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Sokolská 581, 500 05 Hradec Kralove, Czec
fFaculty of Mechanical Engineering, Brno Un

616 69 Brno, Czech Republic

Cite this: J. Anal. At. Spectrom., 2021,
36, 909

Received 11th November 2020
Accepted 17th March 2021

DOI: 10.1039/d0ja00469c

rsc.li/jaas

This journal is © The Royal Society o
of skin tumors using laser-
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Nowadays, laser-based techniques play a significant role in medicine, mainly in the ophthalmology,

dermatology, and surgical fields. So far, they have presented mostly therapeutic applications, although

they have considerable potential for diagnostic approaches. In our study, we focused on the application

of laser-based spectroscopy in skin cancer assessment. Recently, lengthy and demanding pathological

investigation has been improved with modern techniques of machine learning and analytical chemistry

where elemental analysis provides further insight into the investigated phenomenon. This article deals

with the complementarity of Laser-Induced Breakdown Spectroscopy (LIBS) with standard

histopathology. This includes discussion on sample preparation and feasibility to perform 3D imaging of

a tumor. Typical skin tumors were selected for LIBS analysis, namely cutaneous malignant melanoma,

squamous cell carcinoma and the most common skin tumor basal cell carcinoma, and a benign tumor

was represented by hemangioma. The imaging of biotic elements (Mg, Ca, Na, and K) provides the

elemental distribution within the tissue. The elemental images were correlated with the tumor

progression and its margins, as well as with the difference between healthy and tumorous tissues and

the results were compared with other studies covering this topic of interest. Finally, self-organizing maps

were trained and used with a k-means algorithm to cluster various matrices within the tumorous tissue

and to demonstrate the potential of machine learning for processing of LIBS data.
1. Introduction

Skin cancer is the most common type of malignancy in the
Caucasian population with ever-increasing incidence leading to
escalation of health-care costs.1,2 Skin cancer is classied into
two groups: (A) non-melanomatous skin cancers (NMSC) rep-
resented by two major forms, (i) Basal Cell Carcinoma (BCC)
and (ii) Squamous Cell Carcinoma (SCC) with slower evolution
as well as rarer metastatic spreading;3 and (B) Malignant
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Melanoma (MM) for which early diagnosis is an essential factor
in the treatment and in the prognosis of this disease.4

Histopathological examination remains the gold standard of
skin cancer diagnosis. The tissue aer biopsy is processed
typically via formaldehyde xing and paraffin embedding
(FFPE), cut into thin sections and stained with hematoxylin and
eosin (H&E) to visualize the structure of cells. The examination
itself and determining the type and extent of the skin lesion
depend on the pathologist's experience. In our work we present
a potential method coupled with advanced processing of spec-
troscopic data that could be a supportive tool for the diagnosis
of skin tumors.

Advanced analytical techniques have been intensively
developed and implemented in the diagnostic process for the
imaging of structural or chemical changes within a tissue.5

Obtained results complement and even extend the outputs of
a classical optical microscope with an intended goal to mitigate
the number of recurrences. The bioimaging of metals and non-
metals and their distribution within a tissue is of particular
importance in life sciences. A deciency or an increased
concentration of individual elements leads to diseases or
inuences biological processes. Laser Ablation Inductively
Coupled Plasma Mass Spectrometry (LA-ICP-MS) is a standard
J. Anal. At. Spectrom., 2021, 36, 909–916 | 909
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Table 1 Samples selected for imaging and clustering (MM, BCC, and
HM) and 3D imaging (SCC). X and Y are the numbers of spots of the
analysed section. X stands for the number of craters in each row of
craters. Y stands for the number of rows

ID Tumor
X � Y
number of spots

Spectra collected
from sample

MM Malignant melanoma 210 � 76 15 690
BCC Basal cell carcinoma 147 � 197 28 959
HM Haemangioma 230 � 210 48 300
SCC Squamous cell carcinoma 94 � 140 13 160
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technique established for bioimaging and metallomics.6 LA-
ICP-MS enables performing elemental layout analysis with
high sensitivity; its applications were recently reviewed by
Becker et al.7–10 and Konz et al.11 This method was successfully
used to differentiate the tumor areas in paraffin embedded
breast tumors.12 The elemental layout in tissues can be deter-
mined by using both LA-ICP-MS and LIBS. Even though LA-ICP-
MS is more sensitive, its utilization as a high-throughput
analytical method is burdened by the cost of novel time-of-
ight MS systems and the cost of service and maintenance in
general.

