the SWCNT electrical
response.15,17,20–26

The reactivity of pristine SWCNTs (i.e. non-functionalized
SWCNTs) is usually described by two different phenomena:
a modication of the height of the Schottky barrier at the
SWCNT/electrode junction, or a doping of the SWCNT.27 Pris-
tine SWCNTs in classical SWCNT-FET devices have shown an
enhanced reactivity to electron donor gases such as NO2 (ref. 17)
and acceptor gases like NH3.22 In addition to the high sensitivity
and low power consumption that characterizes the integration
of nanomaterials as active elements in sensors, SWCNT-based
devices offer a versatile platform to detect specic species by
a functionalization of the SWCNTs5 or proper engineering of the
metal electrodes.28 Furthermore, SWCNT-FETs on exible
substrates have been fabricated to promote applications
compatible with wearable electronics.26 However, one of the
major disadvantages of usual SWCNT-FET based gas sensing
devices lies in the difficulty to measure the characteristic
transfer curve. Indeed, the current owing through the SWCNT
is usually in the range of 10�12 A up to 10�3 A,29 requiring
a complex, costly and energy intensive measurement chain
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Logic inverter electrical characteristics under a N2 atmosphere. (a) Schematic view of the CMOS device. (b) Characteristic of the inverter
for VDD ¼ 2 V, 4 V and 6 V (i.e. V+ ¼ 1 V, 2 V and 3 V, and V� ¼ �1 V, �2 V and �3 V) inset: simplified ideal equivalent circuit corresponding to the
regime I, II and III of the characteristic of the inverter for VDD ¼ 2 V. (c) Characteristic of the inverter for a square input voltage (Vin) of alternatively
�4 V and �11 V and a VDD fixed at 2 V (i.e. V+ ¼ 1 V and V� ¼ �1 V).
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which severely limits device miniaturization and the expected
energy savings. Another difficulty concerns the interpretation of
the modication of the Ids–Vg transfer curve aer gas exposure.
Since during gas exposure, many parameters can be modied
simultaneously (such as on and off current values, the threshold
voltage, and the shape/slope of the transfer curve), nding the
proper parameters for a rapid and simple data treatment to
determine gas concentration is challenging. These constraints
remain a major problem towards the implementation of these
sensors into usable products.

In order to overcome such drawbacks, it is necessary to shi
from an analog to a digital conversion. Previous works have
demonstrated the implementation of logic circuits for gas
sensing applications.9,30–34 Particularly, Shulaker et al.5 used
a 3D integrated circuit architecture, containing more than one
million carbon nanotube FET-based gas sensors for inputs
combined with silicon-based FET devices, all fabricated on
overlapping vertical layers. These works mainly prove the
concept of using logic circuits as gas sensors, however, they do
not provide insight into the gas sensing response as a function
of concentration.

Based on previous work done in our group, we focus here on
the design and sensing performance of a gas sensor only based
on SWCNT-FET technology, where an inverter conguration is
used to simplify both the measurement chain and data analysis.
Our device is based on the combination of an active p-type
SWCNT-FET sensor with an n-type SWCNT-FET device to
obtain a complementary metal–oxide–semiconductor (CMOS)
logic inverter. The operation principle of SWCNT-based
inverters is similar to that of conventional silicon devices,35,36

but the implementation of a CNT as the conduction channel
promises to outperform the existing MOSFETs since CNT-FET
devices allow device miniaturization.37,38 Interesting works
have been done in order to compare the performances of
© 2021 The Author(s). Published by the Royal Society of Chemistry
conventional MOSFETs and SWCNT-FET devices.39–41 In the
inverter conguration, when an adapted input gate voltage is
applied, we obtain an output signal in the form of a voltage (of
the order of one volt), much easier to measure than low current
values. Moreover, by applying an alternating input signal pre-
senting a square shape, we also limit the shape of the electrical
response of the device under gas exposure to a modication of
the amplitude of the square output signal. Here, the sensor is
built for NO2 gas detection, taking advantage of the reactivity of
pristine SWCNTs to this gas,17,42 but the general developed
method could be extended to the detection of other gas analytes
using for instance specially functionalized SWCNTs.
Results and discussion

