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Experimental test of Babinet’s principle in
matter-wave diffraction†

Lee Yeong Kim, ‡a Ju Hyeon Lee,‡b Yun-Tae Kim,c Sanghwan Park,c

Chang Young Lee, c Wieland Schöllkopf *b and Bum Suk Zhao *ad

We report on an experimental test of Babinet’s principle in quantum reflection of an atom beam from

diffraction gratings. The He beam is reflected and diffracted from a square-wave grating at near grazing-

incidence conditions. According to Babinet’s principle the diffraction peak intensities (except for the

specular-reflected beam) are expected to be identical for any pair of gratings of complementary

geometry. We observe conditions where Babinet’s principle holds and also where it fails. Our data

indicate breakdown conditions when either the incident or a diffracted beam propagates close to the

grating surface. At these conditions, the incident or the diffracted He beam is strongly affected by the

dispersive interaction between the atoms and the grating surface. Babinet’s principle is also found to

break down, when the complementary grating pair shows a large asymmetry in the strip widths. For very

small strip widths, edge diffraction from half planes becomes dominant, whereas for the complementary

wide strips the atom–surface interactions leads to a strong reduction of all non-specular diffraction

peak intensities.

Introduction

Babinet’s principle is a basic theorem of classical optics, first
formulated by the French scientist Jacques Babinet in 1837. It
states that two complementary geometric objects, such as, for
instance, a slit and a strip of the same size and shape (see
Fig. 1a), produce identical diffraction intensities, except for the
part of direct geometrical illumination.1 In the example of a slit
in an opaque membrane and an opaque strip suspended in free
space, it is obvious that the forward intensity must be far larger
in the case of the strip than it is for the slit, because the slit
limits the total transmitted flux. The intensities diffracted away
from the geometrical ray direction are, however, identical
according to Babinet’s principle. As a result, Babinet’s principle
often allows for simplification of diffraction models. It has
been applied to designing broadband antennas2 and forming
frequency-selective surfaces in the far infrared.3 It also holds in

acoustics.4 In sub-wavelength optics where Wood anomalies and
related surface waves play important roles, Babinet’s principle
holds between light transmission through hole arrays and
reflection from complementary disk arrays.5–7 Furthermore, it
has found recent applications in the design of metasurfaces and
metamaterials.8,9

Because of its generality in wave optics, Babinet’s principle
was as well used in understanding matter-wave optical phenomena.
This includes the scattering of diffraction beams of He atoms at
a grazing exit angle from surface defects10 and Poisson’s spot in
matter-wave optics.11–14 In addition, Babinet’s principle was used
together with Fraunhofer–Kirchhoff diffraction theory to explain
collisions between rare-gas atoms and molecules.15–17 Here, the
collision is described in terms of diffraction of an incident

Fig. 1 (a) A slit and a strip of an identical physical width a. (b) A slit and a
strip of an identical effective width a. The geometrical width of the slit and
the strip are a + d1 and a� d2, respectively. The difference between the real
and the effective widths are illustrated by gray areas. (c) Two square wave
gratings of complementary geometries. The period d is the same for both
gratings, while their strip widths are a and d � a, respectively.
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matter-wave by a target molecule assumed to be a sharp-edged
object.

Furthermore, Babinet’s principle was also used for studying
deviations between classical optics and matter-wave optics. The
breakdown of Babinet’s principle can occur for weakly bound
diatomic system such as He2 because of breakup and finite-size
effects when diffracted from strips, slits or a transmission
grating.18 Even for point particles, the dispersive interaction
between the particle and a geometric object, such as a slit or a
strip, can change the conditions for Babinet’s principle. For
instance, it was reported that the dispersive particle–surface
interaction narrows an effective slit width from a to a � d1,19,20

from which we can deduce that the interaction can widen a
strip width from its geometrical width a to a + d2. In Fig. 1b, the
effect of the interaction potential is illustrated by gray areas.
The widths d1,2 depend on the polarizability and the velocity of
the particle,19,20 and the thickness of the object.21,22 Therefore,
a complementary pair of slit and strip, fulfilling Babinet’s
principle with matter waves, would need to have their effective
widths rather than their geometrical widths to be identical, as
depicted in Fig. 1b.