Laser-Induced Breakdown Spectroscopy (LIBS) established
its position in bioimaging due to the signicant improvements
in instrumentation. LIBS excels in terms of cost-to-
performance, providing a high repetition rate and satisfactory
sensitivity. Thus, its utilization is advocated as a preliminary
scanning of a vast number of samples prior to a more accurate
and sensitive analysis which is yet slower and more expensive.
The latest achievements in elemental mapping by LIBS were
reviewed by Limbeck et al. and Motto-Ros et al.13,14 The whole
slide imaging and analysis of large scale samples found its
purpose in the analysis of whole plant samples (from the root to
leaf).15,16 Recently, the feasibility of LIBS in the elemental
imaging of hard and so tissues was repeatedly proved and
comprehensively reviewed.17–20 Both methods LA-ICP-MS and
LIBS can assess samples pretreated (FFPE) or intact (frozen
cryosections).

Considerable effort has been invested in the implementation
of LIBS in cancer research and histopathological routine. LIBS
suffers from a relatively poor sensitivity compared to its
analytical counterparts (namely LA-ICP-MS); hence, it is used in
tumor analysis to detect major (C, H, O) and minor (Mg, Ca, Na,
and K) elements. Particularly the major elements serve as
representative biomarkers for LIBS related research in tumor
diagnosis.21 Therefore, LIBS is also considered as a comple-
mentary technique to LA-ICP-MS and their tandem utilization
seems to be benecial.22,23

Several studies have already proved the feasibility of LIBS in
the bioimaging of various tumor tissues showing another
extension of classical histopathology. LIBS images enable the
visualization of the tissue structure from the chemical point of
view (e.g. Ca, Fe, Mg, Na, P, and Zn) and the investigation of
differences between the non-tumor and tumor (malignant
melanoma, squamous cell carcinoma, and Merkel cell carci-
noma) human tissue.24 In the histological praxis, hyperspectral
imaging can also reveal the presence of exogenous elements
accumulated within the tissue.25 This metal imbalance is direct
evidence of various diseases.

It is mandatory to accurately determine the tumor margins
in order to verify the sufficiency of the biopsy and mitigate the
possibility of recurrence. This is the next step in a successful
implementation of LIBS in cancer related research. The Mg/C
intensity ratio was investigated as a rough estimate of the
boundary between healthy and malignant murine cutaneous
tissue.26 This simple step points out individual elements as
potential biomarkers dependent on the malignancy of the
tissue. This is used as an advantage in our work; appropriately
910 | J. Anal. At. Spectrom., 2021, 36, 909–916
selected four light metal elements (Mg, Ca, Na, and K) serve as
full-edged indicators of healthy or cancerous tissues.

In this article, we implement LIBS bioimaging further in
terms of whole slide imaging of selected human cancerous
tissues, including 3D imaging. The novelty lies in the advanced
processing of collected hyperspectral data and in the conse-
quent application of multivariate algorithms. The cluster anal-
ysis results in discrimination of diseased cutaneous tissue from
its healthy surrounding. In turn, the utilization of machine
learning opens new paradigms in LIBS-related cancer research.
2. Experimental
2.1 Tissue processing

Patients of the University Hospital Hradec Kralove diagnosed
with a skin tumor were selected for this study. Based on
a dermatologist's recommendation, a surgical procedure was
planned – a wide local excision with a certain safety margin of
healthy skin. All patients signed the informed consent form and
the study was approved by the Ethics Committee of the
University Hospital Hradec Kralove under the reference number
201805 S08P. At the plastic surgery department, surgical
removal (biopsy) was performed under local or general anes-
thesia in accordance with the standard practice. The sampled
tissues were immersed in formaldehyde and transported to the
pathological department. All samples were histologically
examined, and the nal diagnosis was determined.