SWCNTs were synthetized on SiO2/Si wafers (200 nm thermal
oxide layer), from an iron-ruthenium (Fe–Ru) catalyst through
hot lament chemical vapor deposition (HF-CVD) following
a previously described process.43 40 nm thick palladium elec-
trodes were subsequently deposited on the as-synthesized
SWCNTs using a standard UV lithography process44 (see
Fig. S1 and S2†). The characterization, stability and reproduc-
ibility of the response of our p-type SWCNT-FETs under NO2

exposure have been reported in a previous work,42 nevertheless
the stability and reproducibility of the response under gas
exposure have been tested and are described in the ESI in
Fig. S6.† Aer exposure to NO2, the device was exposed to
a constant ow of N2 to desorb the NO2 molecules until the
recovery of its initial characteristic (see Fig. S4†), as shown
previously.42 In order to obtain n-type transistors, poly-
ethylenimine (PEI) was used to cover some of the transistors
(see Fig. S2†), following the process reported by Shim and
coworkers.45
Nanoscale Adv., 2021, 3, 1582–1587 | 1583
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Fig. 2 (a) Ids�Vg characteristic of the p-type SWCNT-FET before and
after 15min of NO2 exposure (VDS¼ 1 V). (b) Ids–Vg characteristic of the
n-type SWCNT-FET before and after 15 min of NO2 exposure (VDS ¼
�1 V). (c) Output voltage as a function of time of the inverter under an
exposure of NO2 gas for a square input voltage for alternatively �4 V
and �11 V (VDD ¼ 2 V).
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The electrical measurements were performed using a semi-
conductor parametric Keithley 4200-SCS analyzer.

A xed voltage bias VDD was applied between the drain
electrodes of the p-type and n-type transistors (VDD ¼ V+ � V�,
see schematic in Fig. 1a).

In this study, three different values of VDD are used: 2 V, 4 V
and 6 V. A square input voltage (Vin) of (�11 V;�4 V) was applied
simultaneously to the gate of the two devices and the output
voltage (Vout) was measured.

Gas exposure was performed using a Owlstone gas generator
(OVG-4) based on permeation tube technology in a homemade
hermetic chamber previously described42 (see also Fig. S3†).
Two permeation tubes purchased from Owlstone (with perme-
ation rates of 2425 ng min�1 and 102 ng min�1) operating
between 30 �C and 40 �C were used. The inserted gas was
diluted in N2 in order to set the concentration. The temperature
of the inverter was set to 20 �C using a Huber mini-stat 125 and
an atmospheric pressure was imposed in the homemade gas
chamber.

We design a CMOS inverter based on SWCNT-FETs for gas
detection. The CMOS inverter is based on the combination of
a p-type FET device and an n-type FET device, the Ids–Vg curves
of the two transistors used in the device are presented in
Fig. S2.† In order to obtain a logic inverter, the two devices are
associated following the schematic view detailed in Fig. 1a.
Ideally, only one of the devices (n or p) is activated as a function
of the applied gate voltage (Vin). For instance, in the device
presented in Fig. 1b, for an applied VDD of 2 V (light blue curve),
we observed that from �20 V to �15 V the n-type SWCNT-FET is
blocked (Fig. 1b zone I), while from �5 V to 0 V the p-type
SWCNT-FET is blocked (Fig. 1b zone III).

Preceding studies in the literature show that SWCNT-FET
devices are extremely sensitive to the presence of NO2.14,16,17,22

In the specic case of our p-type FET devices, we previously
reported42 that under NO2 exposure (in comparison to N2

exposure), a large increase of the current (Ids) owing in the
device was observed in the depletion regime (see Fig. 2a). Here,
the n-type device is not sensitive to the presence of NO2 within
the concentration range that we used (0.6–10 ppm), thanks to
the voluntarily thick PEI lm which acts as a hermetic barrier
preventing interaction between the environment and both the
SWCNTs and the SCWNTs/metal contact junction (see Fig. 2b).
Looking carefully at the Ids–Vg characteristic of our p-type device
under NO2 atmosphere (see Fig. 2a), a negligible change is
observed in the accumulation regime while a huge modication
of the owing current is observed in the depletion regime (Vg
between 5 and 20 V).