In this work, we present results from an experimental study
of Babinet’s principle in diffraction of He atoms from plane
square-wave gratings at grazing incidence conditions. The
gratings used in the experiments all have a period d = 400 mm,
but different strip widths. Diffraction patterns obtained from
4 pairs of gratings of complementary geometries (strip widths are
a and d � a, e.g. 10 and 390 mm, as shown in Fig. 1c) are
compared to test Babinet’s principle. The strip widths of the
complementary grating pairs are listed in Table 1. For a wide
range of conditions we find Babinet’s principle to hold. However,
for the smallest incidence angles around 0.5 mrad we find that
all diffraction peak intensities (except the specular peak) are
larger for the grating with the narrow strips as compared to its
complementary counterpart with wide strips. In addition, we
observe that those outgoing diffraction beams, which propagate
at very small angle with respect to the grating surface, are also
more intense for the narrower strips than for the complementary
wider strip widths. Furthermore, the data indicate that devia-
tions from Babinet’s principle are the more pronounced the
more ‘‘asymmetric’’ a pair of complementary gratings is. These
observations indicate that deviations from Babinet’s principle
occur when the atoms spend sufficient time close to the grating
surface. Therefore, we attribute the breakdown of Babinet’s
principle to the effect of the atom–surface interaction potential,

which, for each pair of complementary gratings, is more effective
for the grating with wide strips.

The particle–surface interaction plays a crucial role in these
experiments, because quantum reflection of the incident He
atoms from the diffraction grating has been identified as the
coherent reflection mechanism.23 In contrast to the classical
picture of a point particle reflected from a repulsive potential at
a classical turning point, where the potential energy equals the
incident kinetic energy, quantum reflection is based on the
quantum-mechanical wave picture. For large de Broglie wave-
lengths of the incident particle, the wave is partly reflected by
the long-range attractive particle–surface potential (van der
Waals or Casimir–Polder potential). In the limit of vanishing
incident kinetic energy, the quantum reflection probability
approaches unity.24–30

For typical (thermal) conditions quantum reflection probabilities
are negligible. Only for a sufficiently large de Broglie wavelengths
(corresponding to excessively small incident velocities) one can
expect detectable quantum-reflection probabilities. Accordingly,
the first observation of quantum reflection of atoms from a solid
was reported with ultracold metastable atoms31 and, later, also
with a Bose–Einstein condensate.32,33 Alternatively, sufficiently
small velocities can be achieved when an atomic or molecular
beam scatters from a solid at grazing incidence.23,34,35 Due to the
grazing incidence geometry the relevant velocity z-component,
perpendicular to the surface, can approach extremely small
values resulting in appreciable quantum-reflection probabilities.
The comparatively large parallel velocity component does not
restrict the quantum reflection process. Quantum reflection of
He beams from plane surfaces34,35 as well as laminar23 and
blazed ruled36 gratings has been reported.

Recently, quantum reflection of weakly bound ground-state
helium dimers (He2 binding energy E 0.1 meV) and trimers
(He3 binding energy E 10 meV)37,38 was also reported. Following
the above description of classical scattering, the forces in the
molecule-surface potential well region will inevitably lead to
bond breakup, because the well depth (order of magnitude
10 meV) is E105 times and E103 times larger than the binding
energy of helium dimers and trimers, respectively. Therefore,
the observation of non-destructive reflection of He2 and He3

provides direct evidence for quantum reflection. Furthermore,
the fact that diffraction patterns are found indicates that quantum
reflection leads to coherent reflection of matter waves.