For our study, we selected representative samples (Table 1) of
various tumors (cutaneous biopsies) based on the detailed
histopathological diagnosis. The tissue was embedded in mel-
ted paraffin (FFPE) and in the form of blocks they were conse-
quently cut using a sliding microtome (SM2010 R, Leica,
Germany) into slices of thickness (i) 1 mm for the standard
histopathology aer H&E staining, and (ii) 10 mm for further
LIBS analyses. The slices were affixed to microscope slides (IHC
adhesive glass slide TOM-14; Matsunami, Japan). For consecu-
tive LIBS analysis, slices mounted on glass slides and original
biopsies in paraffin blocks were considered without using any
histological staining and any covering glass.
2.2 LIBS

All measurements were performed using the LIBS discovery
instrument, developed at the Central European Institute of
This journal is © The Royal Society of Chemistry 2021
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Technology, Brno University of Technology (Czech Republic).
The experimental apparatus for LIBS analysis consisted of a Q-
switched Nd:YAG laser CFR Ultra 400 (Quantel by Lumibird,
France; 532 nm, 10 ns, 20 Hz). The laser beam was focused on
the sample surface by a triplet lens (Sill Optics, Germany) with
a focal length of 24.5 mm forming a spot size of 100 microns.
Plasma emission was collected by wide-angle optics and trans-
ferred through an optical ber to the entrance slit of a Czerny–
Turner spectrometer (SR-500i-B2-R, Andor, Northern Ireland)
equipped with a grating of 1200 lines per mm and 50 mm
entrance slit. Plasma emission was detected using a gated
sCMOS detector (iSTAR-sCMOS-18F-E3, Andor, Northern Ire-
land; 0.5 ms gate delay, 50 ms gate width, 4000 gain). The
samples were analyzed under an Ar purge.

The whole slide images (WSI) of the selected samples (Table
1) were provided in the mapping with a 100 mm step in both
directions. LIBS analysis was performed directly in the paraffin
blocks similar to ref. 24 and 25. For each sample (MM, BCC, HM)
we conducted 4 measurements with a different spectral range.
The sizes of individual maps for each sample were kept constant
with respect to detection of all the elements of interest (Mg, Ca,
Na, and K). In between LIBS analyses, the sample paraffin
blocks were treated with a sliding microtome (HM430, Thermo
Scientic, UK). A rotary microtome was used to provide a fresh,
smooth surface in between LIBS analyses of consecutive layers.
Approx. 150 mm were cut-off aer each LIBS analysis and this
gives the depth resolution.

The spectrometer enabled analysis only in limited spectral
windows (approx. 25 nm), and therefore each element (Mg, Ca,
Na, and K; Table 2) was analyzed in individual layers for indi-
vidual wavelength ranges depending on the selected spectral
line (Table 2) for each element. These measurements were then
combined for clustering. A narrow spectral range was selected
for each element allowing analysis of other elements also (Ar
from gas purge) and molecular bands (such as CN). However,
only selected elements were considered for this study.
Furthermore, as it was evidenced in the literature,21,24,26 only the
variance in the presence of selected metals could serve as a full-
edged indicator of healthy or cancerous tissues.

Aer each measurement, the background was corrected
using the moving minimum function. The size of the minimum
window was set at 80 points and the smoothing window at 30
points. Subsequently, the signal-to-noise ratio for the selected
peak and noise range was calculated. The signal was dened as
the maximum intensity of an inspected spectral line in the
selected range and noise was determined as a standard devia-
tion of all points in the background range.
Table 2 Selected resonant spectral lines, wavelengths, and quantum pr

Element and
ionization level

Wavelength
(nm)