Then, to increase the response of the NO2 detection in the
inverter conguration, a working point where the p-type device
is blocked must be chosen (i.e. Vout ¼ V�). Also, to avoid charge
accumulation in the transistors of the inverter, an optimized
square voltage that forces the current to ow alternatively in the
n-type and the p-type device needs to be applied. According to
the technical limitation of the square voltage generator used in
this study, we applied an input voltage (Vin) of alternatively�4 V
and �11 V. For the three VDD used, at �4 V, the p-type FET is
blocked, and at�11 V, the inverter is in an intermediary regime
1584 | Nanoscale Adv., 2021, 3, 1582–1587
which is unstable as shown on Fig. 1b and c but allows to limit
the charge accumulation. This latter regime will not be taken
into consideration for the rest of the study. Another square
generator could be used in order to reach the off regime of the
n-type device, but this unstable state is not a limiting factor for
this study. Consequently, as the NO2 concentration increases,
the p-type device becomes less and less effective to block the
current, then at the chosen Vin (¼�4 V) the p-device is no longer
blocked, leading to a modulation (here a decrease in absolute
value) of the output voltage, depending on NO2 concentration as
shown in Fig. 2c where the response of the inverter (shown here
for VDD ¼ 2 V) has been recorded as a function of time during
© 2021 The Author(s). Published by the Royal Society of Chemistry
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the exposure to a constant ow of NO2. Aer the dened
exposure (here 15 minutes), the device is exposed to a constant
ow of pure N2 leading to the desorption of the NO2 molecules.

The desorption of the NO2 molecules as a function of time is
already visible on Fig. 2c, with the progressive decrease of Vout to
reach again the initial �1 V for a Vin of �4 V. Before re-starting
a new experiment, the complete desorption of the NO2 mole-
cules is controlled by recording the Ids–Vg curve of the p-type
SWCNT-FET device.

The desorption is considered complete when the Ids–Vg curve
recovers its initial state (i.e. before NO2 exposure as shown in
Fig. S4†). For the highest concentration used in this study (10
ppm), the complete desorption requires 5 hours. Of course for
real-life applications, the time to recover the device to its initial
state is too long. But this process can be sped-up as was previ-
ously reported, by heating the device with an integrated hot-
plate46 or using UV light47 to induce molecule desorption.

Fig. 3a presents the output voltage of the inverter at different
VDD values, aer an exposure to various concentrations of NO2

gas, as a function of time. For all the tested concentrations
(from 0.6 ppm to 10 ppm), we observe a decrease of the output
voltage absolute value, indicative of gas detection (see Section 6
of the ESI† for the full curves).

These results are in agreement with previous results, where
we showed that the particular design of our transistor device
allows the detection of very low concentrations of gas.42 Never-
theless, it is important to highlight that adopting the inverter
conguration slightly hinders the sensitivity of the device in
comparison to our previously reported single SWCNTs-FET
devices.42 However, the LOD for the inverted device is still
Fig. 3 (a) Output voltage of the inverter after exposure to various conce
different VDD values (from top to bottom: VDD ¼ 6 V, 4 V and 2 V). (b) Res
different VDD values (from top to bottom: VDD ¼ 6 V, 4 V and 2 V).

© 2021 The Author(s). Published by the Royal Society of Chemistry
reasonably comparable to other SWCNT-FET based gas
sensors21,24,26,48–52 (see Table S4 in the ESI†). Moreover, the
inverter conguration enables simpler data measurement and
analysis, a possible miniaturization of the complete measure-
ment chain of the sensor, and low power consumption. Then,
for a further specic application a trade-off between the device
ease of implementation has to be assessed against the sensi-
tivity and LOD.

Following these results, we can safely claim that the use of an
inverter conguration simplies the sensing technology
preserving the ability to detect low NO2 gas molecules
concentrations.