Experimental

The diffraction apparatus used in this work is shown schema-
tically in Fig. 2.39 The He atom beam is formed by free-jet
expansion of pure 4He gas from a source cell (kept at stagnation
temperature T0 = 52 K and pressure P0 = 26 bar) through a 5 mm-
diameter orifice into high vacuum. As indicated in Fig. 2, the
beam is collimated by two narrow slits, each 20 mm wide,
located 15 cm and 115 cm downstream from the source. The
25 mm-wide detector-entrance slit, located 38 cm downstream
from the grating, limits the angular width of the atomic beam

Table 1 Strip widths of the gratings used in this work. All the gratings have
a nominal period d = 400 mm. The last row of the table gives the
asymmetry ratio ra defined as the ratio of wider to narrower strip width.
A discussion of deviations of the actual dimensions from the nominal
dimensions is provided in the ESI

Pair no. 1 2 3 4

Grating 10 mm 30 mm 70 mm 100 mm
Complementary grating 390 mm 370 mm 330 mm 300 mm
Asymmetry ratio ra 39.0 12.3 4.7 3.0
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to a full width at half maximum of E120 mrad. The electron-
impact ionization mass spectrometer used to detect the diffrac-
tion patterns is rotated precisely around the angle y indicated
in Fig. 2.

The reflection grating is positioned at the intersection of the
horizontal atom beam axis and the vertical detector pivot axis
such that the incident beam approaches under grazing incidence
(incident grazing angle yin), with the grating strips aligned
parallel to the pivot axis. Diffraction patterns at a fixed incidence
angle are measured by rotating the detector around y and
measuring the signal at each angular position. In addition, the
grating can be removed from the beam path all together making it
possible to measure the direct beam profile, i.e. the undisturbed
incident beam, as a function of y.

Each reflection grating consists of a 50 mm-wide micro-
structured array of 1.1 mm-thick and 4 mm-long parallel strips
of a photoresist on a commercial gold mirror. Details of the
gratings and the photolithographic fabrication techniques are
provided in the ESI.† The nominal strip widths of the four pairs
of complementary gratings are summarized in Table 1. For
each pair the ratio of larger-to-smaller strip width ra indicates
the degree of asymmetry of the complementary gratings. The
inset of Fig. 2 shows microscope images of one of the comple-
mentary grating pairs. As the period is d = 400 mm, the gold
surface between the strips is completely shadowed by the strips
for all incidence angles used. Due to the small grazing incidence
angles on the order of 1 mrad, diffraction patterns are observable
despite the fact that the grating period is about 107 times larger
than the de Broglie wavelength.

Results

In Fig. 3 we compare two contour plots presenting the full sets
of diffraction data for the complementary gratings with 30 and
370 mm wide strips. Each plot shows the helium signal on a
logarithmic scale as a function of incidence angle yin (horizontal
axis) and detection angle y (vertical axis). The range of yin and y
are from 0.5 to 2 mrad and from 0 to 2.5 mrad, respectively. Gray
continuous curves depict the nth-order-diffraction angles yn

calculated by using the grating equation, cosyin � cosyn = nl/d.
As yin increases, the first five negative-order diffraction beams

appear successively at yin = yR,m and y = 0 mrad. The Rayleigh
incidence angle yR,m where the mth-order diffraction beam
emerges is indicated by vertical dashed white lines.36

The two contour plots in Fig. 3 are clearly not identical. Most
prominently, the specular intensity along the y = yin line is
much larger for the 370 mm strip-width grating than for the
complementary grating with 30 mm strip width. This is as
expected, because the specular intensity is the direct geome-
trical illumination (or 0th-diffraction order), which must be
larger given the fact that the ra ratio of the strip widths is about
12. In addition, with increasing incidence angle one finds the
weak specular intensity of the 30 mm strip-width grating to
decrease with small oscillations, while for 370 mm strip width
the decrease appears to be monotonous.

Further comparison of the two contour plots reveals that
also parts of the non-specular diffraction peaks are different,
which should not be so according to Babinet’s principle. The
diffraction peak intensities at very small incidence angle (close
to the left edge of the plots, where yin o yR,�1) and at very small
detection angle (close to the lower edge of the plots, where yn

gets very small) are larger for the 30 mm strip-width grating than
for the complementary grating. Furthermore, just like the
specular intensity, the nth-order diffraction intensity shows a
small oscillation along the continuous gray curves in Fig. 3a.
The oscillations are absent in Fig. 3b. They are linked to the
emerging beam resonances in the sense that the minima of the
intensity appear close to the Rayleigh angles yR,m. The devia-
tions in the non-specular parts of the contour plots indicate a
breakdown of Babinet’s principle.