Mg II 279.55
Ca II 393.37
Na I 589.00
K I 766.49

This journal is © The Royal Society of Chemistry 2021
An automatized data processing procedure was added to the
exploration of hyperspectral images.27 Spectral ranges-of-
interest were cropped around specic lines (Mg, Ca, Na, and
K) and later processed using a self-organizing map (SOM)
algorithm, which had already been introduced to LIBS data
processing,28 for each sample and range separately. A closer
description of SOM in the context of LIBS-data processing can
be found in ref. 29. In the present case, the architecture used for
the SOM network consisted of a grid (5 � 5 neurons) of rect-
angular topology. The representative subset for training was 100
spectra. The output of the model was clustered using the k-
means algorithm into 5 clusters.
3. Results and discussion
3.1 Optimization

Sample preparation is a necessary and crucial step in bio-
imaging. The optimization of sample preparation reected
was suggested in the LIBS literature.30,31 We chose the formal-
dehyde xing and paraffin embedding (FFPE) approach as it is
the golden standard in the histological routine, and it was
successfully used in many studies dealing with bioimaging of
so tissues.32–34

Prior to any further analyses, we compared laser ablation
with respect to the amount of ablated mass. Basically, the more
ablated mass the better in the case of LIBS which struggles with
sensitivity. Thus, we experimented with the width of the thin
section, adjusting it in a range from 1 to 20 microns. Thinner
sections (less than 10 microns) did not provide enoughmaterial
and laser-induced plasma (LIP) radiation was weak with a poor
signal-to-noise ratio (SNR). For thicker sections (more than 10
microns), the cutting and xing of a section were tedious and
hardly repeatable. Moreover, the results were biased when the
thin sections mounted on glass slides were investigated. The
ablation of such specimens involves the glass material itself,
which in turn leads to the introduction of unwanted spectral
interferences in the characteristic LIP radiation. Note that in
each case (a thin section or a block), the LIBS experiment was
extensively optimized in terms of the laser pulse energy, defo-
cus, gate delay, atmosphere and ablation gas, and the results of
this optimization are covered in our previous article on imaging
of so tissues. Here we measured the samples with the already
optimized parameter settings.35

The direct analysis of a paraffin block is a vital alternative to
the analysis of thin sections.24,25 This approach involves a higher
amount of ablated mass and avoids any sectioning when still
being related to FFPE preparation. A visual comparison of
operties

Einstein coefficient
(�108 s�1)

Upper energy
(eV)

2.60 4.43
1.47 3.15
0.62 2.10
0.38 1.62

J. Anal. At. Spectrom., 2021, 36, 909–916 | 911
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Fig. 1 The analyses of BCC samples (basal-cell carcinoma) depicted in the histological image (a) in terms of Ca intensity maps: (b) block and (c)
10 mm thin cross-section when analyzed with the optimized LIBS parameters.
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images obtained from the analysis of thin sections and paraffin
blocks (Fig. 1) of BCC samples (basal-cell carcinoma) reveals
a higher SNR and contrasting contours through an enhanced
dynamic range in the case of the tissue analyzed directly in
a paraffin block. The optimized parameters are given in Section
2.2. Based on the results, we centered all our further analyses
around the direct laser ablation of paraffin blocks.
3.2 3D imaging

The higher throughput of LIBS enables scanning of the sample
layer by layer. This feature is benecially utilized in bioimaging
on the scale of the entire sample, e.g. cutaneous tumor, and
providing information on the structural changes within the
sample in terms of chemical (elemental) composition. The 3D
imaging of so tissues can be performed with two basic
approaches; (i) depth-proling without any treatment of the
sample surface between layers, and (ii) analysis of consecutive
slices.36 In the present work, we analyzed the sample embedded
in the paraffin block; the sample was nely cut prior to each
analysis on a microtome giving a depth resolution of approx.
150 microns.