In order to obtain a calibration curve of our device, we
calculate the response for each concentration aer a continuous
exposure to NO2 for 15 min for three different VDD values.

The response (R) is dened by the following eqn (1):

R ¼ ðVout½NO2� � Vout½N2�Þ
Vout½N2� � 100% (1)

where Vout[N2] represents the average value of the output voltage
obtained for an input voltage at �4 V under a N2 constant ow,
and Vout[NO2] the average value of the output voltage obtained
for the same input voltage aer 15 min of exposure to a dened
concentration of NO2 (see Fig. S5†).

For both voltage values (Vout[N2] and Vout[NO2]), the error is
dened as the standard deviation of the average, the error on
the response is then calculated from those errors by
propagation.

As shown on Fig. 3b, the logic inverter response (R) as
a function of NO2 concentration (C) can be t by a power law in
ntrations of NO2 gas for a Vin at �4 V and �11 V alternatively for three
ponse of the inverter as a function of NO2 concentration for the three

Nanoscale Adv., 2021, 3, 1582–1587 | 1585
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Table 1 Fit parameters for the fit R ¼ f(C) where R is the response and
C the NO2 concentration in ppm

VDD (V) ai bi r2

2 (i ¼ 1) 1.974 � 0.248 0.828 � 0.0632 0.991
4 (i ¼ 2) 18.833 � 1.626 0.170 � 0.025 0.994
6 (i ¼ 3) 17.473 � 1.968 0.173 � 0.032 0.991

Table 2 Limit of detection of the device for different VDD values

VDD (V) LOD (ppm) Error (ppm)

2 0.92 0.20
4 0.57 0.14
6 0.56 0.21
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the conguration VDD ¼ 2 V, similar to other reported semi-
conductor based gas sensors that detect oxidizing gases,53 on
the other hand, for VDD ¼ 4 and 6 V an exponential relation was
chosen as a much better t was obtained using this function.
The results of the different ts are detailed in Table 1.

The LOD of the gas sensor device was also calculated for the
three VDD used, and are presented in Table 2, the details of the
calculation can be found in the ESI† (Section 7). As shown in
Table 2 for VDD ¼ 4 and 6 V, the obtained LODs are 0.57 �
0.14 ppm and 0.56 � 0.21 ppm, respectively while for VDD ¼ 2 V
a LOD of 0.92 � 0.20 ppm is found. Then, for the detection of
low concentrations, the inverter should be used at VDD ¼ 4 V or
6 V where similarly low LODs were obtained.

According to the ts of the calibration curves shown in
Fig. 3b for the three different working voltages, we expect
rapidly occurring plateau for VDD ¼ 4 V and VDD ¼ 6 V (extrap-
olating the ts for these two curves leads to an asymptotic
behaviour), whereas this is not the case for VDD ¼ 2 V. Using the
device at VDD ¼ 2 V will therefore be more appropriate when
detecting higher gas concentrations, however, further studies at
higher concentrations must be performed to verify these
assumptions.
Conclusions

To summarize, we have demonstrated that a CMOS inverter
fabricated by associating a p-type SWCNT-FET with an n-type
SWCNT-FET could be used as an efficient sensor for NO2 gas.
The main advantage of the system relies on a huge simplica-
tion of the measuring system as a simple voltmeter can be used
to detect the presence of gas, even for very small concentrations.
We also showed that by changing the applied voltage VDD the
sensitivity of the device can be tuned for measurement in
different concentration ranges. Moreover, we show that a cali-
bration of the device can be achieved, showing its potential for
implementation in electronic readouts thanks to its compati-
bility with a further analog to digital conversion.

This generic process could also be generalized to detect
other gases using for instance functionalized SWCNTs in order
to increase the specicity of the response. The introduced
1586 | Nanoscale Adv., 2021, 3, 1582–1587
approach opens new frontiers in the SWCNT gas sensing eld,
the innovative core of the present work relies on simply
measuring the output as a tension instead a low current.
Moreover, here a logic inverter with two transistors has been
explored, but the same principle can be expanded using
a resistance device, or alternatively using other logic device
congurations such as ip-op memory cells or ring
oscillators.35
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