To investigate the deviations from Babinet’s principle in
more detail, we compare pairs of individual diffraction patterns
from complementary gratings. Fig. 4 shows 16 such pairs of
angular spectra at four incidence angles near 0.5, 1.0, 1.5, and
2.0 mrad for our 4 pairs of complementary gratings. In each
diffraction pattern the helium signal is plotted on a logarithmic
intensity scale as a function of the detection angle y. It, hence,
presents a vertical cross section of a contour plot like the ones
shown in Fig. 3. In each plot, the red thick and the black thin
spectra are from the grating with narrow strips and from its

Fig. 2 Schematic of the experimental set-up. The inset shows micro-
scope images of a pair of complementary 400 mm-period gratings with
strip widths of 100 mm (left) and 300 mm (right).

Fig. 3 Contour plots composed of diffraction patterns measured at
various incidence angles with two complementary gratings of (a) a = 30 mm
and (b) 370 mm. The vertical dashed white lines indicate the Rayleigh
incidence angle yR,m where the mth-order diffraction beam emerges from
the grating.36 The continuous grey lines present the calculated diffraction
angles.
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complementary counterpart, respectively. The numbers in the
first-row plots indicate the diffraction orders assigned to the
peaks in each column of plots. The 16 plots are arranged such
that the incidence angle increases from left to right and the
asymmetry of the complementary gratings, quantified by ra,
increases from bottom to top. Thus, for the plots in the lower
right corner of the graph the incidence angles are comparatively
large and the asymmetry of the complementary gratings is small.

The systematic comparison of diffraction patterns from
complementary gratings shown in Fig. 4 exhibits the following
aspects regarding Babinet’s principle’s validity.

(I) Babinet’s principle is found to hold in the lower right
corner of the graph. For instance, at yin C 2.0 mrad for ra = 4.7
(fourth column, third row) and at yin C 1.5 mrad for ra = 3.0
(third column, fourth row) the red thick and the black thin
spectrum overlap nicely, except for the specular peaks, as
predicted by Babinet’s principle.

(II) As the grazing incidence angle decreases (from right to
left), the two diffraction patterns in each plot generally deviate
more and more. For example, at yin C 0.5 mrad (left most
column), all non-specular diffraction peaks of the gratings with
narrow strips (red thick patterns) are more intense than the
corresponding ones of the complementary gratings with wide
strips (black thin patterns). This disagrees with Babinet’s
principle.

(III) The difference between the two diffraction patterns
becomes more distinct as the asymmetry ratio ra increases

(from bottom to top). This again is most obvious at small
incidence angle (left most column, yin C 0.5 mrad), where
the difference in diffraction peak intensity (n a 0) between the
two patterns is most pronounced for the most asymmetric
grating pair (top left corner). But even for larger incidence
angles diffraction peaks are hardly visible for the 390 mm strip-
width grating (top row) in contrast to its 10 mm strip-width
complementary counterpart.

(IV) For any plot, if deviations between the two diffraction
patterns occur, they are most likely to show up at small
detection angle. Apparently, diffraction beams close to the
grating surface (small y) are most likely to exhibit deviations
from Babinet’s principle. This is well visible in e.g. the four
central plots of the graph.

(V) For ra = 12.3 and 39, at larger incidence angle (upper
right of the graph), some intensities in the black thin spectrum
are larger than the ones in the red thick spectrum. This can be
attributed to the larger diffusive background occurring for
wider strip widths. This effect is stronger for the diffraction
peaks closer to the specular peak, since the diffusive signal is
concentrated near the specular peak.35 The effect gets weaker
as ra decreases.

Discussion

Our observations confirm the applicability of Babinet’s principle
to matter-wave grating diffraction for the experimental conditions

Fig. 4 Pairs of diffraction patterns at four incidence angles near 0.5, 1.0, 1.5, and 2.0 mrad (4 columns) for the 4 pairs of complementary gratings
(4 rows). The incidence angle of each diffraction pattern is given by the legends in each plot.
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corresponding to the lower right plots of Fig. 4, i.e. for compara-
tively large incident and outbound angles of more than E1 mrad
and for relatively symmetric geometries of the complementary
gratings. A break-down of Babinet’s principle is observed, if one or
more of these conditions do not apply. If the incident atom beam
propagates under a very small angle to the grating surface,
deviations from Babinet’s principle are observed for all outbound
diffraction peaks. If an outbound diffraction beam propagates
under a very small angle to the grating surface, this beam’s
intensities deviate from Babinet’s principle. The deviations get
more pronounced, if the strip-width ratio of the complementary
gratings is large.