The depth-resolved analysis of a SCC sample yielded 14
images showing the distribution of Ca II 393.37 nm line
intensity within the tumor sample and a total depth of greater
than 2.2 mm (Fig. 2). For smaller depths, the distribution
seemed uniform and did not change rapidly. Naturally, this
approach justies the measurements of consecutive slices and
Fig. 2 The analysis of the SCC sample (squamous cell carcinoma) dep
a series of Ca images analyzed in individual layers with a depth step of 1

912 | J. Anal. At. Spectrom., 2021, 36, 909–916
combining data together when the analysis of larger tumors is
taking place. The depth-resolved structure of the sample is
evident for deeper layers. The dense region of squamous cell
carcinoma is continuously vanishing and the intensity of the
elements (in this case Ca) is approaching the level of the
surrounding non-tumor tissue. A further pathological investi-
gation is necessary so that it could prove that the tissue has not
invaded in deeper layers. Moreover, a distribution of other
elements can be provided when giving further information
about the tumor and its progression.
3.3 Imaging skin cancer

The primary aim of this work is to detect the differences in the
distribution of biogenic elements in skin tumors. The elemental
imaging of various skin lesions has already been proved
feasible.24–26 Despite all the pioneering efforts, the evidence on
the distribution of elements in skin tumors and its biologically
relevant correlation remains sparse.

In our case, we chose three different lesions (two malignant
represented by malignant melanoma and basal cell carcinoma,
and one benign represented by haemangioma) in order to
demonstrate mutual differences in elemental composition. All
three samples were analyzed directly in the bulk of the paraffin
blocks to ascertain a sufficient amount of ablated material. The
paraffin blocks were sliced between measurements with
different wavelength ranges as previously stated to provide
a fresh and at surface for the laser–matter interaction and
icting the histological image with H&E staining (top left), followed by
50 to 200 microns as indicated in the consecutive image.

This journal is © The Royal Society of Chemistry 2021
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Fig. 3 The typical spectra of (a) MM –malignant melanoma, (b) BCC –
basal-cell carcinoma, and (c) HM – haemangioma samples taken from
the marked spots in the histological H&E images covering the spectral
range 275–775 nm. The spectral lines for elements of interest and Ar
are highlighted.

Fig. 4 Histological H&E images complemented with LIBS elemental
images of Mg, Ca, Na, and K for selected tumor samples: (a) of MM –
malignant melanoma, (b) BCC – basal-cell carcinoma, and (c) HM –
haemangioma.
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consequent laser ablation. Herein we describe the distribution
of the chosen individual elements (Mg, Ca, Na, and K) in WSI
(Fig. 3).

LIBS analysis was focused on four main biotic elements (Mg,
Ca, Na, and K) which were detected using individual spectral
windows of the utilized Czerny–Turner spectrometer. Each
window provides a narrow spectral range.

The samples with malignant melanoma and basal cell
carcinoma showed a gradient increase in the tumorousmass for
Mg, K, and Na compared to the surrounding tissue which
showed only a weak signal (Fig. 4). Interestingly, Ca showed the
strongest signal in the adjacent tissue surrounding the mass,
but not in the tumor itself. Moreover, there is an evident rise of
the Ca signal in the surrounding of the tumors showing
a potential calcication of the dermis. All the elements show
distinct contours of the dermis within the sample beyond the
tumor mass.
This journal is © The Royal Society of Chemistry 2021
The ndings of the Ca distribution for MM, BCC, HM
samples seem to be similar to the former results24 where the
malignant skin tumors (melanoma, squamous cell carcinoma,
and Merkel cell carcinoma) were also analyzed in human
samples. However, the results are in contrast to other evidenced
ndings21,26 where the increase of Ca in malignant melanoma in
animal models was observed. In the case of hemangioma, we
also observed the distribution of Ca out of the tumor. In
contrast to our malignant tumors, Na, K, and Mg were present
in the surrounding tissue, but not in the hemangioma. All the
elements show signicant changes in the distribution in the
tumor mass, which requires a further investigation in terms of
multivariate analysis and clustering. The abundance of moni-
tored elements seems to be in a direct correlation with the
tumor progression and the relative change of their intensity
could serve as an indicator of tumor margins.