To explain the observations, we attribute the break-down of
Babinet’s principle to the effects of the atom-surface interaction
between the He atoms and the strips of the grating on the
diffraction intensities. The interaction affects an outbound
diffraction beam appreciably, if the beam passes sufficiently
close to the surface over an extended region in space, as is the
case for a very small angle yn. The same holds true for the
incident beam at sufficiently small yin, with the difference that
any effect on the incident beam will as well affect each of the
outbound diffraction beams. Furthermore, the wider the strip
width the longer the lengths of interaction, and, hence, the
more asymmetric complementary grating pairs can be expected
to exhibit more pronounced deviations from Babinet’s principle.
Thus, the atom-surface interaction can well explain the trends of
the observations in a qualitative manner.

The effect of the atom-surface interaction between He atoms
and the bars of a transmission grating was investigated in detail
by Grisenti et al.19 It was shown that the effect can be modelled by
an effective width of the grating bars which is larger than the
geometrical bar width. The difference between effective and
geometrical bar width was found to increase with increasing
interaction strength. Application of the effective-width model to
the experiments of this work allows for a qualitative explanation of
why Babinet’s principle fails. As depicted schematically in
Fig. 1(b), the effective strip width is the sum of the geometrical
strip width a plus an interaction-induced term di. As di is added to
both the narrow and wide strip width of the complementary
gratings, the effective strip widths are no longer complementary
in the sense that their sum will now be larger than the period d by
d1 + d2. This implies that the geometrical strip widths would need
to be smaller by di, as indicated by the sketch in Fig. 1(b), such that
the sum of the geometrical slit widths plus d1 + d2 adds up to d.

In particular, the effective slit-width model can explain the
trend of vanishing diffraction peak heights observed for the
widest strip width of 390 mm (black thin spectra in the top row
of Fig. 4). Any increase of the 390 mm strip width by an
additional d will push the effective slit width towards the period
d = 400 mm or beyond, at which point the periodicity of the
structure is effectively lost. In this case the grating acts like a
non (or hardly) structured flat surface with no (or very weak)
non-specular diffraction peaks; exactly what the black thin data
in the top row of Fig. 4 show.

However, the effective slit-width model cannot explain the
observed diffraction patterns for the narrowest strip width of

10 mm (red spectra in the top row of Fig. 4). In contrast to their
complementary counterparts, these patterns reveal intense diffrac-
tion peaks with a striking asymmetry between negative and
positive diffraction orders. The peak intensities decrease with
increasing order, a trend that includes the specular (0th-order)
beam. This behavior is still present, albeit less pronounced, for
30 mm wide strips (2nd row of Fig. 4).

The diffraction peak intensities of selected diffraction orders
(n = �1 and n = �2) as a function of incidence angle yin are
plotted in Fig. 5. The n-th order diffraction efficiency en is
defined as the n-th order diffraction intensity (given by the area
of a measured diffraction peak) divided by the intensity of the
direct beam profile (the undisturbed incident beam which is
measured with the grating removed from the beam path). As
expected from the above observations, when the �1st and �2nd-
order diffraction beams emerge at their Rayleigh incidence angles,
a substantial disagreement is found between the efficiencies for
the two complementary gratings. For narrow strip widths of
10 and 30 mm we find a characteristic shape that combines a
steep decay with saw-tooth shaped minima at the Rayleigh angles.
In recent work we have shown that this behavior results from edge
diffraction of the matter waves from half planes.40 Edge diffraction

Fig. 5 Diffraction efficiencies of the �1st-order (left column) and �2nd-
order (right column) plotted as a function of incidence angle yin. The
dashed vertical lines indicate Rayleigh angles of emergence of another
diffraction beam of order m as labeled on top of the graphs.
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becomes the dominant reflection mechanism for very narrow
strips that act like half-planes diffracting the incident de
Broglie wave.

Fig. 5 also illustrates the emerging beam resonance effect,
which is not well visible from the individual diffraction patterns
at selected incidence angles shown in Fig. 4. Emerging beam
resonances occur at every Rayleigh incidence angle yR,m (dashed
vertical lines in Fig. 5) and affect, in principle, every diffraction
beam.36 The saw-tooth shaped minima at incidence angle near
yR,m in the red curves of Fig. 5 are well visible emerging beam
resonances. By contrast emerging beam resonances are absent
for the complementary grating of the wider strip width (black
curves in Fig. 5). We presume that the strong reduction of the
diffraction efficiencies e�1 and e�2 at yR,�1 and yR,�2, respec-
tively, where the black curves begin, is caused by the atom-
surface interaction along the long interaction length above the
wide strips. The strong reduction of the emerging beam’s
intensity results, in turn, in a suppression of the emerging beam
resonances at the corresponding Rayleigh angles. (Resonances
are only detectable when the emerging beam is relatively
intense.36)

Conclusions

We attribute the breakdown of Babinet’s principle to the effect
of the atom-surface interaction between the He atoms and the
grating strips in combination with edge diffraction from half
planes.40 The influence of atom-surface interaction on matter-
wave diffraction phenomena has been studied before for dif-
fraction from a nanoscale transmission grating19,21,22,41 and,
most recently, for indium atoms diffracted by sub-micron
silicon oxide spheres.14 In the latter experiment it was found
that the van der Waals interaction between the indium atoms
and a silica sphere can significantly enhance the intensity of
the Poisson spot observed behind the spheres. In either experi-
ment the particle–surface interaction causes an interaction-
induced shift of the matter-wave phase.42 For diffraction from
a transmission-grating the resulting changes in diffraction
intensities can be accounted for by an effective width of the
grating strips.19 The effective strip width model can, qualita-
tively, explain our observation of the non-specular diffraction
intensities fading for the largest strip widths used in this work.

For very small strip widths, on the other hand, edge diffraction
from half planes40 becomes dominant and leads to asymmetric
diffraction patterns with intense diffraction beams at small out-
bound angles with respect to the grating surface. This also implies
that an emerging diffraction beam at Rayleigh conditions36 is
intense for small strip widths, while it is weak for complementary
large strip widths. As a consequence from this, emerging beam
resonances (dips in the curves of Fig. 5) appear pronounced for
small strip widths and absent for the complementary large strip
widths. Therefore, we conclude that the combination of the two
effects; enhancement of diffraction intensities for narrow strips
due to edge diffraction and reduction of diffraction intensities for
complementary wide strips due to atom-surface interactions,

explains the observed conditions of breakdown of Babinet’s
principle.

Babinet’s principle and the explanation of its breakdown
given here make it possible to qualitatively predict matter-wave
diffraction phenomena when a full calculation accounting for
atom-surface interactions, as recently demonstrated,29 is not
available or not needed. Diffraction efficiency ratios en/e0, for
instance, can be calculated using Fraunhofer–Kirchhoff theory
at conditions where Babinet’s principle holds. On the other
hand, at conditions where Babinet’s principle breaks down,
experimental results can provide a sensitive test of theoretical
models for quantum reflection, which accurately account for
the atom-surface interaction. Consequently, the comparison of
these data with a fully confirmed model can serve as a new
method for studying particle–surface interaction.

In summary, we did an experimental test of the applicability
of Babinet’s principle to matter-wave diffraction. Diffraction of
a He atom beam at grazing incidence conditions from four
different pairs of complementary square-wave gratings of
400 mm period up to the 5th diffraction order was observed.
The data indicate that Babinet’s principle is indeed valid for
conditions when the incidence angle and the angles of the
outbound beams are sufficiently large and the asymmetry ratio
of the strip widths of complementary gratings is small. However,
Babinet’s principle fails when either the incident or a diffracted
beam propagates close to the grating surface and/or when the
complementary grating pair shows a large strip width asymme-
try. We explain the observed breakdown of Babinet’s principle
qualitatively in terms of atom-surface interactions in combi-
nation with the effect of edge diffraction from half planes.
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