Considering also squamous cell carcinoma (Fig. 1), an
opposite trend with respect to Ca intensity was seen. The Ca
signal increased in the carcinoma area and was visibly higher
than in the surrounding healthy tissue up to 1.5 mm deep in the
sample. There was no visible change in the intensities aer that,
suggesting that the carcinoma size was reaching less than
1.7 mm deep from the surface.

Malignant skin tumors are commonly highly cellular,
metabolically, and mitotically active lesions. The tissue
contains lots of cells leading naturally to a higher number of
biogenic elements in an affected area of a skin biopsy, which we
declared for Na, K, andMg. On the other hand, we cannot clarify
the distribution of Ca out of the tumor in both malignant
tumors and the hemangioma. To the best of our knowledge only
three papers dealt with the same issue with similar results24 and
with the opposite observation.21,26 The differences in the
distribution of Na, Mg, and K between malignancy and benign
J. Anal. At. Spectrom., 2021, 36, 909–916 | 913
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Fig. 5 Histological H&E image and respective SOM clustering of characteristic LIBS spectra in the Na range for the selected samples: (a) MM –
malignant melanoma, (b) BCC – basal-cell carcinoma, and (c) HM – haemangioma.
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proliferation of hemangioma might be a promising nding for
future studies and clinical use to determine skin lesions' bio-
logical behavior.
3.4 Clustering

Another concern of the correct pathological examination is in
robust and accurate estimation of the tumor margins. This
issue is tackled using various techniques implemented in
digital histopathology, including deep neural networks and
other algorithms.37 Similar to the efforts in machine learning,
the multivariate algorithms are of paramount interest to the
processing of LIBS hyperspectral data on the WSI scale.

LIBS data obtained for all three samples were individually
submitted to the simple structure of a self-organizing map. The
trained map was then clustered with a k-means algorithm in
order to distinguish individual matrices present in each sample
(Fig. 5). Considering narrow spectral ranges of measured data,
the nodes of SOM were sensitive to the intensity and the shape
of a single (or two) spectral line. We believe that this simple
914 | J. Anal. At. Spectrom., 2021, 36, 909–916
property enabled the correct and robust separation of the
clusters. This is in contrast with the standard multivariate
setting, where the presence of various lines is a key factor in
node separation. It is noteworthy that at this point, only an
unsupervised algorithm was used due to the small sample set.

The obtained results show a signicant discrimination of
each sample into individual clusters with respect to the
matrices. In all cases, the paraffin medium xing the sample
was clearly separated as well as with the hypodermis. The region
of the tumor is then decomposed to further clusters and the
estimation of the tumor margin remains a challenge. However,
the optimization of the SOM network and the number of clus-
ters is beyond the scope of this manuscript and will be a subject
of further work.
4. Conclusion

We conrmed the complementarity of LIBS with the classical
histopathological routine. Advantageously, the excised tumor
xed in the paraffin block can be analyzed without any
This journal is © The Royal Society of Chemistry 2021
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sectioning and positioning on a glass slide. This approach also
enables a depth resolved analysis which results in a 3D image
for understanding the tumor spread behavior and determining
its in-depth boundary. Analysis of paraffin blocks proved
a higher signal-to-noise ratio for all major biotic elements (Mg,
Ca, Na, and K). Our results for the selected malignant skin
tumors show signicant differences in their mutual elemental
composition which were in contrast to the benign tumors. This
is a promising result suggesting that the pathological exami-
nation may be sustained also by elemental imaging. However,
the spatial distribution of biotic elements varies in existing,
sparse literature sources which indicates a necessity for further
investigations.

We showed a straightforward implementation of machine
learning and self-organizing maps with k-means clustering for
advanced processing of spectroscopy data. In this way, the
contribution from all detected elements is considered and the
differences between individual matrices within the tissue are
highlighted through the cluster membership. An extensive
optimization of the machine learning algorithms was beyond
the scope of this work and the training of the model and
number of clusters is the scope of ongoing work. Such studies
must be carried out on a broader sample and data set, and in
cooperation with pathologists. However, promising results
indicate the potential of the implementation of SOM in the
estimation of tumor margins.
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